On the solutions of
 Knizhnik-Zamolodchikov differential equations by noncommutative Picard-Vessiot theory

V.C. Bui ${ }^{0}$, J.Y. Enjalbert ${ }^{3}$, V. Hoang Ngoc Minh ${ }^{2,3}$, V. Nguyen Dinh ${ }^{3}$, Q.H. Ngô ${ }^{4}$.
${ }^{0}$ Hue University of Sciences, 77 - Nguyen Hue street - Hue city, Vietnam.
${ }^{1}$ Université Sorbonne-Paris Nord, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
${ }^{2}$ Université Lille, 1 Place Déliot, 59024 Lille, France.
${ }^{3}$ LIPN-UMR 7030, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
${ }^{4}$ University of Hai Phong, 171, Phan Dang Luu, Kien An, Hai Phong, Viet Nam.

Combinatorics and Arithmetic for Physics: special days
November 30 - Decembre 2, 2021, IHES, Bures-sur-Yvette.

Outline

1. Introduction: Knizhnik-Zamolodchikov differential equations
2. Noncommutative series with holomorphics coefficients
2.1 Differential ring of holomorphic functions
2.2 Diagonal series and lexicographic ordering
2.3 Combinatorial aspects with infinitesimal braid like relations
3. Background on noncommutative PV theory
3.1 Iterated integrals and Chen series
3.2 Independences over differential ring
3.3 Noncommutative differential equations
4. Algorithmic and computational aspects of solutions of $K Z_{n}$ by dévissage
4.1 $K Z_{3}$: simplest non-trivial case
4.2 Solutions of $K Z_{n}(n \geq 4)$ with asymptotic conditions
4.3 $K Z_{4}$: other example of non-trivial case

INTRODUCTION

Knizhnik-Zamolodchikov differential equations

Let $\left(\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right), 1_{\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)}\right)$ be the ring of holomorphic functions over the universal covering of the configuration space of n points, i.e.

$$
\mathbb{C}_{*}^{n}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j} \text { for } i \neq j\right\} .
$$

Let $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ be the ring of noncommutative series over the alphabet $\mathcal{T}_{n}:=\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ and with coefficients in $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)$.

The following noncommutative differential equation is so called $K Z_{n}$

$$
\mathbf{d} F(z)=\Omega_{n}(z) F(z), \quad \text { where } \quad \Omega_{n}(z):=\sum_{1 \leq i<j \leq n} \frac{t_{i, j}}{2 i \pi} d \log \left(z_{i}-z_{j}\right)
$$

for which solutions can be computed by convergent iterations, for the discrete topology ${ }^{1}$ of pointwise convergence over $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$.

Example (trivial case)

For $n=2$, one has $\mathcal{T}_{2}=\left\{t_{1,2}\right\}$ and a solution of the equation

$$
\mathbf{d} F(z)=\Omega_{2}(z) F(z), \quad \text { where } \quad \Omega_{2}(z)=\left(t_{1,2} / 2 \mathrm{i} \pi\right) d \log \left(z_{1}-z_{2}\right),
$$

is $F\left(z_{1}, z_{2}\right)=e^{\left(t_{1,2} / 2 i \pi\right)} \log \left(z_{1}-z_{2}\right)=\left(z_{1}-z_{2}\right)^{t_{1,2} / 2 i \pi} \in \mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{2}}\right)\left\langle\left\langle\mathcal{T}_{2}\right\rangle\right\rangle$.

1. $\left.\forall S, T \in \mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, d(S, T)=2^{\varpi(S-T)}$, where ϖ denotes the valuation토

Quadratic relations among $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$

According to Drinfel'd, $K Z_{n}$ is completely integrable if ${ }^{2}$

$$
d \Omega_{n}(z)-\Omega_{n}(z) \wedge \Omega_{n}(z)=0 .
$$

It turns out that this condition induces the following quadratic relations in $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$:

$$
\mathcal{R}_{n}=\left\{\begin{array}{rll}
{\left[t_{i, k}+t_{j, k}, t_{i, j}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\
{\left[t_{i, j}+t_{i, k}, t_{j, k}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\
{\left[t_{i, j}, t_{k, l}\right]=0} & \text { for distinct } i, j, k, l & \text { and } \begin{cases}1 \leq i<j \leq n, \\
1 \leq k<I \leq n,\end{cases}
\end{array}\right.
$$

generating the Lie ideal $\mathcal{J}_{\mathcal{R}_{n}}$.
Solutions of $K Z_{n}$ belong now to $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$.
2. Cartier uses a similar criterion with matrices in place of letters $t_{i, j} \in \mathcal{T}_{n}$.

NONCOMMUTATIVE SERIES WITH HOLOMORPHIC COEFFICIENTS

Differential ring of holomorphic functions

- $\mathcal{A}=\left(\mathcal{H}(\mathcal{V}), \partial_{1}, \ldots, \partial_{n}\right)$, the differential ring of holomorphic functions on a simply connected manifold \mathcal{V} of $\mathbb{C}^{n}(n>0)$ and equipped $1_{\mathcal{H}(\mathcal{V})}$ as the neutral element.
For any $f \in \mathcal{H}(\mathcal{V})$, one has $d f=\left(\partial_{1} f\right) d z_{1}+\ldots+\left(\partial_{n} f\right) d z_{n}$.
- Let \mathcal{C} be a sub differential ring of \mathcal{A} (i.e. $\partial_{i} \mathcal{C} \subset \mathcal{C}$, for $1 \leq i \leq n$) and let $\varsigma \rightsquigarrow z$ denote a path over a simply connected manifold \mathcal{V}, i.e. the parametrized curve $\gamma:[0,1] \longrightarrow \mathcal{V}$ such that

$$
\gamma(0)=\varsigma=\left(\varsigma_{1}, \ldots, \varsigma_{n}\right) \quad \text { and } \quad \gamma(1)=z=\left(z_{1}, \ldots, z_{n}\right) .
$$

- For any integers i, j such that $1 \leq i<j \leq n$, let $\omega_{i, j}$ denote the 1 -differential forms ${ }^{3}$, in $\Omega^{1}(B), \omega_{i, j}=d \xi_{i, j}$, with $\xi_{i, j} \in \mathcal{C}$.

Example $\left(\xi_{i, j}(z)=\log \left(z_{i}-z_{j}\right), 1 \leq i<j \leq n\right)$
Let $\mathcal{C}_{0}:=\mathbb{C}\left[\left\{\left(\partial_{1} \xi_{i, j}\right)^{ \pm 1}, \ldots,\left(\partial_{n} \xi_{i, j}\right)^{ \pm 1}\right\}_{1 \leq i<j \leq n}\right]$.
Then \mathcal{C}_{0} is a sub differential ring of \mathcal{A}.
3. Over \mathcal{V}, the holomorphic function $\xi_{i, j}$ is called a primitive for $\omega_{i, j}$ which is said to be a exact form and then is a closed form (i.e. $\left.d \omega_{i, j}=0\right)$.

