Anomalous statistics of extreme random processes

Sergei Nechaev

Interdisciplinary Scientific Center Poncelet
(CNRS, Moscow),
Lebedev Physical Institute (Moscow)

- Anomalous fluctuations of "elongated" 2D paths above curved domains
- Spectral density of sparse matrices and 1D random walk trapping in a Poissonian field
- Ultrametric organization of spectral density of random operators and number-theoretic properties of Dedekind η-function.

Anomalous fluctuations of "elongated" 2D paths above curved domains

2D Random paths above voids of various shapes

2D Random paths above voids of various shapes

Semicircle:

2D Random paths above voids of various shapes

2D Random paths above voids of various shapes

Semicircle:

$$
\begin{aligned}
& N \sim R^{2} \rightarrow D \sim \sqrt{N} \\
& N=c R \rightarrow D \sim N^{1 / 3} \sim R^{1 / 3}
\end{aligned}
$$

2D Random paths above voids of various shapes

Semicircle:

$$
\begin{aligned}
& N \sim R^{2} \rightarrow D \sim \sqrt{N} \\
& N=c R \rightarrow D \sim N^{1 / 3} \sim R^{1 / 3}
\end{aligned}
$$

Triangle:

2D Random paths above voids of various shapes

Semicircle:

$$
\begin{aligned}
& N \sim R^{2} \rightarrow D \sim \sqrt{N} \\
& N=c R \rightarrow D \sim N^{1 / 3} \sim R^{1 / 3}
\end{aligned}
$$

Triangle:

$$
N \sim R^{2} \rightarrow D \sim \sqrt{N}
$$

2D Random paths above voids of various shapes

Semicircle:

$$
\begin{aligned}
& N \sim R^{2} \rightarrow D \sim \sqrt{N} \\
& N=c R \rightarrow D \sim N^{1 / 3} \sim R^{1 / 3}
\end{aligned}
$$

Triangle:

$$
N \sim R^{2} \rightarrow D \sim \sqrt{N}
$$

$$
N=c R \rightarrow D \sim \text { const }
$$

Stretched $(N=c R)$ paths above the semicircle

Linearizing curved shape, we get: $x=\sqrt{R^{2}-(R-y)^{2}} \approx \sqrt{2 R y}$
Above the flat line one has a random walk $y \sim \sqrt{x}$ thus $x \sim \sqrt{R \sqrt{x}}$, and finally, $x \sim R^{2 / 3}, y \sim R^{1 / 3}$
Stretching above algebraic curve $\frac{y}{R} \approx\left(\frac{x}{R}\right)^{\eta}$ provides generic scaling

$$
y(R) \sim R^{\gamma} ; \quad \gamma=(\eta-1) /(2 \eta-1)
$$

Exponent $\gamma=1 / 3$ emerges for uniformly curved surface

Fluctuations of inflated random loops

Consider a motion of a charged particle in constant transversal magnetic field $\mathbf{A}=\frac{1}{2} \mathbf{B} \times \mathbf{r}$, Hamiltonian is $H=\frac{1}{a^{2}}(\nabla+i q \mathbf{A})^{2}$
Lamor frequency $\omega=\frac{B|q|}{m}$, select a charge $q=\frac{\pi}{2 T}=\frac{\pi}{2 N}=\frac{c \pi}{2 R_{g}} \sim \frac{1}{R_{g}}$
Strong "elongation" of paths: $R_{g}=c N\left(c<\frac{1}{2 \pi}\right)$

$$
\frac{\partial P(r, \phi, t)}{\partial t}=\left(\nabla^{2}+i q(\nabla \mathbf{A}+\mathbf{A} \nabla)-q^{2} B^{2}\right) P(r, \phi, t) \quad P(r, \phi, t)=Q(r, t)
$$

$$
Z\left(r, R_{g}\right)=\mathcal{N}^{-1} Q(r, t)^{2}=\mathcal{N}^{-1} \exp \left(-\frac{c \pi\left(r-R_{g}\right)^{2}}{2 R_{g}} \frac{1+e^{-4 \pi}}{1-e^{-4 \pi}}\right)
$$

