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INTRODUCTION



Knizhnik-Zamolodchikov differential equations

Let (H(C̃n
∗), 1H(C̃n

∗)
) be the ring of holomorphic functions over the

universal covering of the configuration space of n points, i.e.
Cn

∗ := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj for i 6= j}.

Let H(C̃n
∗)〈〈Tn〉〉 be the ring of noncommutative series over the alphabet

Tn := {ti,j}1≤i<j≤n and with coefficients in H(C̃n
∗).

The following noncommutative differential equation is so called KZn

dF (z) = Ωn(z)F (z), where Ωn(z) :=
∑

1≤i<j≤n

ti,j
2iπ

d log(zi − zj)

for which solutions can be computed by convergent iterations, for the

discrete topology 1 of pointwise convergence over H(C̃n
∗)〈〈Tn〉〉.

Example (trivial case)
For n = 2, one has T2 = {t1,2} and a solution of the equation

dF (z) = Ω2(z)F (z), where Ω2(z) = (t1,2/2iπ)d log(z1 − z2),

is F (z1, z2) = e(t1,2/2iπ) log(z1−z2) = (z1 − z2)
t1,2/2iπ ∈ H(C̃2

∗)〈〈T2〉〉.

1. ∀S ,T ∈ H(C̃n
∗)〈〈Tn〉〉, d(S ,T ) = 2̟(S−T ), where ̟ denotes the valuation.



Quadratic relations among {ti ,j}1≤i<j≤n

According to Drinfel’d, KZn is completely integrable if 2

dΩn(z)− Ωn(z) ∧ Ωn(z) = 0.

It turns out that this condition induces the following quadratic relations
in {ti,j}1≤i<j≤n :

Rn =





[ti,k + tj,k , ti,j ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,
[ti,j + ti,k , tj,k ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,

[ti,j , tk,l ] = 0 for distinct i , j , k , l and
{
1 ≤ i < j ≤ n,
1 ≤ k < l ≤ n,

generating the Lie ideal JRn
.

Solutions of KZn belong now to H(C̃n
∗)〈〈Tn〉〉/JRn

.

2. Cartier uses a similar criterion with matrices in place of letters ti,j ∈ Tn.



NONCOMMUTATIVE SERIES WITH
HOLOMORPHIC COEFFICIENTS



Differential ring of holomorphic functions

◮ A = (H(V), ∂1, . . . , ∂n), the differential ring of holomorphic
functions on a simply connected manifold V of Cn(n > 0) and
equipped 1H(V) as the neutral element.

For any f ∈ H(V), one has df = (∂1f )dz1 + . . .+ (∂nf )dzn.

◮ Let C be a sub differential ring of A (i.e. ∂iC ⊂ C, for 1 ≤ i ≤ n)
and let ς  z denote a path over a simply connected manifold V,
i.e. the parametrized curve γ : [0, 1] −→ V such that

γ(0) = ς = (ς1, . . . , ςn) and γ(1) = z = (z1, . . . , zn).

◮ For any integers i , j such that 1 ≤ i < j ≤ n, let ωi,j denote the
1-differential forms 3, in Ω1(B), ωi,j = dξi,j , with ξi,j ∈ C.

Example (ξi ,j(z) = log(zi − zj), 1 ≤ i < j ≤ n)

Let C0 := C[{(∂1ξi,j)
±1, . . . , (∂nξi,j)

±1}1≤i<j≤n].

Then C0 is a sub differential ring of A.

3. Over V, the holomorphic function ξi,j is called a primitive for ωi,j which is
said to be a exact form and then is a closed form (i.e. dωi,j = 0).



Notations

◮ (Tn
∗, 1Tn

∗) is the free monoid generated by Tn. A〈〈Tn〉〉 (resp. A〈Tn〉)
is the set of series (resp. polynomials) over Tn with coefficients in A.
LynTn (resp. LynT ) is the set of Lyndon words over Tn (resp. T ).

◮ Tk := {tj,k}1≤j≤k−1, T := {T2, . . . ,Tn} s.t. Tk = Tk ⊔ Tk−1, k ≤ n.
|Tn |= n(n − 1)/2 and |Tn |= n − 1. If n ≥ 4 then |Tn−1 |≥|Tn |.

