How to conjecture and prove that the generating function of the Yang-Zagier numbers is algebraic ${ }^{1}$ CAP21 (IHES, France)

Sergey Yurkevich
Inria Saclay and University of Vienna

1st December, 2021

[^0]
Two sequences

$$
\begin{aligned}
& \left(a_{n}\right)_{n \geq 0}=(1,-48300,7981725900,-1469166887370000, \ldots) \\
& \left(b_{n}\right)_{n \geq 0}=(1,-144900,88464128725,-62270073456990000, \ldots)
\end{aligned}
$$

Origin of a_{n} and b_{n}

- In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:
$c_{n-3}+20\left(4500 n^{2}-18900 n+19739\right) c_{n-2}+80352000 n(5 n-1)(5 n-2)(5 n-4) c_{n}+$ $25\left(2592000 n^{4}-16588800 n^{3}+39118320 n^{2}-39189168 n+14092603\right) c_{n-1}=0$, with initial terms $c_{0}=1, c_{1}=-161 /\left(2^{10} \cdot 3^{5}\right)$ and $c_{2}=26605753 /\left(2^{23} \cdot 3^{12} \cdot 5^{2}\right)$.
- Recursion comes from physics: integral over a moduli space ("topological ODE") [Bertola, et al, 2015].
Problem (Zagier, 2018)
Find $(u, v) \in \mathbb{Q}^{*} \times \mathbb{Q}^{*}$ such that $c_{n} \cdot(u)_{n} \cdot(v)_{n} \cdot w^{n} \in \mathbb{Z}$ for some $w \in \mathbb{Z}^{*}$.

$$
(u)_{n}:=u \cdot(u+1) \cdots(u+n-1) .
$$

- [Yang and Zagier]: $a_{n}=c_{n} \cdot(3 / 5)_{n} \cdot(4 / 5)_{n} \cdot\left(2^{10} \cdot 3^{5} \cdot 5^{4}\right)^{n} \in \mathbb{Z}$,
- [Dubrovin and Yang]: $b_{n}=c_{n} \cdot(2 / 5)_{n} \cdot(9 / 10)_{n} \cdot\left(2^{12} \cdot 3^{5} \cdot 5^{4}\right)^{n} \in \mathbb{Z}$.

Mystery of a_{n} and b_{n}

- "Yang and I found a formula showing that the numbers a_{n} are integers of exponential growth and hence can be expected to have a generating series that is a period, although we have not succeeded in finding it" - [Zagier, 2018]
- "Dubrovin and Yang found that the numbers b_{n} are also integral and that in this case the generating function is not only of Picard-Fuchs type, but is actually algebraic!" - [Zagier, 2018]
■ "So this is a very mysterious example [...] of numbers defined by recursions with polynomial coefficients." - [Zagier, 2018]
■ "My presumed arithmetic intuition [...] was entirely broken" - [Wadim Zudilin]

Problem

Investigate the nature of $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$ and similar sequences.
Theorem (Bostan, Weil, Y.)
The generating functions of both $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ are algebraic.

Definitions and interactions

A sequence $\left(u_{n}\right)_{n \geq 0}$ is P -recursive, if it satisfies a linear recurrence with polynomial coefficients:

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0 .
$$

$$
u_{n}=1 / n!\text { satisfies } n u_{n}=u_{n-1} .
$$

Definitions and interactions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is D-finite if it satisfies a linear differential equation with polynomial coefficients:

$$
p_{n}(x) f^{(n)}(x)+\cdots+p_{0}(x) f(x)=0
$$

This equation can be rewritten: $L \cdot f=0$,
$L=p_{n}(x) \partial^{n}+\cdots+p_{0}(x) \in \mathbb{Q}(x)[\partial]$,
where $\partial:=\frac{\mathrm{d}}{\mathrm{d} x}$.
$\exp (x)$ satisfies $\exp ^{\prime}(x)=\exp (x)$.
$L=\partial-1$.

