Hierarchical Dobiński-type relations via substitution and the moment problem

K A Penson†, P Blasiak‡, G Duchamp§§, A Horzela‡ and A I Solomon†§

†Université Pierre et Marie Curie,
Laboratoire de Physique Théorique des Liquides, CNRS UMR 7600
Tour 16, 5ième étage, 4, place Jussieu, F 75252 Paris Cedex 05, France

‡H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences
Department of Theoretical Physics
ul. Radzikowskiego 152, PL 31-342 Kraków, Poland

§The Open University
Physics and Astronomy Department
Milton Keynes MK7 6AA, United Kingdom

§§Université de Rouen
Laboratoire d’Informatique Fondamentale et Appliquée de Rouen
76821 Mont-Saint Aignan, France

E-mail:
blasiak@lptl.jussieu.fr, gduchamp2@free.fr, andrzej.horzela@ifj.edu.pl,
penson@lptl.jussieu.fr, a.i.solomon@open.ac.uk

Abstract. We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson \([a, a^\dagger] = 1\) monomials of the form \(\exp[\lambda(a^\dagger)^r a]\), \(r = 1, 2, \ldots\), under the composition of their exponential generating functions (egf). They turn out to be of Sheffer-type. We demonstrate that two key properties of these sequences remain preserved under substitutional composition: a) the property of being the solution of the Stieltjes moment problem; and b) the representation of these sequences through infinite series (Dobiński-type relations). We present a number of examples of such composition satisfying properties a) and b). We obtain new Dobiński-type formulas and solve the associated moment problem for several hierarchically defined combinatorial families of sequences.
1. Introduction

In a recent series of articles [1],[2],[3],[4],[5],[6] we investigated the properties of integer sequences appearing in the process of the normal ordering of powers of boson monomials \([(a^\dagger)^r a^s]^n\), with \(n, r, s\) -integers, where \(a\) and \(a^\dagger\) are the boson annihilation and creation operators respectively, satisfying \([a, a^\dagger] = 1\). They are extensions of earlier works [7],[8].

We observed that the normal form of \([(a^\dagger)^r a^s]^n\), with all the annihilation operators to the right, denoted by \(N([(a^\dagger)^r a^s]^n)\), can be written in the form \((r \geq s)\):

\[
[(a^\dagger)^r a^s]^n \equiv N([(a^\dagger)^r a^s]^n) = (a^\dagger)^{n(r-s)} \sum_{k=s}^{ns} S_{r,s}(n,k)(a^\dagger)^k a^k
\]

(1)

where \(S_{r,s}(n,k)\) are generalizations of the conventional \((r = s = 1)\) Stirling numbers of the second kind and

\[
B_{r,s}(n) = \sum_{k=s}^{ns} S_{r,s}(n,k)
\]

(2)

generalize the conventional \((r = s = 1)\) Bell numbers.

For general \(r \geq s\) we have worked out a complete theory of the numbers \(S_{r,s}(n,k)\) and \(B_{r,s}(n)\), including their recurrence relations, generating functions and closed-form formulas. In particular, the generalized Bell numbers \(B_{r,s}(n)\) can be expressed as infinite series, thereby extending the celebrated Dobinski relation valid for \(r = s = 1\) [9]:

\[
B_{1,1}(n) = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}, \quad n = 0, 1, 2, \ldots
\]

(3)

Here are some examples of such relations:

\[
B_{r,1}(n) = \frac{1}{e} \sum_{k=1}^{\infty} \frac{1}{k!} \prod_{j=1}^{n} [k + (j - 1)(r - 1)]
\]

(4)

\[
B_{r,r}(n) = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{(k + r)!}{k!}\right]^{n-1}
\]

(5)

they are all derived from the general polynomial-type formula \((n = 1, 2, \ldots)\)

\[
B_{r,s}(n, y) = \sum_{k=s}^{ns} S_{r,s}(n,k)y^k
\]

\[
= e^{-y} \sum_{k=s}^{\infty} \frac{1}{k!} \prod_{j=1}^{n} [(k + (j - 1)(r - s)) \cdot (k + (j - 1)(r - s) - 1) \cdot \ldots \cdot (k + (j - 1)(r - s) - s + 1)] y^k.
\]

(6)

We may associate a Generating Function \(C(x)\) with a given sequence \(\{c_n\}\) by [9]

\[
C(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}.
\]