Example

◮ T5 = {t1,2, t1,3, t1,4, t1,5, t2,3, t2,4, t2,5, t3,4, t3,5, t4,4}, one has
T5 = {t1,5, t2,5, t3,5, t4,5} and T4.

◮ T4 = {t1,2, t1,3, t1,4, t2,3, t2,4, t3,4}, one has
T4 = {t1,4, t2,4, t3,4} and T3.

◮ T3 = {t1,2, t1,3, t2,3}, one has T3 = {t1,3, t2,3} and T2 = {t1,2}.

◮ In (A〈〈Tn〉〉, ∂1, . . . , ∂n), for any S ∈ A〈〈Tn〉〉, one defines

∂iS =
∑

w∈T ∗
n

(∂i 〈S |w〉)w and dS =
n∑

i=1

(∂iS)dzi .

Const(A) = C.1H(Ω) and Const(A〈〈Tn〉〉) = C〈〈Tn〉〉.



Diagonal series

LieA〈Tn〉 is the set of Lie polynomials over Tn with coefficients in A and
is equipped with the basis {Pl}l∈LynTn

over which are constructed the
PBW basis {Pw}w∈T ∗

n
of U(LieA〈Tn〉) and its dual, {Sw}w∈T ∗

n
,

containing the pure transcendence basis {Sl}l∈LynTn
of 4 (A〈Tn〉, ⊔⊔ , 1T ∗

n
).

Example (in KZ3, T3 = {t1,2, t1,3, t2,3} and t1,2 ≺ t1,3 ≺ t2,3)
∀k ≥ 0, i = 1 or 2, tk1,2ti,3 ∈ LynT3, Ptk1,2ti,3

= ad
k
t1,2 ti,3, Stk1,2ti,3 = tk1,2ti,3.

In (A〈Tn〉, conc, 1Tn
∗ ,∆⊔⊔ , e), the diagonal series is defined by

D :=M∗, with M :=
∑

t∈Tn

t ⊗ t,

and is the unique solution of the equations
∇S =MS and ∇S = SM,

where ∇S denotes S − 1T ∗
n
⊗ 1T ∗

n
, for S ∈ A〈Tn〉⊗̂A〈Tn〉. Then

D =

( ց∏

l∈LynTn−1

ց∏

l=l1 l2
l2∈LynTn−1,l1∈LynTn

ց∏

l∈LynTn

)
eSl⊗Pl , for n > 2.

4. in which one defines ∆⊔⊔ x = x ⊗ 1Tn
∗ + 1Tn

∗ ⊗ x , or equivalently,
u ⊔⊔ 1Tn

∗ = 1Tn
∗ ⊔⊔ u = u and xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v).



Example of lexicographic ordering (in KZn, n ≥ 4)
Let us consider the following total order over Tk :

t1,k ≻ . . . ≻ tk−1,k , for n ≥ k ≥ 2,
and over T :

T2 ≻ . . . ≻ Tn and then LynT2 ≻ . . . ≻ LynTn.
With this ordering, one has

LynTn−1 ≻ LynTn.LynTn−1 ≻ LynTn.
More generally, for any (t1, t2) ∈ Tk1 × Tk2 , 2 ≤ k1 < k2 ≤ n, one has

t1t2 ∈ LynTn and t2 ≻ t1t2 ≻ t1.
Hence,

◮ For any l ∈ LynTk−1 and t ∈ Tk , 2 ≤ k ≤ n, one has
lt ∈ LynTn and l ≺ lt ≺ t.

◮ For any l1 ∈ LynTk1 and l2 ∈ LynTk2 , 2 ≤ k1 < k2 ≤ n, one has
l1l2 ∈ LynTn and l1 ≺ l1l2 ≺ l2.

◮ For any l1 ∈ LynTk and l2 ∈ LynTk−1, 2 ≤ k ≤ n, one has
l1l2 ∈ LynTn and l1 ≺ l1l2 ≺ l2.

◮ For any t ∈ Tk , x ∈ Tk−1, 2 ≤ k1 < k2 ≤ n and i ≥ 0, one has
t ≺ x and t ix ∈ LynTk and then Pt ix = ad

i
t x and St ix = t ix .