Definitions and interactions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called a Period function if it is an integral of a rational function in x and t_{1}, \ldots, t_{n} over a semi-algebraic set.

$$
\begin{aligned}
p(e) & =4 \int_{0}^{1} \sqrt{\frac{1-e^{2} t^{2}}{1-t^{2}}} \mathrm{~d} t \\
& =4 \oiint \frac{\mathrm{~d} u \mathrm{~d} v}{1-\frac{1-e^{2} u^{2}}{\left(1-u^{2}\right) v^{2}}} \text { and } \\
\left(\left(e-e^{3}\right) \partial^{2}\right. & \left.+\left(1-e^{2}\right) \partial+e\right) \cdot p=0 \\
p(e) & =2 \pi-\frac{\pi}{2} e^{2}-\frac{3 \pi}{32} e^{4}-\cdots
\end{aligned}
$$

Back to a_{n} and b_{n}

■ $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ are \mathbf{P}-recursive sequences \Rightarrow generating functions are D-finite.

$$
\begin{aligned}
& L_{a}=1800 x(7 x-62)\left(x^{2}+50 x+20\right) \partial^{2}+720\left(42 x^{3}+173 x^{2}-14230 x-620\right) \partial \\
&+6048 x^{2}-139453 x-249550 \in \mathbb{Q}(x)[\partial], \\
& \begin{aligned}
L_{b}=90000 x^{3} & (2911 x+310)\left(x^{2}+50 x+20\right) \partial^{4} \\
& +18000 x^{2}\left(154283 x^{3}+5185005 x^{2}+1675710 x+142600\right) \partial^{3} \\
+ & 50 x\left(147290778 x^{3}+2740219655 x^{2}+566777510 x+37497600\right) \partial^{2} \\
+ & 5\left(919899288 x^{3}+5629046605 x^{2}+1348939210 x+10713600\right) \partial \\
& +18\left(13937868 x^{2}-1076845 x+1247750\right) \in \mathbb{Q}(x)[\partial] .
\end{aligned}
\end{aligned}
$$

■ The generating functions of $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ solve $L_{a} \cdot y=0$ and $L_{b} \cdot y=0$.

Main problem

Stanley's problem (1980)
Given a D-finite series how to prove or disprove that it is algebraic?

Useful (sub-)question

Given a D-finite series how to conjecture whether it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.
■ Algorithm for rational solutions of linear ODE [Liouville, 1833], [Barkatou, 1998].
■ Solved in theory [Singer, 1979, 2014] - but usually not applicable in practice.
■ New practical algorithm for disproving algebraicity [Bostan, Rivoal, Salvy, 2021].

- Several tests for justifying algebraicity based on conjectures or numerics: work well in practice but do not provide proofs.
- Applied differential Galois theory sometimes efficient proving algebraicity.

The Guess-and-Prove approach

■ Experimental mathematics and "Guess-and-Prove" propagated by G. Pólya.

- Extremely fruitful when using a computer.

■ P-recursive sequences/D-finite functions: ideal data structure for guessing.
■ Find new structure and simpler formulas.

- Very efficient and easy in practice (e.g. with Maple).
- For guessing: gfun [Salvy, Zimmermann 1992].

■ For proving: Theory of $\mathbb{Q}(x)[\partial]$ and effective properties.

Guess \& Prove for P-recursive sequences/D-finite functions

- Given $u_{0}, u_{1}, \ldots, u_{N} \in \mathbb{Q}$, finding some $c_{0}(n), \ldots, c_{r}(n)$ for fixed r and of fixed maximal degree d such that

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0, \quad \text { for } n=0, \ldots, N-r
$$

amounts to solving a linear system.

- Showing equality of two P-recursive sequences/D-finite functions is decidable and easy/efficient in practice.
■ \rightarrow Maple (for $\left(a_{n}\right)_{n \geq 0}$ and $\left.\left(b_{n}\right)_{n \geq 0}\right)$

Guess \& Prove for algebraicity: Toy example

■ Let $f(x)=2-x^{2} / 4-5 x^{4} / 64+\cdots$ be a solution of

$$
\left(4 x^{2}-4\right) \cdot f^{\prime \prime}(x)+4 x \cdot f^{\prime}(x)-f(x)=0
$$

- How to prove that $f(x)$ is algebraic?
- Idea: guess a minimal polynomial $P(x, t)$ and then prove its correctness.

