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• Anomalous fluctuations of “elongated” 2D

paths above curved domains

• Spectral density of sparse matrices and 1D

random walk trapping in a Poissonian field

• Ultrametric organization of spectral density of

random operators and number-theoretic

properties of Dedekind h-function.
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Above the flat line one has a random walk             

thus                ,  and finally, 

Stretched (N = c R) paths above the semicircle

~y x

Linearizing curved shape, we get:

2/3 1/3~ ,   ~x R y R

Stretching above algebraic curve                          provides generic scaling

Exponent g = 1/3 emerges for uniformly curved surface
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Fluctuations of inflated random loops

Consider a motion of a charged particle in constant transversal magnetic 

field                      , Hamiltonian is

Lamor frequency                  , select a charge 

Strong “elongation” of paths:



Fluctuations of inflated random loops “leaning” on an 

impermeable disc



Free energy of stretched paths: scaling approach
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Free energy of a chain stretched above semicircle

Gibbs measure 
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Correspondingly, and survival probability (Balagurov, Vaks, 

1974) is

Free energy to be minimized over D:

Estimate survival probability in an ensemble of 

random intervals D with the distribution Q(D) ~ pD

where
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The inverse Laplace transform gives the Lifshitz tail of 1D Anderson 

localization

Lifshitz tail in optimal fluctuation for survival probability in a one-

dimensional Poissonian field of random segments
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Free energy has to be minimized over D

Comparison of disorder-free stretched KPZ exponent above 

convex boundary and Lifshitz tail in a Poissonian field

Gibbs measure of stretched 

path in curved channel

Survival probability in 1D 

trapping in Poissonian field

In Poissonian disorder one gets                     

The survival probability isNo disorder, however path 

is stretched above semicircle

Tube width at R~cN is 
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Spectral density of sparse matrices and 1D random 

walk trapping in a Poissonian field
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1/ ,r N is the percolation threshold (N >>1)

Spectral statistics of sparse random matrices



Sample of collection of subgraphs for one realization of 

adjacency matrix, r = 1/N  (N = 500)











Spectral density r(l) of sparse random adjacency matrix has regular 

hierarchical structure

At percolation threshold  ~                                          ~ 95% of subgraphs are 

linear chain with distribution in length P(L) ~ e-L

(V. Avetisov, P. Krapivsky, S.N., 2016)



Samples of eigenvalue densities of sparse networks of 

different physical/biological nature



Typical spectral statistics 
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Spectral statistics of protein-

protein interaction network in 

Drosophyla melanogaster

Samples of eigenvalue densities of sparse networks of 

different physical/biological nature

Distributions of ratios 

from heterozygous 

single nucleotide 

polymorphisms data 

from the sequencing 

of a cancer genome

V. Trifonov, L. Pasqualucch, 

R. Dalla-Favera, R.Rabadan 

(Sci. Rep, 2011)
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Spectral statistics of Schrödinger-like random operators

Consider an ensemble of two (three)-diagonal matrices

where the matrix elements are:



Adjacency matrix splits into cells with the distribution

Q(D) ~ pD (0 < p < 1)

Set of eigenvalues in the cell of size D is

Matrix N x N (N >>1)
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Spectral density, r(l), of ensemble of random

matrices is:

Counting contributions from exponentially weighted cells, we get:

Spectral density of adjacency matrix
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Lifshitz tail of the spectral density r(l) at the spectral edge

Lifshitz tail of 1D Anderson localization

𝜌(𝜆 → 2) → 𝑝 Τ𝜋 2−𝜆
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Ultrametric organization of spectral density of 

random operators and number-theoretic 

properties of Dedekind h- function.  