Notations

- $\left(\mathcal{T}_{n}{ }^{*}, 1_{\mathcal{T}_{n}{ }^{*}}\right)$ is the free monoid generated by $\mathcal{T}_{n} . \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ (resp. $\left.\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle\right)$ is the set of series (resp. polynomials) over \mathcal{T}_{n} with coefficients in \mathcal{A}. $\mathcal{L y n} \mathcal{T}_{n}$ (resp. $\mathcal{L y n} \mathcal{T}$) is the set of Lyndon words over \mathcal{T}_{n} (resp. \mathcal{T}).
- $T_{k}:=\left\{t_{j, k}\right\}_{1 \leq j \leq k-1}, \mathcal{T}:=\left\{T_{2}, \ldots, T_{n}\right\}$ s.t. $\mathcal{T}_{k}=T_{k} \sqcup \mathcal{T}_{k-1}, k \leq n$. $\left|\mathcal{T}_{n}\right|=n(n-1) / 2$ and $\left|T_{n}\right|=n-1$. If $n \geq 4$ then $\left|\mathcal{T}_{n-1}\right| \geq\left|T_{n}\right|$.

Example

- $\mathcal{T}_{5}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{1,5}, t_{2,3}, t_{2,4}, t_{2,5}, t_{3,4}, t_{3,5}, t_{4,4}\right\}$, one has $T_{5}=\left\{t_{1,5}, t_{2,5}, t_{3,5}, t_{4,5}\right\}$ and \mathcal{T}_{4}.
- $\mathcal{T}_{4}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\right\}$, one has $T_{4}=\left\{t_{1,4}, t_{2,4}, t_{3,4}\right\}$ and \mathcal{T}_{3}.
- $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$, one has $T_{3}=\left\{t_{1,3}, t_{2,3}\right\}$ and $\mathcal{T}_{2}=\left\{t_{1,2}\right\}$.
- $\ln \left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \partial_{1}, \ldots, \partial_{n}\right)$, for any $S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$, one defines

$$
\partial_{i} S=\sum_{w \in \mathcal{T}_{n}^{*}}\left(\partial_{i}\langle S \mid w\rangle\right) w \quad \text { and } \quad \mathbf{d} S=\sum_{i=1}^{n}\left(\partial_{i} S\right) d z_{i} .
$$

$\operatorname{Const}(\mathcal{A})=\mathbb{C} .1_{\mathcal{H}(\Omega)}$ and $\operatorname{Const}\left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)=\mathbb{C}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$.

Diagonal series

$\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle$ is the set of Lie polynomials over \mathcal{T}_{n} with coefficients in \mathcal{A} and is equipped with the basis $\left\{P_{l}\right\}_{l \in \mathcal{L y n} \mathcal{T}_{n}}$ over which are constructed the PBW basis $\left\{P_{w}\right\}_{w \in \mathcal{T}_{n}^{*}}$ of $\mathcal{U}\left(\mathcal{L i}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$ and its dual, $\left\{S_{w}\right\}_{w \in \mathcal{T}_{\sim}^{*}}$, containing the pure transcendence basis $\left\{S_{l}\right\}_{l \in \mathcal{L} y n} \mathcal{T}_{n}$ of ${ }^{4}\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right)$.
Example (in $K Z_{3}, \mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$ and $t_{1,2} \prec t_{1,3} \prec t_{2,3}$) $\forall k \geq 0, i=1$ or $2, \quad t_{1,2}^{k} t_{i, 3} \in \mathcal{L} y n \mathcal{T}_{3}, \quad P_{t_{1,2}^{k} t_{i, 3}}=\operatorname{ad}_{t_{1,2}}^{k} t_{i, 3}, S_{t_{1,2}^{k} t_{i, 3}}=t_{1,2}^{k} t_{i, 3}$.
$\ln \left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle\right.$, conc, $\left.1_{\mathcal{T}_{n}^{*}}, \Delta_{\amalg}, \mathrm{e}\right)$, the diagonal series is defined by

$$
\mathcal{D}:=\mathcal{M}^{*}, \quad \text { with } \quad \mathcal{M}:=\sum_{t \in \mathcal{T}_{n}} t \otimes t
$$

and is the unique solution of the equations

$$
\nabla S=\mathcal{M S} \quad \text { and } \quad \nabla S=S \mathcal{M}
$$

where ∇S denotes $S-1_{\mathcal{T}_{n}^{*}} \otimes 1_{\mathcal{T}_{n}^{*}}$, for $S \in \mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle \hat{\otimes} \mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle$. Then

$$
\mathcal{D}=\left(\prod_{I \in \mathcal{L} y n T_{n-1}}^{\searrow} \prod_{\substack{l=r_{1}^{\prime}, l \in \mathcal{L} \mathcal{L}_{n} T_{n-1}, h_{1} \in \mathcal{Y} T_{n}}}^{\searrow} \prod_{I \in \mathcal{L} y n T_{n}}^{\searrow}\right) e^{S_{1} \otimes P_{1}} \text {, for } n>2 \text {. }
$$

[^0]
Example of lexicographic ordering (in $K Z_{n}, n \geq 4$)

Let us consider the following total order over T_{k} :

$$
t_{1, k} \succ \ldots \succ t_{k-1, k}, \quad \text { for } \quad n \geq k \geq 2 \text {, }
$$

and over \mathcal{T} :

$$
T_{2} \succ \ldots \succ T_{n} \text { and then } \mathcal{L} y n T_{2} \succ \ldots \succ \mathcal{L} y n T_{n} .
$$

With this ordering, one has

$$
\mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n} . \mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n} .
$$

More generally, for any $\left(t_{1}, t_{2}\right) \in T_{k_{1}} \times T_{k_{2}}, 2 \leq k_{1}<k_{2} \leq n$, one has

$$
t_{1} t_{2} \in \mathcal{L} y n \mathcal{T}_{n} \quad \text { and } \quad t_{2} \succ t_{1} t_{2} \succ t_{1} .
$$

Hence,

- For any $I \in \mathcal{L} y n T_{k-1}$ and $t \in T_{k}, 2 \leq k \leq n$, one has $l t \in \mathcal{L} y n \mathcal{T}_{n} \quad$ and $\quad l \prec l t \prec t$.
- For any $I_{1} \in \mathcal{L} y n T_{k_{1}}$ and $I_{2} \in \mathcal{L} y n T_{k_{2}}, 2 \leq k_{1}<k_{2} \leq n$, one has $I_{1} I_{2} \in \mathcal{L y n} \mathcal{T}_{n}$ and $I_{1} \prec I_{1} I_{2} \prec I_{2}$.
- For any $I_{1} \in \mathcal{L} y n T_{k}$ and $I_{2} \in \mathcal{L} y n \mathcal{T}_{k-1}, 2 \leq k \leq n$, one has $I_{1} l_{2} \in \mathcal{L} y n \mathcal{T}_{n}$ and $I_{1} \prec I_{1} l_{2} \prec I_{2}$.
- For any $t \in T_{k}, x \in \mathcal{T}_{k-1}, 2 \leq k_{1}<k_{2} \leq n$ and $i \geq 0$, one has $t \prec x$ and $t^{i} x \in \mathcal{L} y n \mathcal{T}_{k}$ and then $P_{t^{i} x}=\operatorname{ad}_{t}^{i} x$ and $S_{t^{i} x}=t^{i} x$.