(7)

This particular form of Generating Function is known as a Generating Function of Exponential Type or egf for short, due to the \(n!\) denominators. Of particular interest for
Hierarchical Dobinski-type relations via substitution and the moment problem

us here are those sequences \(\{ B_{r,s}(n) \} \) for which the egf can in fact be expressed as an exponential function; they include \(B_{r,1}(n), r = 1, 2, \ldots \) for which

\[
e^{x-1} = \sum_{n=0}^{\infty} B_{1,1}(n) \frac{x^n}{n!}
\]

and [1],[2],[10]

\[
\exp \left(\frac{1}{r-\sqrt{1-(r-1)x^{r-1}}} - 1 \right) = \sum_{n=0}^{\infty} B_{r,1}(n) \frac{x^n}{n!}, \quad r = 2, 3, \ldots
\]

The numbers \(S_{r,s}(n, k) \) appear when in Eqs.(8) and (9) an indeterminate \(y \) is introduced through

\[
e^y(e^x-1) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} S_{1,1}(n, k) y^k \right) \frac{x^n}{n!}
\]

and

\[
\exp \left[y \left(\frac{1}{r-\sqrt{1-(r-1)x^{r-1}}} - 1 \right) \right] = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} S_{r,1}(n, k) y^k \right) \frac{x^n}{n!}, \quad r = 2, 3, \ldots
\]

Eqs.(10) and (11) define polynomials of order \(n \):

\[
B_{r,1}(n, y) = \sum_{k=1}^{n} S_{r,1}(n, k) y^k, \quad r = 1, 2, \ldots
\]

Evidently, \(B_{r,1}(n) = B_{r,1}(n, 1) \). The polynomials of Eqs.(12) share another characteristic property: they can be written as ratios of two infinite series in \(y \). These are the so-called Dobinski-type relations [1],[2], which for \(r = 1 \) and \(r > 1 \) respectively are:

\[
\frac{1}{e^y} \sum_{k=1}^{\infty} k^n \frac{k^n}{k!} y^k = \sum_{k=1}^{n} S_{1,1}(n, k) y^k, \quad n = 0, 1, \ldots
\]

and

\[
\frac{(r-1)^n}{e^y} \sum_{k=1}^{\infty} \frac{\Gamma(n + \frac{k}{r-1})}{k!\Gamma(\frac{k}{r-1})} y^k = \sum_{k=1}^{n} S_{r,1}(n, k) y^k, \quad n = 1, 2, \ldots
\]

By setting \(y = 1 \) in Eqs.(10) and (11) we obtain a representation of the integers \(B_{r,1}(n) \) as an infinite series (compare Eqs.(3)-(5)); this constitutes a fertile ground for their probabilistic interpretation [11],[12]. The numbers \(B_{r,1}(n) \) can also be given various combinatorial interpretations [13],[14]. The second consequence of Eqs.(13) and (14) (and of the more general formulas for \(s > 1 \), see [1],[2]) is the fact, that \(B_{r,1}(n, y) \) for \(y > 0 \) is the \(n \)-th Stieltjes moment of a non-negative probability distribution, which is either discrete (for \(r = 1 \), giving a so called Dirac comb [3]) or continuous (for \(r > 1 \). This fact permits one to use the \(B_{r,s}(n, y) \) to construct various quantum collective states called coherent states [4],[15]. The interpretation of combinatorial sequences as moments [5] has led to new calculational approaches to hyperdeterminants [16]. Another aspect of Eqs.(13) and (14) which deserves mention here is that the numbers \(S_{r,1}(n, k) \) (\(1 \leq k \leq n \))
form a non-singular lower-triangular matrix with ones on the diagonal. Such matrices
form a group, called the Riordan group, which has important applications in enumerative
combinatorics [17],[18].

The purpose of this note is to place Eqs.(10)-(14) in the more general context of
Sheffer-type polynomials and to address the question of compositional substitution and
its implication for the existence of Dobiński-type relations as solutions of the Stieltjes
moment problem.