More about notations
Let us back to the relations

Rn =





[ti,k + tj,k , ti,j ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,
[ti,j + ti,k , tj,k ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,

[ti,j , tk,l ] = 0 for distinct i , j , k , l and
{
1 ≤ i < j ≤ n,
1 ≤ k < l ≤ n,

generating the Lie ideal JRn
.

◮ The monoid (resp. the set of Lyndon words) generated by Tn
satisfying the relations Rn is denoted by 〈T ∗

n ;JRn
〉 (resp.

〈LynTn;JRn
〉).

◮ The set of noncommutative polynomials (resp. series) with
coefficients in A, over Tn, satisfying Rn, is denoted by A〈Tn〉/JRn

(resp. A〈〈Tn〉〉/JRn
).

◮ The set of Lie polynomials (resp. Lie series) with coefficients in A,
over Tn, satisfying Rn, is denoted by LieA〈Tn〉/JRn

(resp.
LieA〈〈Tn〉〉/JRn

).

◮ H⊔⊔ (Tn)/JRn
denotes (A〈Tn〉/JRn

, conc,∆⊔⊔ , 1T ∗
n
).



Combinatorial aspects with infinitesimal braid like relations

Let us consider the Lie ideal In generated by {adkTn
ti,j}

k≥0
ti,j∈Tn−1

.

By the PBW theorem, the enveloping algebra U(In) is freely generated

by {adk1Tn
ti1,j1 . . . ad

kp
Tn

tip,jp}
k1,...,kp≥0,p≥0
ti1,l1 ,...,tip ,lp∈Tn−1

and by the Lazard elimination,

for any n > 2, one also has

LieA〈Tn〉 = In ⊕ LieA〈Tn〉.

Lemma
For any n > 2, one has

1. In/JRn
= {0} and then U(In)/JRn

= {0}.

2. U(LieA〈Tn〉)/JRn
= A〈Tn〉/JRn

and then
[Tn−1,Tn]/JRn

= {[ti,n−1, ti,n]}1≤i≤n−2, . . . , [T2,Tn]/JRn
= {[t1,2, t1,n]}.

3. {Pl}l∈〈LynTn;JRn 〉
= Tn ∪ {[ti,n, tj,n]}1≤i<j≤n−1∪

{[tk,n, [ti,n, tj,n]], [tl,n, [tj,n, tk,n]]}1≤l<i<j<k≤n−1 ∪
{Pl}l∈〈Lyn≥4Tn;JRn 〉

.



BACKGROUND ON
NONCOMMUTATIVE PV THEORY



Iterated integrals and Chen series
The iterated integral associated, of the 1-differential forms {ωi,j}1≤i<j≤n

and along the path ς  z , is given by αz
ς (1T ∗

n
) = 1H(V) and, for any

w = ti1,j1ti2,j2 . . . tik ,jk ∈ T
∗
n ,

αz
ς (w) :=

∫ z

ς

ωi1,j1(s1)

∫ s1

ς

ωi2,j2(s2) . . .

∫ sk−1

ς

ωik ,jk (sk) ∈ H(V),

where (ς, s1 . . . , sk−1, z) is a subdivision of ς  z .

The Chen series, of the differential forms {ωi,j}1≤i<j≤n and along a path
ς  z , is the following noncommutative generating series

Cς z :=
∑

w∈T ∗
n

αz
ς (w)w ∈ H(V)〈〈T ∗

n 〉〉.

Proposition

1. ∀u, v in T ∗
n , αz

ς (u ⊔⊔ v) = αz
ς (u)α

z
ς (v) (Chen’s lemma).

2. ∀t ∈ Tn, k ≥ 0, αz
ς (t

k) = (αz
ς (t))

k/k! and then αz
ς (t

∗) = eα
z
ς (t).

3. For any compact K ⊂ V, there is c > 0 and a morphism of monoids
µ : T ∗

n −→ R≥0 s.t. ‖〈Cς z |w〉‖K ≤ cµ(w) |w |!−1, for w ∈ T ∗
n ,

and then Cς z is said to be exponentially bounded from above.