More about notations

Let us back to the relations
$\mathcal{R}_{n}=\left\{\begin{aligned} {\left[t_{i, k}+t_{j, k}, t_{i, j}\right]=0 } & \text { for distinct } i, j, k \\ {\left[t_{i, j}+t_{i, k}, t_{j, k}\right]=0 } & \text { for distinct } i, j, k \\ {\left[t_{i, j}, t_{k, l}\right]=0 } & \text { and } 1 \leq i<j<k \leq n, \\ \text { for distinct } i, j, k, l & \text { and } \begin{cases}1 \leq i<j \leq n, \\ 1 \leq k<l \leq n,\end{cases} \end{aligned}\right.$
generating the Lie ideal $\mathcal{J}_{\mathcal{R}_{n}}$.

- The monoid (resp. the set of Lyndon words) generated by \mathcal{T}_{n} satisfying the relations \mathcal{R}_{n} is denoted by $\left\langle\mathcal{T}_{n}^{*} ; \mathcal{J}_{\mathcal{R}_{n}}\right\rangle$ (resp. $\left.\left\langle\mathcal{L} y n T_{n} ; \mathcal{J}_{\mathcal{R}_{n}}\right\rangle\right)$.
- The set of noncommutative polynomials (resp. series) with coefficients in \mathcal{A}, over \mathcal{T}_{n}, satisfying \mathcal{R}_{n}, is denoted by $\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$ (resp. $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$).
- The set of Lie polynomials (resp. Lie series) with coefficients in \mathcal{A}, over \mathcal{T}_{n}, satisfying \mathcal{R}_{n}, is denoted by $\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$ (resp. $\left.\mathcal{L} e_{\mathcal{A}}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}\right)$.
- $H_{\amalg}\left(\mathcal{T}_{n}\right) / \mathcal{J}_{\mathcal{R}_{n}}$ denotes $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}\right.$, conc, $\left.\Delta_{\amalg}, 1_{\mathcal{T}_{n}^{*}}\right)$.

Combinatorial aspects with infinitesimal braid like relations

Let us consider the Lie ideal \mathcal{I}_{n} generated by $\left\{\operatorname{ad}_{T_{n}}^{k} t_{i, j}\right\}_{t_{i, j} \in \mathcal{T}_{n-1}}^{k \geq 0}$.
By the PBW theorem, the enveloping algebra $\mathcal{U}\left(\mathcal{I}_{n}\right)$ is freely generated by $\left\{\operatorname{ad}_{T_{n}}^{k_{1}} t_{i_{1}, j_{1}} \ldots \operatorname{ad}_{T_{n}}^{k_{p}} t_{i_{p}, j_{p}}\right\}_{t_{1}, 1_{1}, \ldots, t_{i}, l_{p} \in \mathcal{T}_{n-1}}^{k_{1}, \ldots, k_{p} \geq 0, p, 0}$ and by the Lazard elimination, for any $n>2$, one also has

$$
\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle=\mathcal{I}_{n} \oplus \mathcal{L i e}_{\mathcal{A}}\left\langle T_{n}\right\rangle .
$$

Lemma

For any $n>2$, one has

1. $\mathcal{I}_{n} / \mathcal{J}_{\mathcal{R}_{n}}=\{0\}$ and then $\mathcal{U}\left(\mathcal{I}_{n}\right) / \mathcal{J}_{\mathcal{R}_{n}}=\{0\}$.
2. $\mathcal{U}\left(\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right) / \mathcal{J}_{\mathcal{R}_{n}}=\mathcal{A}\left\langle T_{n}\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$ and then

$$
\left[T_{n-1}, T_{n}\right] / \mathcal{J}_{\mathcal{R}_{n}}=\left\{\left[t_{i, n-1}, t_{i, n}\right]\right\}_{1 \leq i \leq n-2}, \ldots,\left[T_{2}, T_{n}\right] / \mathcal{J}_{\mathcal{R}_{n}}=\left\{\left[t_{1,2}, t_{1, n}\right]\right\} .
$$

3. $\left\{P_{l}\right\}_{\mid \in\left\langle\mathcal{L y n} T_{n} ; \mathcal{J}_{\mathcal{R}_{n}}\right\rangle}=T_{n} \cup\left\{\left[t_{i, n}, t_{j, n}\right]\right\}_{1 \leq i<j \leq n-1} \cup$ $\left\{\left[t_{k, n},\left[t_{i, n}, t_{j, n}\right]\right],\left[t_{l, n},\left[t_{j, n}, t_{k, n}\right]\right]\right\}_{1 \leq I<i<j<k \leq n-1} \cup$ $\left.\left\{P_{l}\right\}_{I \in\langle\mathcal{L} y n} \geq 4 T_{n} ; \mathcal{J}_{\mathcal{R}_{n}}\right\rangle$.

BACKGROUND ON
 NONCOMMUTATIVE PV THEORY

Iterated integrals and Chen series

The iterated integral associated, of the 1-differential forms $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along the path $\varsigma \rightsquigarrow z$, is given by $\alpha_{\varsigma}^{z}\left(1_{\mathcal{T}_{n}^{*}}\right)=1_{\mathcal{H}(\mathcal{V})}$ and, for any $w=t_{i_{1}, j_{1}} t_{i_{2}, j_{2}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n}^{*}$,

$$
\alpha_{\varsigma}^{z}(w):=\int_{\varsigma} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \int_{\varsigma}^{s_{1}} \omega_{i_{2}, j_{2}}\left(s_{2}\right) \ldots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \in \mathcal{H}(\mathcal{V}),
$$

where ($\varsigma, s_{1} \ldots, s_{k-1}, z$) is a subdivision of $\varsigma \rightsquigarrow z$.
The Chen series, of the differential forms $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along a path $\varsigma \rightsquigarrow z$, is the following noncommutative generating series

$$
C_{\varsigma \rightsquigarrow z}:=\sum_{w \in \mathcal{T}_{n}^{*}} \alpha_{\varsigma}^{z}(w) w \in \mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}^{*}\right\rangle\right\rangle
$$

