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Geometry, Matter and Light

Thales of Miletus (−625 ∼ −547) became famous for his prediction

of solar eclipse of −585, and of his ability to evaluate dimensions of

objects at a distance, by comparing their shadows.
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Geometry, Matter and Light

MM’ : OM = QQ’ : OQ
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Geometry and Reality

I The relationship of proportionality used by Thales to

determine the height of the Great Pyramid is also an

introduction of linear dependence, the essence of linear algebra

I It has become such a commonplace, that the physical aspects

of this fundamental experiment are rarely considered in a more

detailed manner. In fact, Thales has performed an important

physical experiment relating different definitions of geometry

I Let us analyze the premices and hypotheses that enabled

Thales to draw his conclusions and to state the theorem of

parallel lines cutting an angle formed by two non-parallel

straight lines.

GEOMETRY, MATTER AND PHYSICS



Introduction The three realms Quantum covariance Pauli’s principle Isospin Z3-grading

Geometry and Reality

I The relationship of proportionality used by Thales to

determine the height of the Great Pyramid is also an

introduction of linear dependence, the essence of linear algebra

I It has become such a commonplace, that the physical aspects

of this fundamental experiment are rarely considered in a more

detailed manner. In fact, Thales has performed an important

physical experiment relating different definitions of geometry

I Let us analyze the premices and hypotheses that enabled

Thales to draw his conclusions and to state the theorem of

parallel lines cutting an angle formed by two non-parallel

straight lines.

GEOMETRY, MATTER AND PHYSICS



Introduction The three realms Quantum covariance Pauli’s principle Isospin Z3-grading

Geometry and Reality

I The relationship of proportionality used by Thales to

determine the height of the Great Pyramid is also an

introduction of linear dependence, the essence of linear algebra

I It has become such a commonplace, that the physical aspects

of this fundamental experiment are rarely considered in a more

detailed manner. In fact, Thales has performed an important

physical experiment relating different definitions of geometry

I Let us analyze the premices and hypotheses that enabled

Thales to draw his conclusions and to state the theorem of

parallel lines cutting an angle formed by two non-parallel

straight lines.

GEOMETRY, MATTER AND PHYSICS



Introduction The three realms Quantum covariance Pauli’s principle Isospin Z3-grading

Geometry and Reality

I The first two assumptions are that the line OQ ′ on the ground

is indeed a straight line, and that the two segments, the

height of the Pyramid QQ ′ and the stick MM ′ are also

straight, and form the same angle with the line of the ground

OM ′Q ′ (in this case, the straight angle of 90o).

I This is a physical statement, and the fact that the two

objects are straight and vertical was checked using of the well

known instruments based on the exploitation of gravity.
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Geometry and Material World

Two instruments used for checking whether a straight line or a

plane is vertical or horizontal. Both are based on the use of

terrestrial gravity defining local vertical direction and horizontal

planes (equipotential surfaces).
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Geometry, Matter and Light

I The fact that the two segments are vertical and straight is

based on the assumption that the string sustaining a heavy

object in the gravitational field on the surface of Earth may

serve as a definition of vertical straight line. Checking the

horizontality of the ground is performed using the same

principle.

I The fact that the stick remains straight and stiff is due to the

assumption that it is made of a material whose cohesion is

sufficient to keep its shape unchanged (a solid body).

I As seen from our present perspective, this hypothesis is based

on the assumption that atoms can form stable structures able

to keep unchanged under reasonable conditions (e.g. the

ambient temperature not exceeding certain values).
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Incidentally, the ability of atoms and molecules to form stable

periodic structures makes possible an alternative definition of

straight lines and right (and not only right) angles. Crystals

represented in Fig. (1) show remarkable linear structure as well as

apparently perfect angles, 90o in the case of cubic lattice of NaCl ,

and 60o and 120o in the case of quartz (SiO2).
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Figure: Crystals of ordinary salt NaCl , of quartz SiO2, and an
example of crystalline lattice (SiO2 - wurtzite). The interatomic
forces impose the shapes and the geometry of solid bodies.
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I The straight lines and right angles obtained in the traditional

way, by using compass, ruler and a sheet of paper, are based

on the same physical principle, which is the existence of solid

bodies serving as standards of length.

I The geometry based on solid bodies’ shapes is independent of

gravitational field that determines parallel vertical lines and

the horizontal plane in Thales’ experiment. From the present

point of view, the existence of stable configurations of atoms,

as well as that of atoms themselves, can be understood only

using the principles of quantum mechanics, until now

seemingly independent of gravitational phenomena.
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I But this is not the end of the story. A third type of straight

line is involved in the experiment, the light ray along the line

QPNMO. The character of this line is due to the properties of

electromagnetic waves’ propagation in vacuo (as far as the

influence of air can be neglected), which a priori is

independent of gravitational phenomena as well as of the

forces predominant on the atomic level.