■ Let $g(x)=2-x^{2} / 4-5 x^{4} / 64$. Finding $\left(c_{1}, c_{2}, \ldots, c_{9}\right) \in \mathbb{Q}$ such that $P(x, f(x))=\left(c_{1}+c_{2} x+c_{3} x^{2}\right)+\left(c_{4}+c_{5} x+c_{6} x^{2}\right) g^{2}+\left(c_{7}+c_{8} x+c_{9} x^{2}\right) g^{4}=0$ results in a linear system which we can easily solve: $c_{3}=4, c_{4}=-4, c_{7}=1$.
■ Guess: $P(x, t)=4 x^{2}-4 t^{2}+t^{4}$.
■ Effective version of Abel's Theorem: Any solution $h(x)$ of $P(x, h(x))=0$ satisfies:

$$
\left(4 x^{2}-4\right) \cdot h^{\prime \prime}(x)+4 x \cdot h^{\prime}(x)-h(x)=0
$$

- Proof: Conclude with uniqueness.

■ In general algebraicity degree can be arbitrarily high: $N(1+x) f^{\prime}(x)=f(x)$.

Grothendieck-Katz conjecture: "testing" algebraicity

■ $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\mathbb{Q}(x)$.

- The p-curvature is the matrix $A_{p}(x) \in \mathbb{Q}(x)$, where

$$
A_{0}(x)=\operatorname{Id}_{n}, \quad \text { and } \quad A_{\ell+1}(x)=A_{\ell}^{\prime}(x)+A_{\ell}(x) A(x) \quad \text { for } \quad \ell \geq 0
$$

■ It holds that $\partial^{k} Y=A_{k} Y$ for $k=0,1, \ldots$.

Conjecture (Grothendieck 1960's; Katz, 1972)

All solutions of $Y^{\prime}=A(x) Y$ are algebraic if and only if $A_{p}=0 \bmod p$ for almost all primes p.

- If $A(x)$ is given and we find that $A_{p_{i}}=0 \bmod p_{i}$ for all primes $p_{1}, p_{2}, \ldots, p_{N}$, we can conjecture that all solutions of $Y^{\prime}=A(x) Y$ are algebraic.
- $A_{p} \bmod p$ can be efficiently computed [Bostan, Caruso, Schost, 2015].

"Testing" algebraicity for L_{a} and L_{b}

■ It holds that $\partial^{k} Y=A_{k} Y$ for $k=0,1, \ldots$.

- The right Euclidean division of ∂^{k} by L in $\mathbb{Q}(x)[\partial]$ reads:

$$
\partial^{k}=(\ldots) \cdot L+d_{n-1}(x) \partial^{n-1}+\cdots+d_{0}(x)
$$

for $d_{0}(x), \ldots, d_{n-1}(x) \in \mathbb{Q}(x)$ depending on k.
■ Hence, the first row of A_{k} is $d_{0}(x), \ldots, d_{n-1}(x)$.
$\square \rightarrow$ Maple (for L_{a} and L_{b})

Monodromy group: quantifying algebraicity

■ $L \cdot y=0$ for $L \in \mathbb{Q}(x)[\partial]$ has $n=\operatorname{ord}(L)$ linearly independent solutions.

- Assume f_{1}, \ldots, f_{n} are linearly independent solutions at 0 . If we analytically continue them along a closed loop in \mathbb{C}, we find $\widetilde{f}_{1}, \ldots, \widetilde{f}_{n}$ possibly different.
- There exists $M_{\underline{f}} \in G L(n, \mathbb{C})$ such that

$$
\left(\begin{array}{c}
\widetilde{f}_{1} \\
\vdots \\
\tilde{f}_{n}
\end{array}\right)=M_{\underline{f}}\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right) .
$$

- The matrices $M_{\underline{f}}$ define the so-called monodromy group M.