Proposition

1. $\forall u, v$ in $\mathcal{T}_{n}^{*}, \alpha_{\varsigma}^{z}(u ш v)=\alpha_{\varsigma}^{z}(u) \alpha_{\varsigma}^{z}(v)$ (Chen's lemma).
2. $\forall t \in \mathcal{T}_{n}, k \geq 0, \alpha_{\varsigma}^{z}\left(t^{k}\right)=\left(\alpha_{\varsigma}^{z}(t)\right)^{k} / k$! and then $\alpha_{\varsigma}^{z}\left(t^{*}\right)=e^{\alpha_{\varsigma}^{z}(t)}$.
3. For any compact $K \subset \mathcal{V}$, there is $c>0$ and a morphism of monoids $\mu: \mathcal{T}_{n}^{*} \longrightarrow \mathbb{R}_{\geq 0}$ s.t. $\left\|\left\langle C_{\varsigma \rightsquigarrow z} \mid w\right\rangle\right\|_{K} \leq c \mu(w)|w|^{-1}$, for $w \in \mathcal{T}_{n}^{*}$, and then $C_{\varsigma \rightsquigarrow z}$ is said to be exponentially bounded from above.

Basic triangular theorem over a differential ring

Recall that $\mathcal{A}=\left(\mathcal{H}(\mathcal{V}), \partial_{1}, \ldots, \partial_{n}\right)$ and \mathcal{C} be a sub differential ring of \mathcal{A}. Lemma
The following assertions are equivalent ${ }^{5}$

1. The following map is injective

$$
\begin{aligned}
\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right) & \longrightarrow\left(\mathcal{H}(\mathcal{V}), *, 1_{\mathcal{H}(\mathcal{V})}\right), \\
w & \longmapsto \alpha_{\varsigma}^{z}(w) .
\end{aligned}
$$

2. $\left\{\alpha_{\varsigma}^{z}(w)\right\}_{w \in \mathcal{T}_{n}^{*}}$ is linearly free over \mathcal{C}.
3. $\left\{\alpha_{\varsigma}^{z}(I)\right\}_{I \in \mathcal{L y n} \mathcal{T}_{n}}$ is algebraically free over \mathcal{C}.
4. $\left\{\alpha_{\varsigma}^{z}(t)\right\}_{t \in \mathcal{T}_{n}}$ is algebraically free over \mathcal{C}.
5. $\left\{\alpha_{\varsigma}^{z}(t)\right\}_{t \in \mathcal{T}_{n} \cup\left\{1_{\mathcal{T}_{n}^{*}}\right\}}$ is linearly free over \mathcal{C}.
6. This is the abstract form, over ring, of (Deneufchâtel, Duchamp, HNM \& Solomon, 2011).

Noncommutative differential equations

$(N C D E) \quad \mathbf{d} S=M_{n} S$, where $^{6} \quad M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j}$.

Proposition

1. $C_{\varsigma \rightsquigarrow z}$, satisfying $(N C D E)$, is group-like and $\log C_{\varsigma \rightsquigarrow z}$ is primitive :

$$
C_{\varsigma \rightsquigarrow z}=\prod_{l \in \mathcal{L} y n \mathcal{T}_{n}}^{\geq} e^{\alpha_{\varsigma}^{z}\left(S_{l}\right) P_{l}} \quad \text { and } \quad \log C_{\varsigma \rightsquigarrow z}=\sum_{w \in \mathcal{T}_{n}^{*}} \alpha_{\varsigma}^{z}(w) \pi_{1}(w),
$$

where $\pi_{1}(w)=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in \mathcal{T}_{n} \mathcal{T}_{n}^{*}}\left\langle w \mid u_{1} ш \ldots ш u_{k}\right\rangle u_{1} \ldots u_{k}$.
2. Let $C \in \mathbb{C}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle,\left\langle C \mid 1_{\mathcal{T}_{n}^{*}}\right\rangle=1$. Then $C_{\varsigma \rightsquigarrow z} C$ satisfies (NCDE). Moreover, $C_{\varsigma \rightsquigarrow z} C$ is group-like if and only if C is group-like.

From this, it follows that the differential Galois group of (NCDE) + group-like solutions is ${ }^{7}$ the group $\left.\left\{e^{C}\right\}_{C \in \mathcal{L i e} e_{C, 1 \Omega}}\langle\mathcal{X}\rangle\right\rangle$. Which leads to the definition of the PV extension related to $(N C D E)$ as $\widehat{\mathcal{C}_{0} \cdot \mathcal{X}}\left\{C_{z_{0} \rightsquigarrow z}\right\}$.
6. $M_{n} \in \Omega^{1}(\mathcal{V})\left\langle\mathcal{T}_{n}\right\rangle$ and $\Delta_{\Perp} M_{n}=1_{\mathcal{T}_{n}^{*}} \otimes M_{n}+M_{n} \otimes 1_{\mathcal{T}_{n}^{*}}$.
7. In fact, the Hausdorff group (group of characters) of " $\left(\mathcal{A} \nmid \mathcal{T}_{n}\right\rangle$, ш, $1_{\mathcal{T}_{n}^{* *}}$).

ALGORITHMIC AND COMPUTATIONAL ASPECTS OF SOLUTIONS OF $K Z_{n}$ BY DEVISSAGE

$K Z_{3}$: Simplest non-trivial case $(1 / 4)$

One has $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$ and

$$
\Omega_{3}(z)=\frac{1}{2 i \pi}\left(t_{1,2} \frac{d\left(z_{1}-z_{2}\right)}{z_{1}-z_{2}}+t_{1,3} \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+t_{2,3} \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right) .
$$

Solution of $\mathbf{d} F(z)=\Omega_{3}(z) F(z)$ can be computed as limit of the sequence $\left\{F_{l}\right\}_{\mid \geq 0}$, in $\mathcal{H}\left(\mathbb{C}_{*}^{3}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle$, by convergent Picard's iteration :

$$
F_{0}(z)=1_{\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)} \quad \text { and } \quad F_{l}(z)=\int_{0}^{z} \Omega_{3}(s) F_{l-1}(s) .
$$

Let us compute, by another way, a solution of $\mathbf{d} F(z)=\Omega_{3}(z) F(z)$ as the limit of the sequence $\left\{V_{1}\right\}_{1 \geq 0}$, in $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle$, iteratively obtained by

$$
\begin{aligned}
V_{0}(z) & =e^{\left(t_{1,2} / 2 i \pi\right) \log \left(z_{1}-z_{2}\right)}, \\
V_{l}(z) & =\int_{0}^{z} e^{\left(t_{1,2} / 2 i \pi\right)\left(\log \left(z_{1}-z_{2}\right)-\log \left(s_{1}-s_{2}\right)\right)} \tilde{\Omega}_{2}(s) V_{l-1}(s) \\
& =V_{0}(z) \int_{0}^{z} e^{-\left(t_{1,2} / 2 i \pi\right) \log \left(s_{1}-s_{2}\right)} \tilde{\Omega}_{2}(s) V_{l-1}(s), \\
\text { with } \tilde{\Omega}_{2}(z) & =\frac{1}{2 \mathrm{i} \pi}\left(t_{1,3} \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+t_{2,3} \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right) .
\end{aligned}
$$