We first recall the known fact [19],[20],[21] that a compositional substitution
corresponds to multiplication of the matrices $S_{r,1}(n,k)$. Then we go on to demonstrate
that if two polynomial sequences $B_F(n,y)$ and $B_G(n,y)$ generated by $e^{yF(x)}$ and $e^{yG(x)}$
respectively are solutions of the associated Stieltjes moment problems, then the sequence
$B_{F(G)}(n,y)$ is also a solution of another, closely related, Stieltjes moment problem. We
further prove that if $B_F(n,y)$ and $B_G(n,y)$ are both given by Dobiński-type relations, see
Eqs.(13) and (14), then the sequence $B_{F(G)}(n,y)$ is also given by an analogous formula.
We then illustrate these reproducing properties of Dobiński-type relations and moment
problem solutions by some specific examples. They comprise multiple compositions of
standard Bell numbers with themselves (composing discrete with discrete distributions),
compositions of Lah numbers (related to Laguerre polynomials) with themselves and
finally composing discrete with continuous distributions and vice versa.

2. Sheffer-type polynomials

A polynomial $B(n,y)$ of order n in the variable y is of Sheffer-type if the associated egf
can be written in the form [22]

$$1 + \sum_{n=1}^{\infty} B(n,y) \frac{x^n}{n!} = A(x)e^{yF(x)}$$

(15)

with $A(0) = 1$ and $F(0) = 0$. Many such families of polynomials have been thoroughly
investigated. Among the polynomials encountered in Quantum Mechanics, the Hermite
and Laguerre polynomials are of Sheffer-type, whereas the Legendre and Gegenbauer are
not. Comparing Eq.(15) with Eqs.(10) and (11) we observe that $B_{r,1}(n,y)$ are Sheffer-
type polynomials with $A(x) = 1$. In fact $B_{1,1}(n,y)$ are the so-called Bell (or exponential)
polynomials [22] and $B_{2,1}(n,y)$ are the generalized Laguerre polynomials. The numbers
$S_{1,1}(n,k)$ are the conventional Stirling numbers of the second kind and the numbers

$$S_{2,1}(n,k) = \frac{n!}{k!} \binom{n-1}{k-1}$$

(16)

are the so-called unsigned Lah numbers [1],[10].

More generally, consider two families of Sheffer-type polynomials $B_F(n,y)$ and
$B_G(n,y)$ generated by

$$e^{yF(x)} = 1 + \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} S_F(n,k)y^k \right) \frac{x^n}{n!}$$

(17)
and
\[e^yG(x) = 1 + \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} S_G(n, k) y^k \right) \frac{x^n}{n!}, \] (18)
respectively, where \(F(0) = G(0) = 0 \) and
\[B_F(n, y) = \sum_{k=1}^{n} S_F(n, k) y^k \quad \text{and} \quad B_G(n, y) = \sum_{k=1}^{n} S_G(n, k) y^k. \] (19)

We now consider the polynomials generated by \(F(G(x)) \), i.e.
\[e^yF(G(x)) = 1 + \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} S_F(n, k) y^k \right) \frac{x^n}{n!} \] (20)
Before we calculate this sum we note the relation resulting from the change of summation in Eq.(18):
\[e^yG(x) = 1 + \sum_{k=1}^{\infty} \left(\sum_{n=k}^{\infty} S_G(n, k) x^n \right) \frac{y^k}{n!}. \] (21)
Now comparison with the direct expansion of the left hand side of Eq.(21)
\[e^yG(x) = 1 + \sum_{k=1}^{\infty} (G(x))^k \frac{y^k}{k!} \] (22)
yields
\[\frac{(G(x))^k}{k!} = \sum_{n=k}^{\infty} S_G(n, k) \frac{x^n}{n!}. \] (23)

Proceeding to the direct calculation of Eq.(20) we recall that the matrices \(S_F(n, k) \) and \(S_G(n, k) \) are lower triangular (i.e. the entries for \(k > n \) are zero):
\[e^yF(G(x)) = 1 + \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} S_F(n, k) y^k \right) \frac{(G(x))^n}{n!} \] (24)
\[= 1 + \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} S_F(n, k) y^k \right) \sum_{p=n}^{\infty} S_G(p, n) \frac{x^p}{p!} \] (25)
\[= 1 + \sum_{p=1}^{\infty} \left(\sum_{k=1}^{p} \left(\sum_{n=1}^{p} S_G(p, n) S_F(n, k) \right) y^k \right) \frac{x^p}{p!}. \] (26)
Comparison with Eq.(20) yields
\[S_F(G)(n, k) = \sum_{p=1}^{n} S_G(n, p) S_F(p, k) \] (27)
This last equality means that compositional substitution within the Sheffer-type polynomial families is equivalent to the matrix product of the corresponding Stirling matrices \([19],[20]\)
\[S_F(G) = S_G \cdot S_F. \] (28)
Hierarchical Dobinski-type relations via substitution and the moment problem