Fluctuations of inflated random loops "leaning" on an impermeable disc

$$
\Delta r^{*}(N) \propto N^{\gamma(c)} \quad Z(r)=\mathcal{N}^{-1} R_{g}^{-1} \mathrm{Ai}^{2}\left(\left(\frac{2}{R_{g}}\right)^{1 / 3}\left(r-R_{g}\right)+a_{1}\right)
$$

Free energy of stretched paths: scaling approach

Blob's width $D_{s} \sim R^{1 / 3}$, blob's length $L_{s} \sim R^{2 / 3}$
Free energy of a chain stretched above semicircle

$$
F \sim \frac{N}{L_{s}} \sim \frac{R}{R^{2 / 3}} \sim R^{1 / 3}
$$

Gibbs measure $W(R)=e^{-F(R)} \sim e^{-\alpha R^{1 / 3}}$

Lifshitz tail in optimal fluctuation for survival probability in a onedimensional Poissonian field of random segments

Estimate survival probability in an ensemble of random intervals D with the distribution $Q(D) \sim p^{D}$

Free energy to be minimized over D :

$$
F(N, D)=F_{e}(N)-\ln Q(D)
$$

where $F_{e}(D, N) \sim \frac{N}{D^{2}} ; \quad \ln Q(D) \sim D \ln p \quad(\ln p=\bar{\beta})$
Correspondingly, $\bar{D}(N) \sim N^{1 / 3}$ and survival probability (Balagurov, Vaks, 1974) is

$$
P(N)=e^{-F(R, \bar{D})} \sim e^{-\beta^{2 / 3} N^{1 / 3}}
$$

The inverse Laplace transform gives the Lifshitz tail of 1D Anderson localization

$$
P(s)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} P(N) e^{s N} \sim e^{-\beta / \sqrt{s}}
$$

Comparison of disorder-free stretched KPZ exponent above convex boundary and Lifshitz tail in a Poissonian field

Gibbs measure of stretched path in curved channel

$F(N, D) \sim \frac{N}{D^{2}}+\left.\frac{(R+D)^{2}}{N}\right|_{D \ll R} \sim \frac{N}{D^{2}}+\frac{R D}{N}$
Tube width at $R \sim c N$ is $\bar{D}(N) \sim N^{1 / 3}$
No disorder, however path is stretched above semicircle

$$
W(R \sim N) \sim e^{-\alpha N^{1 / 3}}
$$

Survival probability in 1D trapping in Poissonian field

$$
\frac{\mathcal{D}_{\sim}^{L=D^{2}}}{N}
$$

Free energy has to be minimized over D

$$
F(N, D)=F_{e}(N)-\ln Q(D) \sim \frac{N}{D^{2}}-\beta D
$$

In Poissonian disorder one gets

$$
\bar{D}(N) \sim N^{1 / 3}
$$

The survival probability is

$$
P(N)=e^{-F(R, \bar{D})} \sim e^{-\beta^{2 / 3} N^{1 / 3}}
$$

Spectral density of sparse matrices and 1D random walk trapping in a Poissonian field

Spectral statistics of sparse random matrices

$r=1 / N$, is the percolation threshold $(N \gg 1)$

Sample of collection of subgraphs for one realization of adjacency matrix, $r=1 / N(N=500)$

Spectral density $\rho(\lambda)$ of sparse random adjacency matrix has regular hierarchical structure

At percolation threshold $\sim\left(2-e^{-1}\right) /(e-1) \times 100 \% \sim 95 \%$ of subgraphs are linear chain with distribution in length $P(L) \sim e^{-L}$
(V. Avetisov, P. Krapivsky, S.N., 2016)

Samples of eigenvalue densities of sparse networks of different physical/biological nature

Samples of eigenvalue densities of sparse networks of different physical/biological nature

Typical spectral statistics of adjacency matrix of X
chromosome

eigenvalue

Samples of eigenvalue densities of sparse networks of different physical/biological nature

Typical spectral statistics of adjacency matrix of X chromosome

eigenvalue

Spectral statistics of proteinprotein interaction network in
Drosophyla melanogaster

C. Kamp, K. Christensen
(Phys.Rev E, 2005)

Samples of eigenvalue densities of sparse networks of different physical/biological nature