$K Z_{3}:$ Simplest non-trivial case $(2 / 4)$

Explicit solution is $F=V_{0} G$, where $V_{0}(z)=\left(z_{1}-z_{2}\right)^{t_{1,2} / 2 i \pi}$ and $G(z)=\sum_{t_{1}, j_{1} \cdots t_{i m}, j_{m} \in\left\{t_{1}, 3, t_{2}, 3\right\}^{*}} \int_{0}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \varphi^{s_{1}}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{0}^{s_{m-1}} \omega_{i_{m}, j_{m}}\left(s_{m}\right) \varphi^{s_{m}}\left(t_{i_{m}, j_{m}}\right)$, where $\omega_{1,3}(z)=d \log \left(z_{1}-z_{3}\right)$ and $\omega_{2,3}(z)=d \log \left(z_{2}-z_{3}\right)$ and φ is the following automorphism of Lie algebra, $\mathcal{L} e_{\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)}\left\langle\mathcal{T}_{3}\right\rangle$,

$$
\varphi^{z}=e^{\mathrm{ad}_{-\left(t_{1,2} / 2 i \pi\right)} \log \left(z_{1}-z_{2}\right)}=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 \mathrm{i} \pi)^{k} k!} \mathrm{ad}_{t_{1,2}}^{k} .
$$

Since $t_{1,2} \prec t_{1,3} \prec t_{2,3}$ and, for $k \geq 0$ and $i=1$ or $2, t_{1,2}^{k} t_{i, 3} \in \mathcal{L} y n \mathcal{T}_{3}$ then

$$
P_{t_{1,2}^{k}} t_{i, 3}=\operatorname{ad}_{t_{1,2}}^{k} t_{i, 3} \quad \text { and } \quad S_{t_{1,2}^{k} t_{i, 3}}=t_{1,2}^{k} t_{i, 3}
$$

$$
\begin{aligned}
& \text { and then } \\
& \varphi^{z}\left(t_{i, 3}\right)=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 \mathrm{i} \pi)^{k} k!} P_{t_{1,2}^{k} t_{i, 3}}, \quad \breve{\varphi}^{z}\left(t_{i, 3}\right)=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 \mathrm{i} \pi)^{k} k!} S_{t_{1,2}^{k}, t_{i, 3}},
\end{aligned}
$$

where $\check{\varphi}$ (adjoint to φ) is the following automorphism of $\left(\mathcal{A}\left\langle\mathcal{T}_{3}\right\rangle, ш, 1_{\mathcal{T}_{3}{ }^{*}}\right)$

$$
\breve{\varphi}^{z}=e^{-\left(t_{1,2} / 2 i \pi\right) \log \left(z_{1}-z_{2}\right)}=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 \mathrm{i} \pi)^{k} k!} t_{1,2}^{k} .
$$

$K Z_{3}:$ Simplest non-trivial case $(3 / 4)$

Belonging to $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle, G$ satisfies $\mathbf{d} G(z)=\bar{\Omega}_{2}(z) G(z)$, where

$$
\bar{\Omega}_{2}(z)=\frac{1}{2 \mathrm{i} \pi}\left(\varphi^{z}\left(t_{1,3}\right) \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+\varphi^{z}\left(t_{2,3}\right) \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right)
$$

In the affine plan $\left(P_{1,2}\right): z_{1}-z_{2}=1$, one has

$$
\log \left(z_{1}-z_{2}\right)=0 \quad \text { and then } \quad \varphi \equiv \operatorname{Id} .
$$

Setting $x_{0}=t_{1,3} / 2 \mathrm{i} \pi, x_{1}=-t_{2,3} / 2 \mathrm{i} \pi$ and $z_{1}=1, z_{2}=0, z_{3}=s$, one has

$$
\bar{\Omega}_{2}(z)=\frac{1}{2 \mathrm{i} \pi}\left(t_{1,3} \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+t_{2,3} \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right)=x_{1} \frac{d s}{1-s}+x_{0} \frac{d s}{s} .
$$

$K Z_{3}$ admits then the noncommutative generating series of polylogarithms, L , as the actual solution satisfying the Drinfel'd asymptotic conditions. Via L and the homographic substitution $g: z_{3} \longmapsto\left(z_{3}-z_{2}\right) /\left(z_{1}-z_{2}\right)$, mapping $\left\{z_{2}, z_{1}\right\}$ to $\{0,1\}, \mathrm{L}\left(\left(z_{3}-z_{2}\right) /\left(z_{1}-z_{2}\right)\right)$ is a particular solution of $K Z_{3}$, in $\left(P_{1,2}\right)$. So is $\mathrm{L}\left(\left(z_{3}-z_{2}\right) /\left(z_{1}-z_{2}\right)\right)\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{1,3}+t_{2,3}\right) / 2 i \pi}$.

$K Z_{3}$: Simplest non-trivial case $(4 / 4)$

Denoting $\left(X^{*}, 1_{X^{*}}\right)$ the monoid generated by $X=\left\{x_{0}, x_{1}\right\}$, recall that

$$
\mathrm{L}(s):=\sum_{w \in X^{*}} \operatorname{Li}_{w}(s) w \in \mathcal{H}(\mathbb{C} \widetilde{\backslash\{0,1\}})\langle X X\rangle,
$$

where $\mathrm{Li}_{\text {. }}$ is the character of $\left(\mathcal{H}(\mathbb{C} \backslash\{0,1\})\langle X\rangle\right.$, ш, $\left.1_{X^{*}}\right)$ defined by

$$
\operatorname{Li}_{1_{\chi^{*}}}=1_{\mathcal{H}(\mathbb{C} \backslash\{0,1\})}, \quad \operatorname{Li}_{x_{0}}(s)=\log (s), \quad \operatorname{Li}_{x_{1}}(s)=\log (1-s)
$$

and, for any $x_{i} w \in \mathcal{L} y n X \backslash X$,

$$
\operatorname{Li}_{x_{i} w}(s)=\int_{0}^{s} \omega_{i}(\sigma) \operatorname{Li}_{w}(\sigma), \quad \text { where } \quad\left\{\begin{array}{l}
\omega_{0}(s)=d s / s \\
\omega_{1}(s)=d s /(1-s)
\end{array}\right.
$$