A direct consequence of Eq.(27) is the formula
\[B_{F(G)}(n, y) = \sum_{p=1}^{n} S_{F(G)}(n, p)y^p = \sum_{p=1}^{n} y^p \sum_{k=1}^{n} S_{G}(n, k)S_{F}(k, p) = \sum_{k=1}^{n} S_{G}(n, k) \sum_{p=1}^{k} S_{F}(k, p)y^p = \sum_{k=1}^{n} S_{G}(n, k)B_{F}(k, y). \] (29)

The last equation can be seen as the generalized Stirling transform \[23\] of the polynomials \(B_{F}(k, y) \) which for \(y = 1 \) reduces to the generalized Stirling transform of the sequence \(B_{F}(k) \):
\[B_{F(G)}(n) = \sum_{k=1}^{n} S_{G}(n, k)B_{F}(k). \] (31)

3. Compositional moment problem

The formulas (27) and (30) lead to important consequences if the initial Sheffer-type polynomials are solutions of the Stieltjes moment problems, i.e. if for \(x, y > 0 \) there exist positive weight functions \(W_{F}(x, y) \) and \(W_{G}(x, y) \) such that
\[B_{F}(n, y) = \int_{0}^{\infty} x^nW_{F}(x, y)dx, \] (32)
\[B_{G}(n, y) = \int_{0}^{\infty} x^nW_{G}(x, y)dx. \] (33)

Then the following equalities follow:
\[B_{F(G)}(n, y) = \sum_{k=1}^{n} S_{G}(n, k)B_{F}(k, y) \]
\[= \sum_{k=1}^{n} S_{G}(n, k) \int_{0}^{\infty} x^kW_{F}(x, y)dx = \int_{0}^{\infty} W_{F}(x, y) \sum_{k=1}^{n} S_{G}(n, k)x^k dx \]
\[= \int_{0}^{\infty} W_{F}(x, y)B_{G}(n, x)dx = \int_{0}^{\infty} dx W_{F}(x, y) \int_{0}^{\infty} z^nW_{G}(z, x)dz \]
\[= \int_{0}^{\infty} z^n \left(\int_{0}^{\infty} W_{F}(x, y)W_{G}(z, x)dx \right) dz \] (34)
and this implies that
\[B_{F(G)}(n, y) = \int_{0}^{\infty} x^nW_{F(G)}(x, y)dx \] (35)
where \(W_{F(G)}(x, y) \) is a positive function given by
\[W_{F(G)}(x, y) = \int_{0}^{\infty} W_{F}(z, y)W_{G}(x, z)dz. \] (36)

We remark that the arguments of the weight functions in Eq.(36) need not satisfy any particular symmetry properties.
More generally, for p-fold substitution $F_1(F_2(\ldots(F_p)\ldots))$ one obtains

$$W_{F_1(F_2(\ldots(F_p)\ldots))}(x, y) = \int_0^{\infty} dz_1 W_{F_1}(z_1, y) \int_0^{\infty} dz_2 W_{F_2}(z_2, z_1) \ldots$$

$$\ldots \int_0^{\infty} dz_p W_{F_{p-1}}(z_p, z_{p-1}) W_{F_p}(x, z_p). \tag{37}$$

Eq.(37) reveals a typical structure appearing in the iterated-kernel method of solving integral equations [24],[25].

In other words; for the Sheffer-type polynomials the property of being a solution of the Stieltjes moment problem is reproduced by the mechanism of compositional substitution, under the evident condition that the integrals in Eqs.(36) and (37) exist.

In the following section we provide a number of examples of substitutions $F(G(x))$ for which an explicit evaluation of $W_{F(G)}(x, y)$ and $B_{F(G)}(n, y)$ can be carried through.