Typical spectral statistics of adjacency matrix of X chromosome

eigenvalue

Spectral statistics of proteinprotein interaction network in Drosophyla melanogaster

C. Kamp, K. Christensen (Phys.Rev E, 2005)

Distributions of ratios from heterozygous single nucleotide polymorphisms data from the sequencing of a cancer genome

V. Trifonov, L. Pasqualucch,
R. Dalla-Favera, R.Rabadan
(Sci. Rep, 2011)

Spectral statistics of Schrödinger-like random operators

Consider an ensemble of two (three)-diagonal matrices

$$
A_{N}=\left(\begin{array}{ccccc}
0 & x_{1} & 0 & \cdots & 0 \\
x_{1} & 0 & x_{2} & & \\
0 & x_{2} & 0 & & \\
\vdots & & & & \\
& & & & x_{N-1} \\
0 & & & x_{N-1} & 0
\end{array}\right)
$$

where the matrix elements are:

$$
x_{k}=\left\{\begin{array}{l}
1 \text { with probability } p \\
0 \text { with probability } q=1-p
\end{array}\right.
$$

Adjacency matrix splits into cells with the distribution

$$
Q(D) \sim p^{D}(0<p<1)
$$

Matrix $N \times N(N \gg 1)$

Set of eigenvalues in the cell of size D is

$$
\lambda_{k}(D)=-2 \cos \frac{\pi k}{D+1} \quad(k=1, \ldots, D)
$$

Spectral density of adjacency matrix

Spectral density, $\rho(\lambda)$, of ensemble of random matrices is:

$$
\begin{aligned}
& \rho(\lambda)=\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\sum_{n=1}^{N} \sum_{k=1}^{D} \delta\left(\lambda-\lambda_{k, D}\right)\right\rangle \\
& =\lim _{\substack{N \rightarrow \infty \\
\varepsilon \rightarrow 0}} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} Q_{D} \sum_{k=1}^{D} \operatorname{Im} \frac{1}{\lambda-\lambda_{k, D}-i \varepsilon}
\end{aligned}
$$

Counting contributions from exponentially weighted cells, we get:

$$
\rho(\lambda)=\lim _{\substack{N \rightarrow \infty \\ \varepsilon \rightarrow 0}} \frac{1}{\pi N} \sum_{n=1}^{N} p^{D} \sum_{k=1}^{D} \frac{\varepsilon}{\left(\lambda-2 \cos \frac{\pi k}{D+1}\right)^{2}+\varepsilon^{2}}
$$

Lifshitz tail of the spectral density $\rho(\lambda)$ at the spectral edge

$$
\begin{aligned}
& \begin{cases}\ddots_{\ddots} & \\
\ddots & \\
\ddots & \\
\lim _{\substack{N \rightarrow \infty \\
\varepsilon \rightarrow 0}} \frac{1}{\pi N} \sum_{n=1}^{N} p^{n} \sum_{k=1}^{n} \frac{\varepsilon}{\left(\lambda-2 \cos \frac{\pi k}{n+1}\right)^{2}+\varepsilon^{2}}\end{cases} \\
& \lambda=-\left.2 \cos \frac{\pi D}{D+1}\right|_{D \rightarrow \infty} \rightarrow 2-\frac{\pi^{2}}{D^{2}}, \\
& \left.\rho^{S_{1}}\left(\lambda_{k}\right)\right|_{k \rightarrow \infty} \rightarrow p^{D} \\
& -2 \cos \left[\frac{\pi}{2}\right]-2 \cos \left[\frac{2 \pi}{3}\right]-2 \cos \left[\frac{3 \pi}{4}\right] \quad \ldots-2 \cos \left[\frac{\pi}{1}\right]
\end{aligned}
$$

Lifshitz tail of 1D Anderson localization

$$
\rho(\lambda \rightarrow 2) \rightarrow p^{\pi / \sqrt{2-\lambda}}
$$

Ultrametric organization of spectral density of random operators and number-theoretic properties of Dedekind η - function.