$\left\{\mathrm{Li}_{i}\right\}_{I \in \mathcal{L} y n X}$ (resp. $\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$) are \mathbb{C}-algebraically (resp. linearly) free.
By the Friedrichs crirerion, L is group like. Thus,

$$
\mathrm{L}(s)=\prod_{I \in \mathcal{L} y n X}^{\infty} e^{\mathrm{Li}_{s_{l}}(s) P_{I}} \quad \text { and then } \begin{cases}\lim _{z \rightarrow 0} \mathrm{~L}(s) e^{-x_{0} \log z} & =1, \\ \lim _{z \rightarrow 1} e^{x_{1} \log (1-z)} \mathrm{L}(s) & =\Phi_{K Z},\end{cases}
$$

where $\Phi_{K Z}$ is the following constant group like series

$$
\Phi_{K Z}:=\prod_{l \in \mathcal{C} y n X \backslash X}^{\searrow} e^{\mathrm{Li}_{S_{l}}(1) P_{I}} \in \mathbb{R}\langle\langle X\rangle\rangle, \quad \text { for } \quad\left\{\begin{array}{l}
x_{0}=t_{1,2} / 2 \mathrm{i} \pi, \\
x_{1}=-t_{2,3} / 2 \mathrm{i} \pi .
\end{array}\right.
$$

admitting $\left\{\operatorname{Li}_{/}(1)\right\}_{\mid \in \mathcal{L y n} X \backslash X}$ as convergent locale coordinates.

Solutions of $(N C D E)$ in $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}(1 / 2)$

Let the solution of (NCDE) be computed by $\left\{V_{m}(\varsigma, z)\right\}_{m \geq 0}$ satisfying

$$
\begin{aligned}
& \left.V_{m}(\varsigma, z)=\sum_{t_{i, j} \in \mathcal{T}_{n-1}} \int_{\varsigma}^{z}\left(\underset{t \in T_{n}}{w} e^{\left[\alpha_{\varsigma}^{z}(t)-\alpha_{\varsigma}^{\varsigma}(t)\right] t}\right) \omega_{i, j}(s) t_{i, j} V_{m-1}(\varsigma, s)\right), \\
& V_{0}(\varsigma, z)=\underset{t \in T_{n}}{\underset{\alpha_{\varsigma}^{2}}{ }(t) t}=\sum_{i_{1}, \ldots ., i_{n-1} \geq 0}\left((\alpha _ { \varsigma } ^ { z } (t _ { 1 , n } ^ { i _ { 1 } }) t _ { 1 , n } ^ { i _ { 1 } }) ш \ldots w \left(\left(\alpha_{\varsigma}^{z}\left(t_{n-1, n}^{i_{n-1}}\right) t_{n-1, n}^{i_{n-1}}\right) .\right.\right.
\end{aligned}
$$

Then V_{0} satisfies the partial differential equation

$$
\partial_{n} f=N_{n-1} f, \quad \text { where } \quad N_{n-1}=\sum_{k=1}^{n-1} \omega_{k, n} t_{k, n}
$$

and, for any $m \geq 1$, on obtains explicitly

$$
V_{m}(\varsigma, z)=\sum_{w=t_{1}, j_{1} \ldots t_{i m}, j_{m} \in \mathcal{T}_{n-1}^{*}} \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \cdots \int_{\varsigma}^{s_{m-1}} \omega_{i_{m}, j_{m}}\left(s_{m}\right) \kappa_{w}\left(z, s_{1}, \cdots, s_{m}\right),
$$

where

$$
\begin{aligned}
& V_{0}(\varsigma, z)^{-1} \kappa_{w}\left(z, s_{1}, \cdots, s_{m}\right)=\prod_{p=1}^{m} e^{\mathrm{ad}}-\Sigma_{t \in T_{n}} \alpha_{\rho}^{s_{p}(t) t} \\
& i_{p}, j_{p} \\
&=\sum_{q_{1}, \cdots, q_{k} \geq 0} \prod_{p=1}^{m} \frac{1}{q_{p}!} \mathrm{ad}_{-\sum_{t \in T_{n}}^{q_{p}} \alpha_{\varsigma}^{s_{\rho}}(t) t} t_{i_{p}, j_{p}} .
\end{aligned}
$$

Solutions of $(N C D E)$ in $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}(2 / 2)$

Hence, $V_{0}(\varsigma, z)^{-1} \kappa_{w}\left(z, s_{1}, \cdots, s_{m}\right)=\varphi_{t_{\bullet}, n}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}, j_{1}}\right) \ldots \varphi_{t_{\bullet}, n}^{\left(\varsigma, s_{m}\right)}\left(t_{i_{m}, j_{m}}\right)$, where $\varphi_{t_{\bullet}, n}$ is an automorphisms of $\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle$ defined on letters s.t.
over $T_{n}, \varphi_{t_{\bullet}, n} \equiv \operatorname{Id}$ and over $\mathcal{T}_{n-1}, \varphi_{t_{\bullet}, n}^{(\varsigma, z)}\left(t_{i, j}\right)=e^{\operatorname{ad}{ }_{-\alpha_{\varsigma}^{(\varsigma, z)}\left(t_{i, n}\right) t_{i, n}} t_{i, j} .}$
It can be extended as an injective conc-morphism of $\widehat{\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle}$ s.t. its adjoint, denoted by $\breve{\varphi}_{\bullet, n}$ and restricted in $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right)$, is an automorphism. One has $\quad \varphi_{t_{\bullet}, n}\left(\widehat{\mathcal{L i e _ { \mathcal { A } }}\left\langle\mathcal{T}_{n}\right\rangle}\right) \subseteq \widehat{\mathcal{L} \boldsymbol{e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle} \quad$ and $\left.\quad \check{\varphi}_{t_{\mathbf{0}, n}}\left(\widehat{\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle}\right) \subseteq \widehat{\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle}\right)$.

Theorem

(NCDE) admits $V_{0}(\varsigma, z) G(\varsigma, z)$ as solution and $G(\varsigma, z)$ is obtained by the Picard's iteration of

$$
\mathbf{d} S=M_{n-1}^{t_{\bullet}, n} S, \quad \text { where } \quad M_{n-1}^{t_{\bullet}, n}(z)=\sum_{1 \leq i<j \leq n-1} \omega_{i, j}(z) \varphi_{t_{\bullet}, n}^{(\varsigma, z)}\left(t_{i, j}\right)
$$

It can be also obtained, in $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$, as follows

$$
G(\varsigma, z)=\sum_{w \in \mathcal{T}_{n-1}^{*}} \alpha_{\varsigma}^{z}\left(\breve{\varphi}_{t_{\bullet}, n}^{z}(w)\right) w=\prod_{I \in \mathcal{L} y n \mathcal{T}_{n-1}}^{\searrow} e^{\alpha_{\varsigma}^{z}\left(\breve{\varphi}_{t_{\bullet}, n}^{z}\left(\varsigma_{l}\right)\right) P_{l}}
$$

There is a holomorphic function in $\mathcal{H}(\mathcal{V}), g_{t_{\bullet}, n}$, s.t.

$$
M_{n-1}^{t_{\bullet}, n}(z)=\sum_{1 \leq i<j \leq n-1} g_{t_{\bullet, n}}^{*} \omega_{i, j}(z) t_{i, j}
$$

Solutions of $K Z_{n}(n \geq 4)$

Now, let $\mathcal{V}=\widetilde{\mathbb{C}_{*}^{n}}$, where $C_{*}^{n}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$ and let us consider the affine plans $\left(P_{i, j}\right): z_{i}-z_{j}=1,1 \leq i<j \leq n-1$.
Theorem $\left(\omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right), t_{i, j} \leftarrow t_{i, j} / 2 \mathrm{i} \pi\right)$
For $z_{n} \rightarrow z_{n-1}$, solution of (NCDE) is in the form $f(z) G\left(z_{1}, \ldots, z_{n-1}\right)$ s.t.