Basic triangular theorem over a differential ring

Recall that A = (H(V), ∂1, . . . , ∂n) and C be a sub differential ring of A.

Lemma
The following assertions are equivalent 5

1. The following map is injective

(A〈Tn〉, ⊔⊔ , 1T ∗
n
) −→ (H(V), ∗, 1H(V)),

w 7−→ αz
ς (w).

2. {αz
ς (w)}w∈T ∗

n
is linearly free over C.

3. {αz
ς (l)}l∈LynTn

is algebraically free over C.

4. {αz
ς (t)}t∈Tn

is algebraically free over C.

5. {αz
ς (t)}t∈Tn∪{1T ∗

n
} is linearly free over C.

5. This is the abstract form, over ring, of (Deneufchâtel, Duchamp, HNM &
Solomon, 2011).



Noncommutative differential equations
(NCDE ) dS = MnS , where 6 Mn =

∑

1≤i<j≤n

ωi,j ti,j .

Proposition

1. Cς z , satisfying (NCDE ), is group-like and logCς z is primitive :

Cς z =

ց∏

l∈LynTn

eα
z
ς (Sl )Pl and logCς z =

∑

w∈T ∗
n

αz
ς (w)π1(w),

where π1(w) =
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈TnT ∗
n

〈w |u1 ⊔⊔ . . . ⊔⊔ uk〉u1 . . . uk .

2. Let C ∈ C〈〈Tn〉〉, 〈C |1T ∗
n
〉 = 1. Then Cς zC satisfies (NCDE ).

Moreover, Cς zC is group-like if and only if C is group-like.

From this, it follows that the differential Galois group of (NCDE ) +
group-like solutions is 7 the group {eC}C∈LieC.1Ω 〈〈X〉〉. Which leads to the

definition of the PV extension related to (NCDE ) as Ĉ0.X{Cz0 z}.

6. Mn ∈ Ω1(V)〈Tn〉 and ∆⊔⊔Mn = 1T ∗
n
⊗Mn +Mn ⊗ 1T ∗

n
.

7. In fact, the Hausdorff group (group of characters) of (A〈Tn〉, ⊔⊔ , 1T ∗
n
).



ALGORITHMIC AND COMPUTATIONAL
ASPECTS OF SOLUTIONS OF KZn BY

DEVISSAGE



KZ3 : Simplest non-trivial case (1/4)
One has T3 = {t1,2, t1,3, t2,3} and

Ω3(z) =
1

2iπ

(
t1,2

d(z1 − z2)

z1 − z2
+ t1,3

d(z1 − z3)

z1 − z3
+ t2,3

d(z2 − z3)

z2 − z3

)
.

Solution of dF (z) = Ω3(z)F (z) can be computed as limit of the

sequence {Fl}l≥0, in H(C̃3
∗)〈〈T3〉〉, by convergent Picard’s iteration :

F0(z) = 1
H(C̃n

∗)
and Fl (z) =

∫ z

0

Ω3(s)Fl−1(s).

Let us compute, by another way, a solution of dF (z) = Ω3(z)F (z) as the

limit of the sequence {Vl}l≥0, in H(C̃3
∗)〈〈T3〉〉, iteratively obtained by

V0(z) = e(t1,2/2iπ) log(z1−z2),

Vl (z) =

∫ z

0

e(t1,2/2iπ)(log(z1−z2)−log(s1−s2))Ω̃2(s)Vl−1(s)

= V0(z)

∫ z

0

e−(t1,2/2iπ) log(s1−s2)Ω̃2(s)Vl−1(s),

with Ω̃2(z) =
1

2iπ

(
t1,3

d(z1 − z3)

z1 − z3
+ t2,3

d(z2 − z3)

z2 − z3

)
.



KZ3 : Simplest non-trivial case (2/4)

Explicit solution is F = V0G , where V0(z) = (z1 − z2)
t1,2/2iπ and

G (z) =
∑

ti1,j1
...tim,jm

∈{t1,3,t2,3}
∗

m≥0

∫ z

0

ωi1,j1(s1)ϕ
s1(ti1,j1) . . .