4. Compositional Dobiński-type relations

A rather large reservoir of solutions of the Stieltjes moment problem is contained in the formulas (13) and (14). For any $r = 1, 2, \ldots B_{r,1}(n, y)$ is the moment of a positive function $W_r(x, y)$, which can be written down explicitly, for instance by extending to $y \neq 1$ the results given in [4],[5],[6]. The examples are:

$$W_1(x, y) = e^{-y} \sum_{k=1}^{\infty} \frac{y^k \delta(x-k)}{k!} \tag{38}$$

$$W_2(x, y) = ye^{-(x+y)} \frac{I_1(2\sqrt{xy})}{\sqrt{xy}} \tag{39}$$

$$W_3(x, y) = \frac{1}{12\sqrt{\pi}x} e^{-\frac{x}{2}} y \left(6\sqrt{2\pi} + 3xy\sqrt{\pi} \right) 0F_2\left(\frac{3}{2}, 2; \frac{xy^2}{8}\right)$$

$$\quad + \sqrt{2} x^{3/2} y^2 \ {}_1F_3\left(1; \frac{3}{2}, 2, \frac{5}{2}; \frac{xy^2}{8}\right), \tag{40}$$

where $\delta(z)$ is the Dirac delta function, $I_\nu(z)$ is the modified Bessel function of first kind and $0F_2$ and $1F_3$ are hypergeometric functions. Eqs.(39) and (41) were obtained using the inverse Mellin transform. See [26] for its exposition and [27] for examples of applications.

Note, that whereas $W_1(x, y)$ is a discrete distribution in the form of a Dirac comb concentrated on positive integers, the functions $W_r(x, y)$ for $r > 1$ are continuous distributions [6]. Observe also that they are not normalized, in the sense of their zero moments: $\int_0^{\infty} W_1(x, 1) dx = 1$ whereas $\int_0^{\infty} W_r(x, 1) dx \neq 1, r > 1$.

In this section we demonstrate that the reproducing character of the compositional moment problem, see Eq.(36), implies the reproducing character of the Dobiński-type relations. In the following paragraph, with given $F(x)$ and $G(x)$ of Eqs.(17) and (18) we will carry out explicit substitutions $F(G(x))$ and analyze the weight functions $W_{F(G)}(x)$ obtained from Eq.(36) and the resulting Dobiński-type relations.
Hierarchical Dobiński-type relations via substitution and the moment problem

4.1. $F(x) = G(x) = e^x - 1$

In the following the subscript $B(B)$ stands for “substitute Bell into Bell”. We investigate the polynomials $B_{B(B)}(n, y)$ resulting from

$$
 e^y (e^x - 1) = \sum_{n=0}^{\infty} B_{B(B)}(n, y) \frac{x^n}{n!}
$$

which correspond to the ordinary Stirling transform [23] of the Bell polynomials $B_{1,1}(n, y)$

$$
 B_{B(B)}(n, y) = \sum_{k=1}^{n} S(n, k) B_{1,1}(k, y)
$$

where $S(n, k)$ are the conventional Stirling numbers of the second kind. The polynomial $B_{1,1}(n, y)$ is the n-th moment of the Dirac comb [3],

$$
 W_B(x, y) = e^{-y} \sum_{k=1}^{\infty} y^k \delta(x - k) / k!,
$$

and the weight function resulting from the substitution $F(F(x))$ is through Eq.(36) equal to

$$
 W_{B(B)}(x, y) = \int_{0}^{\infty} W_B(z, y) W_B(x, z) dz = \int_{0}^{\infty} \left(e^{-y} \sum_{k=1}^{\infty} y^k \delta(z - k) / k! \right) \left(e^{-z} \sum_{p=1}^{\infty} z^p \delta(x - p) / p! \right) dz = e^{-y} \sum_{p=1}^{\infty} \frac{\delta(x - p)}{p!} \left(\sum_{k=1}^{\infty} \frac{k^p}{k!} (ye^{-1})^k \right) = e^{y(e^{-1} - 1)} \sum_{p=1}^{\infty} \frac{\delta(x - p)}{p!} \left(\sum_{r=1}^{p} S(p, r) (ye^{-1})^r \right),
$$

where the last equality results from the original Dobiński formula Eq.(13). This result shows that

$$
 B_{B(B)}(n) = B_{B(B)}(n, 1) = e^{(e^{-1} - 1)} \sum_{k=1}^{\infty} \frac{k^n}{k!} \left(\sum_{r=1}^{p} S(k, r) e^{-r} \right),
$$

with the initial terms $B_{B(B)}(n) = 1, 1, 3, 12, 60, 358, 2471, 19302, \ldots$, for $n = 0, 1, \ldots$. $B_{B(B)}(n)$ counts the number of partitions of a set of n distinguishable elements, in which every part is again partitioned [19].