Theorem (Singer, Ulmer, 1993)

Let f be a solution of $L \cdot y=0$. The algebraicity degree of f is equal to the cardinality of the orbit of f under the action of M.

- Analytic continuation of D-finite functions can be efficiently computed numerically[Chudnovsky², 1987],[van der Hoeven, 1999, 2001],[Mezzarobbba, 2010].

Quantifying algebraicity for L_{a} and L_{b}

■ Very efficient analytic continuation implemented by Mezzarobba in SageMath.
■ \rightarrow SageMath.

- Numerical computations suggest: solutions of L_{a} and L_{b} have alg. degree 120 .

Differential Galois theory: proving algebraicity

$\square L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.
■ Picard-Vessiot extension: $K=k(U)$, where U is a fundamental solution matrix.

- The differential Galois group G is the group of field automorphisms of K which commute with the derivation and leave all elements of k invariant:

$$
G:=\operatorname{Aut}_{\partial}(K / k)=\left\{\sigma \in \operatorname{Aut}(K):\left.\sigma\right|_{k} \equiv \operatorname{id}_{k} \text { and } \sigma \circ \partial \equiv \partial \circ \sigma\right\}
$$

- G is a linear algebraic subgroup of $\mathrm{GL}_{n}(\overline{\mathbb{Q}})$.

■ G stabilizes the ideal of differential relations between solutions. Moreover:

Theorem (Kolchin, 1948)

$L \cdot y=0$ has a basis of algebraic solutions if and only if G is finite.

- In practice G is difficult to compute [Hrushovski, 2002], [Feng, 2015], [van der Hoeven, 2007], [Amzallag, Minchenko, Pogudin, 2018], [Sun, 2019].

Differential Galois theory: proving algebraicity

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.

■ G is the differential Galois group.
■ Galois-Lie algebra $\mathfrak{g}:=\operatorname{Lie}(G)$: Lie algebra of G, i.e. the tangent space of G at id.
■ \mathfrak{g} measures the transcendence of K over k :

Theorem (Kolchin, 1948)

If K is the Picard-Vessiot extension of $Y^{\prime}=A(x) Y$ and $\mathfrak{g}=\operatorname{Lie}(G)$, then

$$
\operatorname{dim}_{\mathbb{C}}(G)=\operatorname{dim}_{\mathbb{C}}(\mathfrak{g})=\operatorname{trdeg}(K / k)
$$

■ Theory and algorithm for computing \mathfrak{g} [Barkatou, Cluzeau, Di Vizio, Weil, 2020].

- Idea: Compute symmetric powers of L and find rational solutions of them.

These solutions yield information for \mathfrak{g} via solving a linear system.

Toy example

- The operator $L=\left(4 x^{2}-4\right) \partial^{2}+4 x \partial-1$ has a basis of algebraic solutions:

$$
\sqrt{1+x}+\sqrt{1-x} \text { and } \sqrt{1+x}-\sqrt{1-x}
$$

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$ where $A(x)=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{4 x^{2}-4} & \frac{-4 x}{4 x^{2}-4}\end{array}\right)$.

Toy example

- The operator $L=\left(4 x^{2}-4\right) \partial^{2}+4 x \partial-1$

■ $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$ where $A(x)=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{4 x^{2}-4} & \frac{-4 x}{4 x^{2}-4}\end{array}\right)$.

- If $Y=\left(y_{1}, y_{2}\right)^{t}$ is a solution to $Y^{\prime}=A(x) Y$ then $Y=\left(y_{1}^{2}, 2 y_{1} y_{2}, y_{2}^{2}\right)^{t}$ is a solution to the symmetric square system $Y^{\prime}=A^{(2)}(x) Y$, where now

$$
A^{(2)}(x)=\frac{1}{4\left(x^{2}-1\right)}\left(\begin{array}{ccc}
0 & 4 x^{2}-4 & 0 \\
2 & -4 x & 8 x^{2}-8 \\
0 & 1 & -8 x
\end{array}\right) .
$$

■ It has rational solutions! $F_{1}=\left(4 x, 4, x /\left(x^{2}-1\right)\right)^{t}, F_{2}=\left(-4,0,1 /\left(x^{2}-1\right)\right)^{t}$.