1. $f(z) \sim\left(z_{n-1}-z_{n}\right)^{t_{n-1, n}}$ satisfying $\partial_{n} f=N_{n-1} f$, where ${ }^{8}$

$$
N_{n-1}(z)=\sum_{k=1}^{n-1} t_{k, n} \frac{d z_{n}}{z_{n}-z_{k}}=\sum_{k=1}^{n-1} t_{k, n} \frac{d s}{s-s_{k}}, \quad \text { with }\left\{\begin{array}{l}
s=z_{n} \\
s_{k}=z_{n}-z_{k}
\end{array}\right.
$$

2. $G\left(z_{1}, \ldots, z_{n-1}\right)$ satisfies $\mathbf{d} S=M_{n-1}^{t_{0}, n} S$, where

$$
M_{n-1}^{t_{0}, n}(z)=\sum_{1 \leq i<j \leq n-1}\left(z_{i}-z_{n-1}\right)^{-\operatorname{ad}_{t_{i, n}, n} t_{i, j}} d \log \left(z_{i}-z_{j}\right) .
$$

Moreover $M_{n-1}^{t_{0}, n}$ exactly coincides with M_{n-1} in $\bigcap_{i=1}^{n-1}\left(P_{i, n-1}\right)$.
Conversely, if f satisfies $\partial_{n} f=N_{n-1} f$ and $G\left(z_{1}, \ldots, z_{n-1}\right)$ satisfies $\mathbf{d} S=M_{n-1}^{t_{0}, n} S$ then $f(z) G\left(z_{1}, \ldots, z_{n-1}\right)$ satisfies (NCDE).
8. At this stage, z_{n} is variate, moving towards z_{n-1} while $\left\{z_{k}\right\}_{1 \leq k<n}$ are fixed (and then $\left.d\left(z_{n}-z_{k}\right)=d z_{n}\right)$.

Other example of non-trivial case : $K Z_{4}\left(t_{i, j} \leftarrow t_{i, j} / 2 \mathrm{i} \pi\right)$

$$
\begin{gathered}
\mathcal{T}_{4}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\right\}, T_{4}=\left\{t_{1,4}, t_{2,4}, t_{3,4}\right\}, \mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\} \\
\varphi_{T_{4}}^{z}=e^{\operatorname{ad}_{-\sum_{t \in T_{4}} \alpha_{\varsigma}^{z}(t) t}} \text { and } \breve{\varphi}_{T_{4}}^{z}=e^{-\sum_{t \in T_{4}} \alpha_{\varsigma}^{z}(t) t}
\end{gathered}
$$

Hence,

$$
\begin{aligned}
& \varphi_{t_{\bullet}, 4}^{z}\left(t_{1,4}\right)=\left(z_{1}-z_{4}\right)^{-a d_{t_{1,4}}} \quad \text { and } \quad \check{\varphi}_{t_{\mathbf{0}}, 4}^{z}\left(t_{1,4}\right)=\left(z_{1}-z_{4}\right)^{-t_{1,4}} \\
& \varphi_{t_{\mathbf{0}}, 4}^{z}\left(t_{2,4}\right)=\left(z_{2}-z_{4}\right)^{-\mathrm{ad}_{t_{2,4}}} \quad \text { and } \quad \check{\varphi}_{t_{\bullet}, 4}^{z}\left(t_{2,4}\right)=\left(z_{2}-z_{4}\right)^{-t_{2,4}} \\
& \varphi_{t_{\bullet}, 4}^{z}\left(t_{3,4}\right)=\left(z_{3}-z_{4}\right)^{-\mathrm{ad}_{t_{3,4}}} \quad \text { and } \quad \check{\varphi}_{t_{\bullet}, 4}^{z}\left(t_{3,4}\right)=\left(z_{3}-z_{4}\right)^{-t_{3,4}}
\end{aligned}
$$

For $z_{4} \rightarrow z_{3}, F(z)=V_{0}(z) G\left(z_{1}, z_{2}, z_{3}\right)$, where $V_{0}(z)=e^{\sum_{i \leq i \leq 3} t_{i, 4} \log \left(z_{i}-z_{4}\right)}$ and $G\left(z_{1}, z_{2}, z_{3}\right)$ satisfies $\mathbf{d} S=M_{3}^{t_{\bullet}, 4} S$ with
$M_{3}^{t_{\bullet}, 4}(z)=\varphi_{t_{\bullet}, 4}^{z}\left(t_{1,2}\right) \frac{d\left(z_{1}-z_{2}\right)}{z_{1}-z_{2}}+\varphi_{t_{\bullet}, 4}^{z}\left(t_{1,3}\right) \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+\varphi_{t_{\bullet}, 4}^{z}\left(t_{2,3}\right) \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}$.
Considering $\left(P_{1,4}\right): z_{1}-z_{4}=1, \quad\left(P_{2,4}\right): z_{2}-z_{4}=1, \quad\left(P_{3,4}\right): z_{3}-z_{4}=1$, one has, in the intersection $\left(P_{1,4}\right) \cap\left(P_{2,4}\right) \cap\left(P_{3,4}\right)$,

$$
\log \left(z_{1}-z_{4}\right)=\log \left(z_{2}-z_{4}\right)=\log \left(z_{3}-z_{4}\right)=0 \quad \text { and } \quad \varphi_{t_{\bullet}, 4} \equiv \mathrm{Id}
$$

and then $V_{0}=1_{\mathcal{H}(\mathcal{V})}$ and $M_{3}^{t_{0,4}}$ exactly coincides with M_{3}.