Multiple substitutions of Bell efg’s into themselves result in hierarchical, chain-like formulas for corresponding partition numbers, i.e. for $F(F(F(x)))$ one obtains for $n = 0, 1, \ldots$

$$
 B_{B(B(B))}(n) = e^{(e^{-1} - 1)} \sum_{k=1}^{\infty} \frac{k^n}{k!} \cdot \left(\sum_{p=1}^{k} S(k, p) e^{-p} \left(\sum_{r=1}^{p} S(p, r) e^{r(e^{-1} - 1)} \right) \right).
$$
For example, \(B_{B(B)}(n) = 1, 1, 4, 22, 154, 1304, 12915, 146115, \ldots\), for \(n = 0, 1, \ldots\), which counts the number of “triple” partitions of an \(n\)-set.

We conclude that the substitution \(F(F(x))\) results in a formula for \(B_{B(B)}(n)\) which conserves the original Dobinski-type structure of \(B_B(n)\) as in Eq.(3); and also gives a Dirac comb type of weight function with modified weights concentrated on positive integers. These results also hold good for higher order substitutions.

4.2. \(F(x) = G(x) = \frac{x}{1-x}\)

This case corresponds to \(B_{2,1}(n,y)\) which from Eq.(14) is

\[
B_{2,1}(n, y) = \frac{1}{e^y} \sum_{k=1}^{n} \frac{\Gamma(n+k)}{k! \Gamma(k)} y^k = n! \sum_{k=1}^{n} \frac{1}{k!} \left(\frac{n-1}{k-1}\right) y^k, \tag{48}
\]

and can be also written as

\[
B_{2,1}(n, y) = (n-1)! L_{n-1}^{(1)}(-y) \tag{49}
\]

by using the standard form of the generating function of generalized Laguerre polynomials \(L_n^{(\lambda)}(x)\). With the notational convention introduced above we rewrite Eq.(49) as (here \(L\) stands for Laguerre)

\[
B_L(n, y) = \sum_{k=1}^{n} S_L(n,k) y^k \tag{50}
\]

where \(S_L(n,k)\) are the unsigned Lah numbers, see Eq.(16). For \(y = 1\), the integers \(B_L(n, 1) \equiv B_L(n)\) count binary ordered forests of \(n\) nodes [13] (the initial terms are \(B_L(n) = 1, 3, 13, 73, 501, 4051 \ldots, n = 1, 2, \ldots\)). For other combinatorial interpretations see [28].

The polynomial \(B_L(n, y)\) is the \(n\)-th moment of [6] (see Eq.(40)):

\[
W_L(x, y) = ye^{-(x+y)} I_1(2 \sqrt{xy}) \sqrt{xy} \tag{51}
\]

By \(F(F(x))\)-type composition the function \(e^{y \frac{x}{1-x}}\) generates \(B_{L(L)}(n, y)\) through

\[
e^{y \frac{x}{1-x}} = \sum_{n=0}^{\infty} B_{L(L)}(n, y) \frac{x^n}{n!} \tag{52}
\]

where \(L(L)\) stands for “substitute Laguerre into Laguerre”, which are the \(n\)-th moments of

\[
W_{L(L)}(x, y) = \int_{0}^{\infty} W_L(z, y) W_B(x, z) dz = \\
= \int_{0}^{\infty} \left(ye^{-(z+y)} I_1(2 \sqrt{zy}) \sqrt{zy} \right) \cdot \left(z e^{-(x+z)} I_1(2 \sqrt{xz}) \sqrt{xz} \right) dz. \tag{53}
\]

By virtue of the entry 2.15.20.8 of [29], this yields a continuous distribution

\[
W_{L(L)}(x, y) = ye^{-(x+y)} \frac{I_1(\sqrt{xy})}{2 \sqrt{xy}} = \frac{1}{2} W_L(\frac{x}{2}, \frac{y}{2}), \tag{54}
\]
thus preserving the original structure encountered in Eq.(51). In addition, simple use of the generating function of the generalized Laguerre polynomials yields

\[B_{L(L)}(n, y) = \int_0^\infty x^n W_{L(L)}(x, y) dx = 2^{n-1} (n-1)! y L^{(1)}_{n-1}(-\frac{y}{2}) \]

(55)

whose initial terms for \(y = 1 \) are

\[B_{L(L)}(n, y) = 1, 5, 37, 4361, 62701\ldots \]

\(n = 1, 2, \ldots \)

4.3. \(F(x) = e^x - 1, \ G(x) = \frac{x}{1-x} \)

Here we substitute Laguerre (continuous distribution) into Bell (discrete distribution) and vice versa.