- If $M \in \mathfrak{g}^{(2)}$ then $M F=0$ and M comes from a symmetric square. I.e. M satisfies

$$
\left(\begin{array}{ccc}
2 m_{1,1} & m_{1,2} & 0 \\
2 m_{2,1} & m_{1,1}+m_{2,2} & 2 m_{1,2} \\
0 & m_{2,1} & 2 m_{2,2}
\end{array}\right) \cdot F_{\ell}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad m_{i, j} \in \mathbb{Q}(x), \ell=1,2 .
$$

- The only solution is $m_{i, j}=0$. Hence $\mathfrak{g}^{(2)}=\mathfrak{g}=0$. All solutions of L are algebraic. $17 / 21$

The generating sequence of $\left(b_{n}\right)_{n}$ is algebraic (known to Dubrovin \& Yang)

■ For L_{b} same method as in the toy example works.

- $L_{b} \cdot y=0$ equivalent to $Y^{\prime}=A(x) Y$ for $A(x) \in M^{4 \times 4}(\mathbb{Q}(x))$.
- The fifth symmetric power $Y^{\prime}=A^{(5)}(x) Y$ has rational solutions.
- $A^{(5)}(x) \in M^{N \times N}(\mathbb{Q}(x))$, where $N=\binom{4+5-1}{4-1}=56$.
- Finding the rational solutions takes $\approx 2 \mathrm{~min}$ on a regular PC .

■ The corresponding system in $m_{i, j}$ has no non-zero solutions in $\mathbb{Q}(x)(\approx 15 \mathrm{sec})$.
$■ \Rightarrow g_{b}=0$, therefore L_{b} has only algebraic solutions.

The generating sequence of $\left(a_{n}\right)_{n}$ is algebraic (new)

- For the generating function of $\left(a_{n}\right)_{n \geq 0}$ same method as for $\left(b_{n}\right)_{n \geq 0}$ works.
- The 20th symmetric power has rational solutions ($\approx 1 \mathrm{sec}$).
- $A^{(20)} \in M^{N \times N}(\mathbb{Q}(x))$, where $N=\binom{2+20-1}{2-1}=21$.
- The corresponding system in $m_{i, j}$ has no non-zero solutions in $\mathbb{Q}(x)(\approx 4 \mathrm{sec})$.

■ $\Rightarrow g_{a}=0$, therefore L_{a} has only algebraic solutions.

■ \rightarrow Maple

Experimental mathematics: more similar examples

Problem

Find $(u, v) \in \mathbb{Q}^{*} \times \mathbb{Q}^{*}$ such that $c_{n} \cdot(u)_{n} \cdot(v)_{n} \cdot w^{n} \in \mathbb{Z}$ for some $w \in \mathbb{Z}^{*}$.

$$
(u)_{n}:=u \cdot(u+1) \cdots(u+n-1) .
$$

$\#$	u	v	ODE order	degree	$\#$	u	v	ODE order	degree
a_{n}	$3 / 5$	$4 / 5$	2	120	f_{n}	$19 / 60$	$49 / 60$	4	155520
b_{n}	$2 / 5$	$9 / 10$	4	120	g_{n}	$19 / 60$	$59 / 60$	4	46080
c_{n}	$1 / 5$	$4 / 5$	2	120	h_{n}	$29 / 60$	$49 / 60$	4	46080
d_{n}	$7 / 30$	$9 / 10$	4	155520	i_{n}	$29 / 60$	$59 / 60$	4	155520
e_{n}	$9 / 10$	$17 / 30$	4	155520					

■ "Test": 0 p-curvatures for primes $<100 \rightarrow$ expect algebraic generating functions.