Solutions of $K Z_{n}(n \geq 4)$ with asymptotic conditions

Let $F:\left(\mathbb{C}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right) \rightarrow\left(\mathcal{H}(\mathcal{V}), *, 1_{\mathcal{H}(\mathcal{V})}\right)$ be the character defined by $F_{1_{\mathcal{T}_{n}^{*}}}=1_{\mathcal{H}(\mathcal{\nu})}, \forall t_{i, j} \in \mathcal{T}_{n}, F_{t_{i, j}}(z)=\log \left(z_{i}-z_{j}\right), \forall t_{i, j} w \in \mathcal{L} y n \mathcal{T}_{n} \backslash \mathcal{T}_{n}$,

$$
F_{t_{i, j w}}(z)=\int_{0}^{z} \omega_{i, j}(s) F_{w}(s), \quad \text { where } \quad \omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right)
$$

Corollary $\left(\omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right), t_{i, j} \leftarrow t_{i, j} / 2 \mathrm{i} \pi\right)$

1. $\left\{F_{t}\right\}_{t \in \mathcal{T}_{n} \cup\left\{1_{\mathcal{T}_{n}^{*}}\right\}}$ are \mathcal{C}_{0}-linearly free.
2. F , being the graph of F, is group like and then $\log F$ is primitive :

$$
\begin{aligned}
& \mathrm{F}:=\sum_{w \in \mathcal{T}_{n}^{*}} F_{w} w=\prod_{l \in \mathcal{L} y n}^{\downarrow} e^{F_{s_{l}} P_{l}} \quad \text { and } \quad \log \mathrm{F}=\sum_{w \in \mathcal{T}_{n}^{*}} F_{w} \pi_{1}(w), \\
& \text { where } \pi_{1}(w)=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in \mathcal{T}_{n} \mathcal{T}_{n}^{*}}\left\langle w \mid u_{1} ш \ldots ш u_{k}\right\rangle u_{1} \ldots u_{k} .
\end{aligned}
$$

3. F is unique solution of $\mathbf{d} S=M_{n} S$ (and then $\left.C_{\varsigma \rightsquigarrow z}=\mathrm{F}(z) \mathrm{F}^{-1}(\varsigma)\right)$ s.t.

$$
\mathrm{F}(z) \underset{\substack{z_{i} \sim z_{i}-1 \\ 1<i \leq n}}{ }\left(z_{i-1}-z_{i}\right)^{t_{i-1, i}} G_{i}\left(z_{1}, \ldots, i-1, i+1, \ldots, z_{n}\right)
$$

and $G_{i}\left(z_{1}, \ldots, i-1, i+1, \ldots, z_{n}\right)$ satisfies $\mathbf{d} S=M_{n-1}^{t_{0}, i} S$, where

$$
M_{n-1}^{t_{0, n}}(z)=\sum_{1 \leq i<j \leq n-1}\left(z_{i}-z_{n-1}\right)^{-\operatorname{ad}_{t_{i, n},} t_{i, j}} d \log \left(z_{i}-z_{j}\right) .
$$

Bibliography I

J．Berstel \＆C．Reutenauer．－Rational series and their languages，Springer－Verlag， 1988.
H．Cartan．－Les systèmes différentiels extérieurs et leurs applications géométriques，Hermann，Paris 1945.
P．Cartier．－Jacobiennes généralisées，monodromie unipotente et intégrales itérées，Séminaire Bourbaki， 687 （1987），31－52．

P．Cartier－Fonctions polylogarithmes，nombres polyzetas et groupes pro－unipotents．－Séminaire BOURBAKI，53 ${ }^{\text {ème },} n^{\circ} 885,2000-2001$ ．
R．Chari \＆A．Pressley．－A guide to quantum group，Cambridge（1994）
K．－T．Chen．－Iterated integrals and exponential homomorphisms，Proc．Lond．Math．Soc． 4 （1954）502－512．
M．Deneufchâtel，G．H．E．Duchamp，Hoang Ngoc Minh，A．I．Solomon．－Independence of hyperlogarithms over function fields via algebraic combinatorics，dans Lec．N．in Comp．Sc．（2011），V．6742／2011，127－139．

J．Dixmier－Algèbres enveloppantes，Paris，Gauthier－Villars 1974.
V．Drinfel＇d－Quantum groups，Proc．Int．Cong．Math．，Berkeley， 1986.
V．Drinfel＇d－Quasi－Hopf Algebras，Len．Math．J．，1，1419－1457， 1990.
V．Drinfel＇d－On quasitriangular quasi－Hopf algebras and on a group that is closely connected with Gal（ $\overline{\mathbb{Q}} / \mathbb{Q})$ ，Leningrad Math．J．，4，829－860， 1991.

G．Duchamp，V．Hoang Ngoc Minh，V．Nguyen Dinh．－Towards a noncommutative Picard－Vessiot theory，In preparation．arXiv ：2008．10872

Furusho，H．－Pentagon and hexagon equations，Ann．of Math．，Vol． 171 （2010），No．1，545－556．

Bibliography II

Furusho，H．－Double shuffle relation for associators，Ann．of Math．，Vol． 174 （2011），No．1，341－360．
Hoang Ngoc Minh \＆M．Petitot．－Lyndon words，polylogarithmic functions and the Riemann ζ function， Discrete Math．，217，2000，pp．273－292．

Hoang Ngoc Minh，M．Petitot and J．Van der Hoeven．－Polylogarithms and Shuffle Algebra，Proceedings of FPSAC＇98， 1998.

Hoang Ngoc Minh．－Calcul symbolique non commutatif，Presse Ac．Franc．，Saarbrücken 2014.
Hoang Ngoc Minh．－On a conjecture by Pierre Cartier about a group of associators，Acta Math．Vietnamica （2013），38，Issue 3，339－398．

V．Hoang Ngoc Minh，On the solutions of universal differential equation with three singularities，in Confluentes Mathematici，Tome 11 （2019）no．2，p．25－64．

E．R．Kolchin．－Differential Algebra and Algebraic Groups，New York：Academic， 1973.
M．Lothaire．－Combinatorics on Words，Encyclopedia of Math．and its App．，Addison－Wesley， 1983.
G．Racinet．－Séries génératrices non－commutatives de polyzêtas et associateurs de Drinfel＇d，thèse（2000）．
Ree R．，－Lie elements and an algebra associated with shuffles Ann．Math 68 210－220， 1958.
Reutenauer C．－Free Lie Algebras，London Math．Soc．Monographs（1993）．
M．Van der Put，M．F．Singer．－Galois Theory of Linear Differential Equations，Springer（2003）
G．Viennot．－Algèbres de Lie libres et monoïdes libres，Lec．Notes in Math．，Springer－Verlag，691， 1978.

[^0]: 4. in which one defines $\Delta_{\uplus} x=x \otimes 1_{T_{n}}+1_{T_{n} *} \otimes x$, or equivalently, $u ш 1_{\mathcal{T}_{n}^{*}}=1_{\mathcal{T}_{n}^{*}} ш u=u \quad$ and $\quad x u ш y v=x(u ш y v)+y(x u ш v)$.