I Light wavefronts and rays set forth an alternative notion of

straight lines and angles, resulting in conformal geometry,

which preserves the notions of straight lines and angles, but

ignores the notions of length and distance.
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Geometry, Matter and Light

I The results of Thales’ experiment can be interpreted in two

ways. In fact, he established the coincidence of three

completely different definitions of a straight line. The first

came from the natural shape a string with a heavy body

attached at its end takes in the gravitational field.

I The second definition comes from the material shape of the

stick. The third is just a light ray.

I With the height of the pyramid considered as a known

quantity, as well as the height of the stick, the result of

Thales can be interpreted as a proof that the light rays follow

straight lines, too.
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Of matter, time and space

I The three realms of Physics
Since the advent of modern physics, the description of the

world surrounding us is based on three essential realms,

already present in the Thales” experiment, which are

I Space and time

I Material bodies

I Forces acting between them
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Fundamental relationship

I Newton’s third law of dynamics

a =
1

m
F. (1)

I shows the relation between three different realms which are

dominant in our perception and description of physical world:

massive bodies (m), force fields responsible for interactions

between the bodies (”F”) and space-time relations defining

the acceleration (”a”).
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Three realms

I The same three ingredients are found in physics of

fundamental interactions: we speak of elementary particles

and fields evolving in space and time.

I we deliberately wrote

a =
1

m
F. (2)

in order to separate the directly observable entity ( a) from

the product of two entities whose definition is much less

direct and clear.
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Causal relationship

I Also, by putting the acceleration alone on the left-hand side,

we underline the causal relationship between the phenomena:

the force is the cause of acceleration, and not vice versa.

I In modern language, the notion of force is generally replaced

by that of a field.

I The fact that the three ingredients are related by the

equation (1) may suggest that perhaps only two of them are

fundamentally independent, the third one being the

consequence of the remaining two.
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Three aspects

The three aspects of theories of fundamental interactions can be

symbolized by three orthogonal axes, as shown in following figure,

which displays also three choices of pairs of independent properties

from which we are supposed to be able to derive the third one.

Figure: The three realms of Physics
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Three types of theories

I The attempts to understand physics with only two realms out

of three represented in (17) have a very long history. They

may be divided in three categories, labeled I , II and III in the

Figure.

I In the category I one can easily recognize Newtonian physics,

presenting physical world as collection of material bodies

(particles) evolving in absolute space and time, interacting at

a distance. Newton considered light being made of tiny

particles, too; the notion of fields was totally absent.
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Three types of theories

I Theories belonging to the category II assume that physical

world can be described uniquely as a collection of fields

evolving in space-time manifold. This approach was

advocated by lord Kelvin, Einstein, and later on by Wheeler.

I As a follower of Maxwell and Faraday, Einstein believed in the

primary role of fields and tried to derive the equations of

motion as characteristic behavior of singularities of fields

evolving in space-time.
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Three types of theories

I The category III represents an alternative point of view

supposing that the existence of matter is primary with respect

to that of the space-time, which becomes an “emergent”

realm - an euphemism for “illusion”. Such an approach was

advocated recently by N. Seiberg and E. Verlinde.

I It is true that space-time coordinates cannot be treated on

the same footing as conserved quantities such as energy and

momentum; we often forget that they exist rather as

bookkeeping devices, and treating them as real objects is a

“bad habit”, as pointed out by D. Mermin.
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Three types of theories

I Seen under this angle, the idea to derive the geometric

properties of space-time, and perhaps its very existence, from

fundamental symmetries and interactions proper to matter’s

most fundamental building blocks seems quite natural.

I Many of those properties do not require any mention of space

and time on the quantum mechanical level, as was

demonstrated by Born and Heisenberg in their version of

matrix mechanics, or by von Neumann’s formulation of

quantum theory in terms of the C∗ algebras.

I The non-commutative geometry is another example of

formulation of space-time relationships in purely algebraic

terms.
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Three types of theories

I In what follows, we shall choose the last point of view,

according to which the space-time relations are a consequence

of fundamental discrete symmetries which characterize the

behavior of matter on the quantum level.

I In other words, the Lorentz symmetry observed on the

macroscopic level, acting on what we perceive as space-time

variables, is an averaged version of the symmetry group acting

in the Hilbert space of quantum states of fundamental

particle systems.
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The Lorentz covariance

I It turns out that only TIME - the proper time of the observer

- can be measured directly. The notion of space variables

results from the convenient description of experiments and

observations concerning the propagation of photons, and the

existence of the universal constant c.

I Consequently, with high enough precision one can infer that

the Doppler effect is relativistic, i.e. the frequency ω and the

wave vector k form an entity that is seen differently by

different inertial observers, and passing from ω
c , k to ω′

c , k
′ is

the Lorentz transformation.
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The Lorentz covariance

Relativistic versus Galilean Doppler effect.
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I Under a closer scrutiny, ALL INFORMATION about physical

world is conveyed to us EXCLUSIVELY by photons.