Definition of the ultrametric space

The pairwise distance, $d\left(x_{1}, x_{2}\right)$ between elements x_{1} and x_{2} is ultrametric if it meets three requirements:

- It is non-negative

$$
d\left(x_{1}, x_{2}\right)>0 \text { for } x_{1} \neq x_{2} \text { and } d\left(x_{1}, x_{2}\right)=0 \text { for } x_{1}=x_{2}
$$

- It is symmetric

$$
d\left(x_{1}, x_{2}\right)=d\left(x_{2}, x_{1}\right)
$$

- It obeys the strong triangle inequality,

$$
d\left(x_{1}, x_{2}\right)<\max \left\{d\left(x_{1}, x_{3}\right), d\left(x_{3}, x_{2}\right)\right\}
$$

instead of the ordinary triangle inequality typical for Euclidean spaces, $d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, x_{3}\right)+d\left(x_{3}, x_{2}\right)$

Positions of peaks are defined by composition rules for Farey numbers (Ford circles)

Positions of peaks are defined by composition rules for Farey numbers (Ford circles)

Positions of peaks are defined by composition rules for Farey numbers (Ford circles)

Positions of peaks are defined by composition rules for Farey numbers (Ford circles)

$$
\frac{p_{n}}{q_{n}}=\frac{p_{n-1}}{q_{n-1}} \oplus \frac{p_{n+1}}{q_{n+1}}=\frac{p_{n-1}+p_{n+1}}{q_{n-1}+q_{n+1}}
$$

Positions of peaks are defined by composition rules for Farey numbers (Ford circles)

$$
\frac{p_{n}}{q_{n}}=\frac{p_{n-1}}{q_{n-1}} \oplus \frac{p_{n+1}}{q_{n+1}}=\frac{p_{n-1}+p_{n+1}}{q_{n-1}+q_{n+1}}
$$

How to compute the amplitude of a peak (degeneracies of eigenvalues)

$$
\lambda_{k}(n)=-2 \cos \frac{\pi k}{n+1} \quad \rho(\lambda)=\lim _{\substack{N \rightarrow \infty \\ \varepsilon \rightarrow 0}} \frac{1}{\pi N} \sum_{n=1}^{N} p^{n} \sum_{k=1}^{n} \frac{\varepsilon}{\left(\lambda-2 \cos \frac{\pi k}{n+1}\right)^{2}+\varepsilon^{2}}
$$

How to compute the amplitude of a peak (degeneracies of eigenvalues)

Sample spectral densities for $p=0.9$ and $p=0.5$

Sample spectral densities for $p=0.9$ and $p=0.5$

Sample spectral densities for $p=0.9$ and $p=0.5$

Sample spectral densities for $p=0.9$ and $p=0.5$

$$
-2 \cos \left[\frac{\pi}{2}\right]-2 \cos \left[\frac{2 \pi}{3}\right]-2 \cos \left[\frac{3 \pi}{4}\right] \ldots-2 \cos \left[\frac{\pi}{1}\right]
$$

$-2 \cos \left[\frac{\pi}{2}\right]-2 \cos \left[\frac{2 \pi}{3}\right]-2 \cos \left[\frac{3 \pi}{4}\right]$

Spectral density $\rho(\lambda)$ of ensemble of exponentially weighted random 3-diagonal matrices at $p \rightarrow 1$

Spectral density $\rho(\lambda)$ of ensemble of exponentially weighted random 3-diagonal matrices at $p \rightarrow 1$

$$
\rho(\lambda)=\lim _{\substack{N \rightarrow \infty \\ \varepsilon \rightarrow 0}} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} p^{n} \sum_{k=1}^{n} \frac{1}{\left(\lambda-2 \cos \frac{\pi k}{n+1}\right)^{2}+\varepsilon^{2}}
$$

Spectral density $\rho(\lambda)$ of ensemble of exponentially weighted random 3-diagonal matrices at $p \rightarrow 1$

$$
\begin{gathered}
\rho(\lambda)=\lim _{\substack{N \rightarrow \infty \\
\varepsilon \rightarrow 0}} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} p^{n} \sum_{k=1}^{n} \frac{1}{\left(\lambda-2 \cos \frac{\pi k}{n+1}\right)^{2}+\varepsilon^{2}} \\
\lim _{p^{\prime} \rightarrow 1^{-}} \frac{\rho(\lambda, p)}{\sqrt{-\ln \left|\eta\left(\frac{1}{\pi} \arccos (-\lambda / 2)+i \frac{(1-p)^{2}}{12 \pi}\right)\right|}}=1
\end{gathered}
$$