The calculations are analogous to those in 4.1 and 4.2 with repeated use of integrals listed in [29]. We only quote the final results:

\[B_{B(L)}(n, y) = \int_0^\infty x^n W_{B(L)}(x, y) dx, \]

(57)

where

\[W_{B(L)}(x, y) = e^{-(x+y)} \frac{y^k}{\sqrt{x}} \sum_{k=1}^{\infty} \frac{y^k}{k!} \sqrt{k} e^{-k} I_1(2\sqrt{kx}) \]

(58)

which is a continuous distribution. The polynomials \(B_{B(L)}(n, y) \) are generated by

\[e^{y(e^{\frac{x}{2}} - 1)} = \sum_{n=0}^{\infty} B_{B(L)}(n, y) \frac{x^n}{n!}. \]

(59)

The initial terms of \(B_{B(L)}(n) \) are 1, 4, 23, 171, 1552, 16583\ldots for \(n = 1, 2, \ldots \) These integers count structures called \textit{sets of sets of lists}, where \textit{list} means an ordered subset [28]. A closed-form Dobinski-type formula for \(B_{B(L)}(n) \) can be obtained by calculating the moments of \(W_{B(L)}(x, 1) \). A longer but straightforward calculation gives

\[B_{B(L)}(n) = e^{-1} \sum_{k=1}^{\infty} \frac{(n-1)! L^{(1)}_{n-1}(-k)}{(k-1)!}. \]

(60)

Higher order substitutions yield formulas of similar type.

For the opposite substitution (“Bell into Laguerre” denoted \(L(B) \)) generated by

\[e^{y e^{x-1}} = \sum_{n=0}^{\infty} B_{L(B)}(n, y) \frac{x^n}{n!}, \]

(61)

we obtain

\[B_{L(B)}(n, y) = \int_0^\infty x^n W_{L(B)}(x, y) dx, \]

(62)

where

\[W_{L(B)}(x, y) = \frac{y}{2} e^{-\frac{x}{2}} \sum_{k=1}^{\infty} \frac{\delta(x-k)}{2^k \cdot k^k} L^{(1)}_{k-1}(-\frac{y}{2}) \]

(63)
which is a discrete (Dirac comb) distribution, with moments
\[B_{L(B)}(n) = B_{L(B)}(n, 1) = \frac{1}{2} e^{-\frac{1}{2}} \sum_{k=1}^{\infty} k^{n-1} \frac{(1)}{2k} L_{k-1}(-\frac{1}{2}) \] (64)
and initial terms \(B_{B(L)}(n) = 1, 4, 23, 173, 1602, 17575, \ldots \), for \(n = 1, 2, \ldots \).

4.4. Bell numbers vs. “ordered” Bell numbers
As the last example we shall consider a slightly more general substitution problem in which only the “internal” egf \(G(x) \) is of Sheffer-type. In other words, the egf of one of the sequences is not an exponential. A case in point is given by the so called “ordered” Bell numbers [3], [9] \(B_{O}(n) \) defined through
\[B_{O}(n) = \sum_{k=1}^{n} S(n, k) k! . \] (65)
Their extension to polynomials \(B_{O}(n, y) = \sum_{n=0}^{\infty} B_{O}(n, y) \frac{x^n}{n!} \) is generated by [21]
\[\frac{1}{1 - y(e^x - 1)} = \sum_{n=0}^{\infty} B_{O}(n, y) \frac{x^n}{n!} . \] (66)
Thus the \(B_{O}(n, y) \) are not of Sheffer-type.