- Quantify: Guesses for degrees based on numerics.

■ Proof: Done: a_{n}, b_{n}, c_{n}. In progress: $d_{n}, e_{n}, f_{n}, g_{n}, h_{n}, i_{n}$.

Summary

- Both sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ have algebraic generating functions, hence they are particular periods.
■ Guess \& Prove approach often provides useful insight but is sometimes infeasible.
- The Grothendieck-Katz conjecture allows efficient "testing" whether a D-finite series is algebraic.
■ Numerical monodromy group calculations allow efficient quantifying algebraicity of D-finite series.
- Differential Galois theory allows efficient proving that D-finite series is algebraic.

Bonus: explicit solution for $\sum_{n \geq 0} a_{n} x^{n}$

We saw that $\sum_{n \geq 0} a_{n} x^{n}$ is a solution of

$$
\begin{align*}
& q_{2}(x) y^{\prime \prime}(x)+q_{1}(x) y^{\prime}(x)+q_{0}(x) y(x)=0, \quad \text { where } \tag{1}\\
& q_{2}(x)=5 x(302400 x-31)\left(373248000 x^{2}+216000 x+1\right), \\
& q_{1}(x)=1354442342400000 x^{3}+64571904000 x^{2}-61473600 x-31, \\
& q_{0}(x)=300\left(902961561600 x^{2}-240974784 x-4991\right)
\end{align*}
$$

Maple's dsolve (deq) shows that every solution of (1) is a linear combination of

$$
u_{1}(x) \cdot{ }_{2} F_{1}\left[\begin{array}{c}
-1 / 6011 / 60 ; \frac{p_{1}(x)}{p_{2}(x)} \\
2 / 3
\end{array}\right] \quad \text { and } \quad u_{2}(x) \cdot{ }_{2} F_{1}\left[\begin{array}{c}
19 / 6031 / 60 ; \frac{p_{1}(x)}{p_{2}(x)} \\
4 / 3
\end{array}\right]
$$

where ${ }_{2} F_{1}\left[\begin{array}{cc}a & b \\ c & ;\end{array}\right]$ is the Gaussian hypergeometric function

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & b \\
c
\end{array} ; x\right]:=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}, \quad(u)_{j}:=u(u+1) \cdots(u+j-1)
$$

Bonus: Origin of $\left(c_{n}\right)_{n \geq 0}$

■ For a simple Lie-algebra ($\mathfrak{g},[\cdot, \cdot]$) [Bertola, Dubrovin, Yang, 2015] define the co-called topological ordinary differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} M=[M, \Lambda]
$$

where $M=M(\lambda)$ and $\Lambda=I_{+}+\lambda E_{-\theta}$, for a principal nilpotent element $I_{+}=\sum_{i=1}^{n} E_{i}$ and (normalized) $E_{-\theta} \in \mathfrak{g}_{-\theta}$.
■ For $\mathfrak{g}=\operatorname{sl}_{n+1}(\mathbb{C})$ one finds

$$
\Lambda=\left(\begin{array}{cc}
0 & I_{n} \\
\lambda & 0
\end{array}\right), \quad I_{n} \text { is the } n \times n \text { identity matrix. }
$$

and the (normalized) (dominant) ODE reads

$$
\begin{array}{r}
64800000 x^{3}(x+155) y^{(i)}(x)+\left(x^{2}-1220 x+623875\right) y(x)+7200\left(10 x^{2}+3209 x+133920\right) y^{\prime}(x)+ \\
18000 x\left(5 x^{2}+6091 x+1874880\right) y^{\prime \prime}(x)+12960000 x^{2}(18 x+3565) y^{\prime \prime \prime}(x)=0
\end{array}
$$

- Then $\sum_{n \geq 0} c_{n} x^{n}$ is the unique power series solution.

[^0]: ${ }^{1}$ Joint work with Alin Bostan and Jacques-Arthur Weil.