Spectral density $\rho(\lambda)$ of ensemble of exponentially weighted random 3-diagonal matrices at $p \rightarrow 1$

$$
\rho(\lambda)=\lim _{\substack{N \rightarrow \infty \\ \varepsilon \rightarrow 0}} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} p^{n} \sum_{k=1}^{n} \frac{1}{\left(\lambda-2 \cos \frac{\pi k}{n+1}\right)^{2}+\varepsilon^{2}}
$$

Reminder: Dedekind η-function

$$
\begin{array}{ll}
\eta(z)=e^{\pi i z / 12} \prod_{n=0}^{\infty}\left(1-e^{2 \pi i n z}\right) ; & z=x+i y \quad(y>0) \\
\eta(z+1)=e^{\pi i z / 12} \eta(z) & \eta\left(-\frac{1}{z}\right)=\sqrt{-i} \eta(z)
\end{array}
$$

Reminder: Dedekind η-function

$$
\begin{array}{ll}
\eta(z)=e^{\pi i z / 12} \prod_{n=0}^{\infty}\left(1-e^{2 \pi i n z}\right) ; & z=x+i y \quad(y>0) \\
\eta(z+1)=e^{\pi i z / 12} \eta(z) & \eta\left(-\frac{1}{z}\right)=\sqrt{-i} \eta(z)
\end{array}
$$

Define $f(z)=\mathrm{const}|\eta(x+i y)| y^{1 / 4}$

Reminder: Dedekind η-function

$$
\begin{array}{ll}
\eta(z)=e^{\pi i z / 12} \prod_{n=0}^{\infty}\left(1-e^{2 \pi i n z}\right) ; & z=x+i y \quad(y>0) \\
\eta(z+1)=e^{\pi i z / 12} \eta(z) & \eta\left(-\frac{1}{z}\right)=\sqrt{-i} \eta(z)
\end{array}
$$

Define $f(z)=\mathrm{const}|\eta(x+i y)| y^{1 / 4}$

Discontinuous Riemann "raindrop" function and its regularization

Discontinuous Riemann "raindrop" function and its regularization

$$
g(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{m}{n}, \text { and }(m, n) \text { coprime } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Discontinuous Riemann "raindrop" function and its regularization

$$
g(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{m}{n}, \text { and }(m, n) \text { coprime } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

View of the Riemann function

Riemann function as an "Euclid Orchard"

Expression for the spectral density $\rho(\lambda)$

$$
\rho(\lambda)=\frac{p^{1 / g(u)}}{1-p^{1+1 / g(u)}} ; \quad u=\frac{1}{\pi} \arccos \frac{\lambda}{2}
$$

Spectral tail for $p<1$

$$
\begin{aligned}
& S_{1}: \lambda=-\left.2 \cos \frac{\pi k}{k+1}\right|_{k \rightarrow \infty} \rightarrow 2-\frac{\pi^{2}}{k^{2}}, \\
& \left.\quad \rho^{S_{1}}\left(\lambda_{k}\right)\right|_{k \rightarrow \infty} \rightarrow p^{k}
\end{aligned}
$$

Lifshitz tail of 1D Anderson localization

$$
-2 \cos \left[\frac{\pi}{2}\right]-2 \cos \left[\frac{2 \pi}{3}\right]-2 \cos \left[\frac{3 \pi}{4}\right] \ldots-2 \cos \left[\frac{\pi}{1}\right]
$$

$$
\rho(\lambda \rightarrow 2) \rightarrow p^{\pi / \sqrt{2-\lambda}}
$$

Laplace transform gives:

$$
\rho(N) \sim \int_{0}^{\infty} \rho(\lambda) e^{-N \lambda} d \rho \sim \varphi(N) e^{-a N-b N^{-1 / 3}}
$$

Regularization of a normalized Riemann "raindrop" function

$$
f_{1}(x)=\left(\frac{\pi}{12 \varepsilon}\right)^{1 / 2} g(x) \quad f_{2}(x)=\sqrt{-\ln |\eta(x+i y)|}
$$