∫ sm−1

0

ωim,jm(sm)ϕ
sm(tim,jm),

where ω1,3(z) = d log(z1 − z3) and ω2,3(z) = d log(z2 − z3) and ϕ is the
following automorphism of Lie algebra, Lie

H(C̃n
∗)
〈T3〉,

ϕz = ead−(t1,2/2iπ) log(z1−z2) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
ad

k
t1,2 .

Since t1,2 ≺ t1,3 ≺ t2,3 and, for k ≥ 0 and i = 1 or 2, tk1,2ti,3 ∈ LynT3 then

Ptk1,2ti,3
= ad

k
t1,2 ti,3 and Stk1,2ti,3 = tk1,2ti,3

and then

ϕz(ti,3) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
Ptk1,2ti,3

, ϕ̌z(ti,3) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
Stk1,2ti,3 ,

where ϕ̌ (adjoint to ϕ) is the following automorphism of (A〈T3〉, ⊔⊔ , 1T ∗
3
)

ϕ̌z = e−(t1,2/2iπ) log(z1−z2) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
tk1,2.



KZ3 : Simplest non-trivial case (3/4)

Belonging to H(C̃3
∗)〈〈T3〉〉, G satisfies dG (z) = Ω̄2(z)G (z), where

Ω̄2(z) =
1

2iπ

(
ϕz(t1,3)

d(z1 − z3)

z1 − z3
+ ϕz(t2,3)

d(z2 − z3)

z2 − z3

)
.

In the affine plan (P1,2) : z1 − z2 = 1, one has

log(z1 − z2) = 0 and then ϕ ≡ Id.

Setting x0 = t1,3/2iπ, x1 = −t2,3/2iπ and z1 = 1, z2 = 0, z3 = s, one has

Ω̄2(z) =
1

2iπ

(
t1,3

d(z1 − z3)

z1 − z3
+ t2,3

d(z2 − z3)

z2 − z3

)
= x1

ds

1− s
+ x0

ds

s
.

KZ3 admits then the noncommutative generating series of polylogarithms,
L, as the actual solution satisfying the Drinfel’d asymptotic conditions.
Via L and the homographic substitution g : z3 7−→ (z3 − z2)/(z1 − z2),
mapping {z2, z1} to {0, 1}, L((z3 − z2)/(z1 − z2)) is a particular solution
of KZ3, in (P1,2). So is L((z3 − z2)/(z1 − z2))(z1 − z2)

(t1,2+t1,3+t2,3)/2iπ.



KZ3 : Simplest non-trivial case (4/4)

Denoting (X ∗, 1X∗) the monoid generated by X = {x0, x1}, recall that

L(s) :=
∑

w∈X∗

Liw (s)w ∈ H( ˜C \ {0, 1})〈〈X 〉〉,

where Li• is the character of (H( ˜C \ {0, 1})〈X 〉, ⊔⊔ , 1X∗) defined by
Li1X∗ = 1

H( ˜C\{0,1})
, Lix0(s) = log(s), Lix1(s) = log(1− s)

and, for any xiw ∈ LynX \ X ,

Lixiw (s) =

∫ s

0

ωi (σ)Liw (σ), where

{
ω0(s) = ds/s,
ω1(s) = ds/(1− s).

{Lil}l∈LynX (resp. {Liw}w∈X∗) are C-algebraically (resp. linearly) free.

By the Friedrichs crirerion, L is group like. Thus,

L(s) =

ց∏

l∈LynX

eLiSl (s)Pl and then

{
lim
z→0

L(s)e−x0 log z = 1,

lim
z→1

ex1 log(1−z)L(s) = ΦKZ ,

where ΦKZ is the following constant group like series

ΦKZ :=

ց∏

l∈LynX\X

eLiSl (1)Pl ∈ R〈〈X 〉〉, for

{
x0 = t1,2/2iπ,
x1 = −t2,3/2iπ.

admitting {Lil (1)}l∈LynX\X as convergent locale coordinates.