The pairwise distance, d(x1, x2) between elements x1 and x2 is 

ultrametric if it meets three requirements:

• It is non-negative

d(x1, x2) > 0 for x1 ≠ x2 and d(x1, x2) = 0 for x1 = x2

• It is symmetric

d(x1, x2) = d(x2, x1) 

• It obeys the strong triangle inequality, 

d(x1, x2) <  max{d(x1, x3), d(x3, x2)}

instead of the ordinary triangle inequality typical

for Euclidean spaces, d(x1, x2) ≤  d(x1, x3) + d(x3, x2)

Definition of the ultrametric space



Positions of peaks are defined by composition rules for Farey 

numbers (Ford circles) 
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How to compute the amplitude of a peak

(degeneracies of eigenvalues)
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How to compute the amplitude of a peak

(degeneracies of eigenvalues)



Sample spectral densities for p = 0.9 and p = 0.5
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Sample spectral densities for p = 0.9 and p = 0.5
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Spectral density r(l) of ensemble of exponentially weighted 
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Spectral density r(l) of ensemble of exponentially weighted 

random 3-diagonal matrices at p →1

r(l) computed via 

Monte-Carlo

Numeric summation of 

the series for r(l)

Analytic expression of 

r(l) via Dedekind h

r(l)

p (1–p)2

r(l, p)

pn



Reminder: Dedekind h–function
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Discontinuous Riemann “raindrop” function and its 

regularization
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Discontinuous Riemann “raindrop” function and its 

regularization

View of the Riemann function Riemann function as an “Euclid 

Orchard”



Expression for the spectral density r(l)

Spectral tail for p < 1
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Lifshitz tail of 1D Anderson localization

𝜌(𝜆 → 2) → 𝑝 Τ𝜋 2−𝜆

Laplace transform gives:
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Regularization of a normalized Riemann “raindrop” function 
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Regularization of a normalized Riemann “raindrop” function 

The “stability” diagram of Tao-Thouless Fractional Quantum Hall states 

[from E.J. Bergholtz et al, 2008]: 

the lower the disorder, the more fractions are observed
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Static and Dynamical Phyllotaxis in Magnetic Cactus

C. Nisoli et al, ArXiv: cond-mat/0702335
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Static and Dynamical Phyllotaxis in Magnetic Cactus

C. Nisoli et al, ArXiv: cond-mat/0702335

Experimental setting

Hierarchical potential energy relief 

between states with various W



Phyllotaxis, ultrametric spectra of 1D Schrödinger operators 

and (maybe) FQHE: what is common?



Phyllotaxis, ultrametric spectra of 1D Schrödinger operators 

and (maybe) FQHE: what is common?

Conjecture:

Discreteness of nature and, in particular, Riemann “raindrop” function lies 

behind

…however the emergence of modular symmetry in various physical 

systems is hidden…



We can identify the energy landscape with

a metric space
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Umax(x1, x2) where d(x1, x2) is the ultrametric pairwise distance

We can identify the energy landscape with

a metric space



Considering the profile U(x, y) as a function of x, we set d(x1, x2) =

Umax(x1, x2) where d(x1, x2) is the ultrametric pairwise distance

At  >> 1 one can approximately rewrite U(x, y) as

We can identify the energy landscape with

a metric space



Making use of regularization of the d-function, we represent the potential 

U(x, y) at  >> 1 as follows:
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U(x, y) at  >> 1 as follows:

where s = 1 and Q(m, n) is a positive quadratic form

Recall now the definition of the Eisenstein series
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E(z, s) is related to the Epstein z-function, defined as
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E(z, s) is related to the Epstein z-function, defined as

where

Reminder of Eisenstein series

E(z, s) as a function of z, is a SL(2,Z)–invariant auto-morphic solution of 

the hyperbolic Laplace equation

We can make now an identification 



Kronecker 1st limit formula
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The residue of z(Q, s) at s = 1 is known as 1st Kronecker limit formula



Kronecker 1st limit formula

where                                                                   is the Dedekind eta-function

,

where

Dropping the divergent at s→1 term, we get for the ultrametric potential 

U(x, y):

The residue of z(Q, s) at s = 1 is known as 1st Kronecker limit formula



Relief of the function Relief of the potential



Relief of the function Relief of the potential

The longest open geodesic is the largest horocycle defined by the equation



To proceed with regularization of a Riemann function, return to the 

”phyllotaxis potential” and assess U(x, y) at small y:



To proceed with regularization of a Riemann function, return to the 

”phyllotaxis potential” and assess U(x, y) at small y:

Comparing with the Riemann function, we get

and, finally