Regularization of a normalized Riemann "raindrop" function

$$
f_{1}(x)=\left(\frac{\pi}{12 \varepsilon}\right)^{1 / 2} g(x) \quad f_{2}(x)=\sqrt{-\ln |\eta(x+i y)|}
$$

Regularization of a normalized Riemann "raindrop" function

$$
f_{1}(x)=\left(\frac{\pi}{12 \varepsilon}\right)^{1 / 2} g(x) \quad f_{2}(x)=\sqrt{-\ln |\eta(x+i y)|}
$$

The "stability" diagram of Tao-Thouless Fractional Quantum Hall states [from E.J. Bergholtz et al, 2008]:
the lower the disorder, the more fractions are observed

Phyllotaxis

Phyllotaxis

Energetic approach to phyllotaxis, L. Levitov, 1991

Phyllotaxis

Energetic approach to phyllotaxis, L. Levitov, 1991

$$
x=\frac{\alpha}{2 \pi}, y=\frac{h}{2 \pi} \quad r_{n, m}=\left(\frac{m+n x}{\sqrt{y}}, n \sqrt{y}\right) \quad U(x, y) \sim \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} e^{-\beta\left(\frac{(m+n x)^{2}}{y}+y n^{2}\right)}
$$

Static and Dynamical Phyllotaxis in Magnetic Cactus
 C. Nisoli et al, ArXiv: cond-mat/0702335

Static and Dynamical Phyllotaxis in Magnetic Cactus C. Nisoli et al, ArXiv: cond-mat/0702335

Experimental setting

Static and Dynamical Phyllotaxis in Magnetic Cactus C. Nisoli et al, ArXiv: cond-mat/0702335

Hierarchical potential energy relief between states with various Ω

Experimental setting

Phyllotaxis, ultrametric spectra of 1D Schrödinger operators and (maybe) FQHE: what is common?

Phyllotaxis, ultrametric spectra of 1D Schrödinger operators and (maybe) FQHE: what is common?

Conjecture:
Discreteness of nature and, in particular, Riemann "raindrop" function lies behind

...however the emergence of modular symmetry in various physical systems is hidden...

We can identify the energy landscape with a metric space

$$
U(x, y) \sim \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} e^{-\beta\left(\frac{(m+n x)^{2}}{y}+y n^{2}\right)}
$$

We can identify the energy landscape with a metric space

$$
U(x, y) \sim \quad \sum \quad e^{-\beta\left(\frac{(m+n x)^{2}}{y}+y n^{2}\right)}
$$

Considering the profile $U(x, y)$ as a function of x, we set $d\left(x_{1}, x_{2}\right)=$ $U_{\max }\left(x_{1}, x_{2}\right)$ where $d\left(x_{1}, x_{2}\right)$ is the ultrametric pairwise distance

We can identify the energy landscape with a metric space

$$
U(x, y) \sim \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} e^{-\beta\left(\frac{(m+n x)^{2}}{y}+y n^{2}\right)}
$$

Considering the profile $U(x, y)$ as a function of x, we set $d\left(x_{1}, x_{2}\right)=$ $U_{\text {max }}\left(x_{1}, x_{2}\right)$ where $d\left(x_{1}, x_{2}\right)$ is the ultrametric pairwise distance

At $\beta \gg 1$ one can approximately rewrite $U(x, y)$ as

$$
\left.U(x, y)\right|_{\beta \gg 1} \approx \sqrt{\frac{\pi}{\beta}} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \delta\left(\frac{(m+n x)^{2}}{y}+y n^{2}\right)
$$

Making use of regularization of the δ-function, we represent the potential $U(x, y)$ at $\beta \gg 1$ as follows:
$\begin{aligned}\left.U(x, y)\right|_{\beta \gg 1} & =\lim _{\beta \rightarrow \infty} \sqrt{\frac{\beta}{\pi}} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{1}{\beta\left(\frac{(m+n x)^{2}}{y}+y n^{2}\right)+\frac{1}{\beta}} \\ & \approx \frac{1}{\sqrt{\pi \beta}} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{1}{Q^{s}(m, n)}\end{aligned}$
where $s=1$ and $Q(m, n)$ is a positive quadratic form

$$
Q(m, n)=\frac{1}{y} m^{2}+\frac{2 x}{y} m n+\left(\frac{x^{2}}{y}+y\right) n^{2}
$$