We now perform the substitution “Bell into ordered Bell”, denoted by the subscript \(O(B) \). Although Eq.(30) is no longer valid, we can still define the numbers \(B_{O(B)}(n) \) through Eq.(31):
\[B_{O(B)}(n) = \sum_{k=1}^{n} S(n, k) B_{O}(k) , \] (67)
or equivalently by
\[\frac{1}{2 - e^{x-1}} = \sum_{n=0}^{\infty} B_{O(B)}(n) \frac{x^n}{n!} . \] (68)
Recalling the Dobiński-type expression for \(B_{O}(n) \) [3], [9]
\[B_{O}(n) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{2^k} , \] (69)
the formula Eq.(36), now for \(y = 1 \) only, carries over and after straightforward calculation we obtain the Dobiński-type formula for \(B_{O(B)}(n) \):
\[B_{O(B)}(n) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{k!} \left(\sum_{r=1}^{\infty} \frac{e^{-r}r^k}{r!} Li_{-r}(\frac{1}{2e}) \right) \] (70)
where \(Li_{m}(y) \) is the polylogarithm of order \(m \) of \(y \). The initial terms are \(B_{O(B)}(n) = 1, 4, 23, 175, 1662, 18937, \ldots , n = 1, 2, \ldots \).

Similarly, from the substitution “double Bell into ordered Bell” (denoted by \(O(B(B)) \)) below we obtain
\[B_{O(B(B))}(n) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{k!} \left(\sum_{r=1}^{\infty} \frac{e^{-r}r^k}{r!} Li_{-r}(\frac{1}{2e}) \right) \] (71)
Hierarchical Dobinski-type relations via substitution and the moment problem

where

\[
\frac{1}{2 - e^{e^{x - 1}}} = \sum_{n=0}^{\infty} B_{O(B(t))}(n) \frac{x^n}{n!}, \quad \text{etc.} \tag{72}
\]

Clearly, Eqs. (70) and (71) again give rise to Dirac comb weight functions.

5. Discussion and conclusions

The main result of this work can be viewed from different perspectives. It is primarily a method for the generation of new solutions of moment problems. As such it is of potential importance for the construction of new generalized coherent states. Refs. [5] and [4] should be considered as first steps in this direction. The iterative method based on Eqs. (36) and (37) appears to be straightforward under the condition of the existence of the relevant integrals. This will definitely extend and enrich the families of currently known solutions of the moment problem.

A closer look at the examples above based on Eq. (36) leads to the conclusion that if \(e^{G(x)} \) generates the moments of a discrete distribution then the moments generated by \(e^{F(G(x))} \) are those of a discrete distribution. Similarly, when \(e^{G(x)} \) gives a continuous distribution, the composition \(e^{F(G(x))} \) gives rise to a continuous distribution.

We are dealing here with Sheffer-type polynomials which are also solutions of the moment problem; it should be borne in mind that these are quite strong restrictions. It is easy to construct Sheffer-type polynomials which are not solutions of the moment problem. For example, the polynomials \(p_n(y) \), which are related to Bessel polynomials [22], are generated by

\[
e^{y(\sqrt{1+2x-1})} = 1 + \sum_{n=1}^{\infty} p_n(y) \frac{x^n}{n!} \tag{73}
\]

and can take on negative values for \(y = 1 \); they are therefore not acceptable solutions of the moment problem. On the other hand, for \(s > 1 \), the polynomials \(B_{r,s}(n,y) \) defined by Eq. (6) are solutions of the moment problem [6] but are not of Sheffer-type [1],[2].

Referring to various Dirac comb-type distributions obtained by compositions (see Eqs. (44), (46), (47), (64), (69), (70) and (71)) we observe that the substitution \(B(n) \to B(\alpha n^2 + \beta n + \gamma) \), (\(\alpha, \beta, \gamma \) - integers, \(\alpha > 0 \)) gives sequences \(\tilde{B}(n) = B(\alpha n^2 + \beta n + \gamma) \) which are the \(n \)-th moments of continuous measures; they are infinite, weighted sums of log-normal distributions [3].

The reproducing nature of Dobinski-type relations under composition also follows from the scheme presented here. It has already provided a number of new closed-form expressions for combinatorial numbers, Eqs. (55),(56),(60),(64),(70) and (71), together with the associated weight functions. It seems that this method can be also applied to various generalizations of combinatorial numbers, e.g. \(q \)-deformations [30] and to more involved substitution schemes such as those considered in [31].
Acknowledgments

We thank D. Barsky, M. M. Mendez and C. Quesne for important discussions.

References

[18] Zhao X and Wang T 2003 Some identities related to reciprocal functions Discrete Math. 265 323
Hierarchical Dobinski-type relations via substitution and the moment problem

[29] Prudnikov A P, Brychkov Y A and Marichev O I 1986 Integrals and Series: Special Functions vol 2 (Amsterdam: Gordon and Breach)