Solutions of (NCDE ) in A〈〈Tn〉〉/JRn
(1/2)

Let the solution of (NCDE ) be computed by {Vm(ς, z)}m≥0 satisfying

Vm(ς, z) =
∑

ti,j∈Tn−1

∫ z

ς

(
⊔⊔

t∈Tn

e [α
z
ς (t)−αs

ς (t)]t
)
ωi,j(s)ti,jVm−1(ς, s)

)
,

V0(ς, z) = ⊔⊔

t∈Tn

eα
z
ς (t)t =

∑

i1,...,in−1≥0

((αz
ς (t

i1
1,n)t

i1
1,n) ⊔⊔ . . . ⊔⊔((αz

ς (t
in−1

n−1,n)t
in−1

n−1,n).

Then V0 satisfies the partial differential equation

∂nf = Nn−1f , where Nn−1 =

n−1∑

k=1

ωk,ntk,n

and, for any m ≥ 1, on obtains explicitly

Vm(ς, z) =
∑

w=ti1,j1 ...tim,jm∈T ∗
n−1

∫ z

ς

ωi1,j1(s1) · · ·

∫ sm−1

ς

ωim,jm(sm)κw (z , s1, · · · , sm),

where

V0(ς, z)
−1κw (z , s1, · · · , sm) =

m∏

p=1

e
ad

−
∑

t∈Tn
α
sp
ς (t)t tip,jp

=
∑

q1,··· ,qk≥0

m∏

p=1

1

qp!
ad

qp

−
∑

t∈Tn
α

sp
ς (t)t

tip,jp .



Solutions of (NCDE ) in A〈〈Tn〉〉/JRn
(2/2)

Hence, V0(ς, z)
−1κw (z , s1, · · · , sm) = ϕ

(ς,s1)
t•,n (ti1,j1) . . . ϕ

(ς,sm)
t•,n (tim,jm),

where ϕt•,n is an automorphisms of LieA〈Tn〉 defined on letters s.t.

over Tn, ϕt•,n ≡ Id and over Tn−1, ϕ
(ς,z)
t•,n (ti,j) = e

ad
−α

(ς,z)
ς (ti,n)ti,n ti,j .

It can be extended as an injective conc-morphism of Â〈Tn〉 s.t. its adjoint,
denoted by ϕ̌•,n and restricted in (A〈Tn〉, ⊔⊔ , 1T ∗

n
), is an automorphism.

One has ϕt•,n(
̂LieA〈Tn〉) ⊆ ̂LieA〈Tn〉 and ϕ̌t•,n(Â〈Tn〉) ⊆ Â〈Tn〉).

Theorem
(NCDE ) admits V0(ς, z)G (ς, z) as solution and G (ς, z) is obtained by
the Picard’s iteration of

dS = M
t•,n
n−1S , where M

t•,n
n−1(z) =

∑

1≤i<j≤n−1

ωi,j(z)ϕ
(ς,z)
t•,n (ti,j).

It can be also obtained, in A〈〈Tn〉〉/JRn
, as follows

G (ς, z) =
∑

w∈T ∗
n−1

αz
ς (ϕ̌

z
t•,n(w))w =

ց∏

l∈LynTn−1

e
αz

ς (ϕ̌
z
t•,n

(Sl ))Pl .

There is a holomorphic function in H(V), gt•,n , s.t.

M
t•,n
n−1(z) =

∑

1≤i<j≤n−1

g∗
t•,nωi,j(z)ti,j .



Solutions of KZn (n ≥ 4)

Now, let V = C̃n
∗, where C n

∗ := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj for i 6= j}
and let us consider the affine plans (Pi,j) : zi − zj = 1, 1 ≤ i < j ≤ n − 1.

Theorem (ωi ,j(z) = d log(zi − zj), ti ,j ← ti ,j/2iπ)

For zn → zn−1, solution of (NCDE ) is in the form f (z)G (z1, . . . , zn−1) s.t.

1. f (z) ∼ (zn−1 − zn)
tn−1,n satisfying ∂nf = Nn−1f , where

8

Nn−1(z) =

n−1∑

k=1

tk,n
dzn

zn − zk
=

n−1∑

k=1

tk,n
ds

s − sk
, with

{
s = zn,
sk = zn − zk .

2. G (z1, . . . , zn−1) satisfies dS = M
t•,n
n−1S, where

M
t•,n
n−1(z) =

∑

1≤i<j≤n−1

(zi − zn−1)
− adti,n

ti,jd log(zi − zj).