Making use of regularization of the δ-function, we represent the potential $U(x, y)$ at $\beta \gg 1$ as follows:

$$
\begin{aligned}
\left.U(x, y)\right|_{\beta \gg 1} & =\lim _{\beta \rightarrow \infty} \sqrt{\frac{\beta}{\pi}} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{1}{\beta\left(\frac{(m+n x)^{2}}{y}+y n^{2}\right)+\frac{1}{\beta}} \\
& \approx \frac{1}{\sqrt{\pi \beta}} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{1}{Q^{s}(m, n)}
\end{aligned}
$$

where $s=1$ and $Q(m, n)$ is a positive quadratic form

$$
Q(m, n)=\frac{1}{y} m^{2}+\frac{2 x}{y} m n+\left(\frac{x^{2}}{y}+y\right) n^{2}
$$

Recall now the definition of the Eisenstein series

$$
E(\tilde{z}, s)=\frac{1}{2} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{\tilde{y}^{s}}{|m \tilde{z}+n|^{2 s}} ; \quad \tilde{z}=\tilde{x}+i \tilde{y}
$$

Reminder of Eisenstein series

Reminder of Eisenstein series

$E(z, s)$ as a function of z, is a $S L(2, Z)$-invariant auto-morphic solution of the hyperbolic Laplace equation

$$
-\tilde{y}^{2}\left(\frac{\partial^{2}}{\partial \tilde{x}^{2}}+\frac{\partial^{2}}{\partial \tilde{y}^{2}}\right) E(\tilde{x}, \tilde{y}, s)=s(1-s) E(\tilde{x}, \tilde{y}, s)
$$

Reminder of Eisenstein series

$E(z, s)$ as a function of z, is a $S L(2, Z)$-invariant auto-morphic solution of the hyperbolic Laplace equation

$$
-\tilde{y}^{2}\left(\frac{\partial^{2}}{\partial \tilde{x}^{2}}+\frac{\partial^{2}}{\partial \tilde{y}^{2}}\right) E(\tilde{x}, \tilde{y}, s)=s(1-s) E(\tilde{x}, \tilde{y}, s)
$$

$E(z, s)$ is related to the Epstein ζ-function, defined as

$$
\zeta(Q, s)=\sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{1}{Q^{s}(m, n, \tilde{z})}=\frac{2}{d^{s / 2}} E(\tilde{z}, s)
$$

where $Q(m, n, \tilde{z})=a(\tilde{z}) m^{2}+2 b(\tilde{z}) m n+c(\tilde{z}) n^{2}$

Reminder of Eisenstein series

$E(z, s)$ as a function of z, is a $S L(2, Z)$-invariant auto-morphic solution of the hyperbolic Laplace equation

$$
-\tilde{y}^{2}\left(\frac{\partial^{2}}{\partial \tilde{x}^{2}}+\frac{\partial^{2}}{\partial \tilde{y}^{2}}\right) E(\tilde{x}, \tilde{y}, s)=s(1-s) E(\tilde{x}, \tilde{y}, s)
$$

$E(z, s)$ is related to the Epstein ζ-function, defined as

$$
\zeta(Q, s)=\sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{1}{Q^{s}(m, n, \tilde{z})}=\frac{2}{d^{s / 2}} E(\tilde{z}, s)
$$

where $Q(m, n, \tilde{z})=a(\tilde{z}) m^{2}+2 b(\tilde{z}) m n+c(\tilde{z}) n^{2}$
We can make now an identification

$$
\begin{array}{r}
\frac{1}{y}=a, \frac{x}{y}=b, \frac{x^{2}}{y}+y=c_{i} d=a c-b^{2}=1 \\
z=\frac{-b+i \sqrt{d}}{a} \Rightarrow\left(\tilde{x}=-\frac{b}{a}, \tilde{y}=\frac{\sqrt{d}}{a}=\frac{1}{a}\right)
\end{array}
$$

Kronecker $1^{\text {st }}$ limit formula

The residue of $\zeta(Q, s)$ at $s=1$ is known as $1^{\text {st }}$ Kronecker limit formula

$$
\zeta(Q, s)=\frac{\pi}{\sqrt{d}} \frac{1}{s-1}+\frac{2 \pi}{\sqrt{d}}\left(\gamma+\ln \sqrt{\frac{a}{4 d}}-2 \ln |\eta(z)|\right)+O(s-1)
$$

where $\eta(z)=e^{\pi i z / 12} \prod_{, n=0}^{\infty}\left(1-e^{2 \pi i n z}\right) \quad$ is the Dedekind eta-function

$$
\eta(z+1)=e^{\pi i z / 12} \eta(z) \quad \eta\left(-\frac{1}{z}\right)=\sqrt{-i} \eta(z)
$$

Kronecker $1^{\text {st }}$ limit formula

The residue of $\zeta(Q, s)$ at $s=1$ is known as $1^{\text {st }}$ Kronecker limit formula

$$
\zeta(Q, s)=\frac{\pi}{\sqrt{d}} \frac{1}{s-1}+\frac{2 \pi}{\sqrt{d}}\left(\gamma+\ln \sqrt{\frac{a}{4 d}}-2 \ln |\eta(z)|\right)+O(s-1)
$$

where $\eta(z)=e^{\pi i z / 12} \prod_{, n=0}^{\infty}\left(1-e^{2 \pi i n z}\right) \quad$ is the Dedekind eta-function

$$
\eta(z+1)=e^{\pi i z / 12} \eta(z) \quad \eta\left(-\frac{1}{z}\right)=\sqrt{-i} \eta(z)
$$

Dropping the divergent at $s \rightarrow 1$ term, we get for the ultrametric potential $U(x, y)$:

$$
U(x, y) \approx \sqrt{\frac{\pi}{\beta}}\left(\frac{\pi}{s-1}+2 \pi \gamma-\ln 2-4 \pi \ln h(x, y)\right)
$$

where $h(x, y)=y^{1 / 4}|\eta(x+i y)|$

Relief of the function
$h(x, y)=y^{1 / 4}|\eta(x+i y)|$

Relief of the potential

$$
\tilde{U}(x, y)=-\ln h(x, y)
$$

Relief of the function
$h(x, y)=y^{1 / 4}|\eta(x+i y)|$

Relief of the potential

$$
\tilde{U}(x, y)=-\ln h(x, y)
$$

The longest open geodesic is the largest horocycle defined by the equation

$$
\left(x+\frac{1}{2}\right)^{2}+y^{2}=\frac{5}{4}
$$

To proceed with regularization of a Riemann function, return to the "phyllotaxis potential" and assess $U(x, y)$ at small y :

$$
\begin{aligned}
\left.U(x, y \rightarrow 0)\right|_{\beta \gg 1} & \approx \frac{1}{y \sqrt{\beta \pi}} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{y^{2}}{(m+n x)^{2}+y^{2} n^{2}} \\
& \approx \frac{2}{y \sqrt{\beta \pi}} \sum_{m=1} \sum_{n=1} \frac{1}{n^{2}} \delta\left(x-\frac{m}{n}\right)
\end{aligned}
$$

To proceed with regularization of a Riemann function, return to the "phyllotaxis potential" and assess $U(x, y)$ at small y :

$$
\begin{aligned}
\left.U(x, y \rightarrow 0)\right|_{\beta \gg 1} & \approx \frac{1}{y \sqrt{\beta \pi}} \sum_{\{m, n\} \in \mathbb{Z}^{2} \backslash\{0,0\}} \frac{y^{2}}{(m+n x)^{2}+y^{2} n^{2}} \\
& \approx \frac{2}{y \sqrt{\beta \pi}} \sum_{m=1} \sum_{n=1} \frac{1}{n^{2}} \delta\left(x-\frac{m}{n}\right)
\end{aligned}
$$

Comparing with the Riemann function, we get

$$
\frac{\pi}{12 y} g^{2}(x)=-\ln |\eta(x+i y)|_{y \rightarrow 0}+O(\ln y)
$$

and, finally

$$
\left.g(x) \rightarrow \sqrt{-\frac{12 y}{\pi} \ln |\eta(x+i y)|}\right|_{y \rightarrow 0}
$$