Moreover M
t•,n
n−1 exactly coincides with Mn−1 in

⋂n−1
i=1 (Pi,n−1).

Conversely, if f satisfies ∂nf = Nn−1f and G (z1, . . . , zn−1) satisfies
dS = M

t•,n
n−1S then f (z)G (z1, . . . , zn−1) satisfies (NCDE ).

8. At this stage, zn is variate, moving towards zn−1 while {zk}1≤k<n are fixed
(and then d(zn − zk) = dzn).



Other example of non-trivial case : KZ4 (ti ,j ← ti ,j/2iπ)

T4 = {t1,2, t1,3, t1,4, t2,3, t2,4, t3,4},T4 = {t1,4, t2,4, t3,4}, T3 = {t1,2, t1,3, t2,3}.

ϕz
T4

= e
ad−

∑
t∈T4

αz
ς (t)t and ϕ̌z

T4
= e−

∑
t∈T4

αz
ς (t)t .

Hence,
ϕz
t•,4(t1,4) = (z1 − z4)

−adt1,4 and ϕ̌z
t•,4(t1,4) = (z1 − z4)

−t1,4 ,

ϕz
t•,4(t2,4) = (z2 − z4)

− adt2,4 and ϕ̌z
t•,4(t2,4) = (z2 − z4)

−t2,4 ,

ϕz
t•,4(t3,4) = (z3 − z4)

− adt3,4 and ϕ̌z
t•,4(t3,4) = (z3 − z4)

−t3,4 .

For z4 → z3, F (z) = V0(z)G (z1, z2, z3), where V0(z) = e
∑

i≤i≤3 ti,4 log(zi−z4)

and G (z1, z2, z3) satisfies dS = M
t•,4
3 S with

M
t•,4
3 (z) = ϕz

t•,4(t1,2)
d(z1 − z2)

z1 − z2
+ ϕz

t•,4(t1,3)
d(z1 − z3)

z1 − z3
+ ϕz

t•,4(t2,3)
d(z2 − z3)

z2 − z3
.

Considering (P1,4) : z1 − z4 = 1, (P2,4) : z2 − z4 = 1, (P3,4) : z3 − z4 = 1,
one has, in the intersection (P1,4) ∩ (P2,4) ∩ (P3,4),

log(z1 − z4) = log(z2 − z4) = log(z3 − z4) = 0 and ϕt•,4 ≡ Id

and then V0 = 1H(V) and M
t•,4
3 exactly coincides with M3.



Solutions of KZn (n ≥ 4) with asymptotic conditions
Let F : (C〈Tn〉, ⊔⊔ , 1T ∗

n
)→ (H(V), ∗, 1H(V)) be the character defined by

F1T ∗
n
= 1H(V), ∀ti,j ∈ Tn, Fti,j (z) = log(zi − zj), ∀ti,jw ∈ LynTn \ Tn,

Fti,jw (z) =

∫ z

0

ωi,j(s)Fw (s), where ωi,j(z) = d log(zi − zj).

Corollary (ωi ,j(z) = d log(zi − zj), ti ,j ← ti ,j/2iπ)

1. {Ft}t∈Tn∪{1T ∗
n
} are C0-linearly free.

2. F, being the graph of F , is group like and then log F is primitive :

F :=
∑

w∈T ∗
n

Fww =

ց∏

l∈LynTn

eFSl
Pl and logF =

∑

w∈T ∗
n

Fwπ1(w),

where π1(w) =
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈TnT ∗
n

〈w |u1 ⊔⊔ . . . ⊔⊔ uk〉u1 . . . uk .

3. F is unique solution of dS = MnS (and then Cς z = F(z)F−1(ς)) s.t.
F(z) ∼ zi zi−1

1<i≤n
(zi−1 − zi )

ti−1,iGi (z1, . . . , i − 1, i + 1, . . . , zn)

and Gi (z1, . . . , i − 1, i + 1, . . . , zn) satisfies dS = M
t•,i
n−1S, where

M
t•,n
n−1(z) =

∑

1≤i<j≤n−1

(zi − zn−1)
− adti,n

ti,jd log(zi − zj).
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