I All acts of observation to which we have access reduce at the

end of the experimental chain to PHOTONS interacting with

ELECTRONS (or other leptons, or baryons).

I No wonder that the dual space to the space of four-vectors

like kµ = [ωc , k] or jµ = [ρc , j] , i.e. the space of linear

functionals on it, inherits the same symmetry group.
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Of Matter and Space-Time

According to the present knowledge, the ultimate undivisible and

undestructible constituents of matter, called atoms by ancient

Greeks, are in fact the so-called QUARKS, carrying fractional

electric charges and baryonic numbers, the two features that

appear to be undestructible and conserved under any

circumstances.
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The ultimate constituents of matter

I All baryons, e.g. protons and neutrons, are composed of

quarks, which cannot be isolated and unobservable in a free

and unbound state. Also the mesons which convey the strong

interactions between the baryons, are composed of

quark-antiquark pairs.

I As for today, we do not know more fundamental constituents

of matter than quarks. It is also amazing that the deep

inelastic scattering experiments reveal point-like objects inside

the proton. It seems reasonable to think that they are at least

as stable as the proton itself.
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Introduction: Fundamental interactions

There are three fundamental gauge fields in nature:
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Introduction: Quarks and Leptons

The carriers of elementary charges also go by packs of three:
three families of quarks, and three types of leptons.
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Introduction: Three colors

There is an additional 3-symmetry: the three colors.
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The three colors are needed to combine three quarks into a
hadron

A schematic representation of a Helium atom.
Each nucleon contains three quarks, of three different colors.
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Quantum covariance

I Quantum Mechanics started as a non-relativistic theory,
but very soon its relativistic generalization was created.

I As a result, the wave functions in the Schroedinger
picture were required to belong to one of the linear
representations of the Lorentz group, which means that
they must satisfy the following covariance principle:

ψ̃(x̃) = ψ̃(Λ(x)) = S(Λ)ψ(x).
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Quantum covariance

I The nature of the representation S(Λ) determines the

character of the field considered: spinorial, vectorial,

tensorial...

I As in many other fundamental relations, the seemingly simple

equation

ψ̃(x̃) = ψ̃(Λ(x)) = S(Λ)ψ(x).

creates a bridge between two totally different realms: the

space-time accessible via classical macroscopic observations,

and the Hilbert space of quantum states. It can be

interpreted in two opposite ways, depending on which side we

consider as the cause, and which one as the consequence.
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Quantum covariance

I In other words, is the macroscopically observed Lorentz

symmetry imposed on the micro-world of quantum physics,

I or maybe it is already present as symmetry of quantum states,

and then implemented and extended to the macroscopic world

in classical limit ? In such a case, the covariance principle

should be written as follows:

I

Λµ′
µ (S)jµ = jµ

′
(ψ′) = jµ

′
(S(ψ)),

In the above formula
jµ = ψ̄γµψ

is the Dirac current, ψ is the electron wave function.
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I In view of the analysis of the causal chain, it seems more

appropriate to write the same transformations with Λ

depending on S :

ψ′(xµ
′
) = ψ′(Λµ′

ν (S)xν) = Sψ(xν) (3)

Λµ′
µ (S)xµ(ψ, ψ̄) = xµ

′
(Sψ, ψ̄S̄). (4)

I This form of the same relation suggests that the transition

from one quantum state to another, represented by the

unitary transformation S is the primary cause that implies the

transformation of observed quantities such as the electric

4-current, and as a consequence, the apparent

transformations of time and space intervals measured with

classical physical devices.
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Quantum covariance

I Although mathematically the two formulations are equivalent,

it seems more plausible that the Lorentz group resulting from

the averaging of the action of the SL(2,C) in the Hilbert

space of states contains less information than the original

double-valued representation which is a consequence of the

particle-anti-particle symmetry, than the other way round.

I In what follows, we shall draw physical consequences from this

approach, concerning the strong interactions in the first place.
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First principles

I Our questioning about the cause of measurable effects should

not stop at the stage of forces, which are but expressions of

effects of countless fundamental interactions, just like the

thermodynamical pressure is in fact an averaged result of

countless atomic collisions.

I On a classical level, when theory permits, the symbolical force

can be replaced by a more explicit expression in which fields

responsible for the forces do appear, like in the case of the

Lorentz force.
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First principles

I But the fields acting on a test particle are usually generated

by more or less distant charges and currents, according to the

formula giving the retarded four-potential Aµ(xλ):

I

Aµ(r, t) =
1

4πc

∫ ∫ ∫
jµ(r′, t − |r−r′|

c )

| r − r′ |
d3r′. (5)

then we get the field tensor given by

Fµν = ∂µAν − ∂νAµ.
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I The macroscopic currents are generated by electrons’

collective motion. A single electron whose wave function is a

bi-spinor gives rise to the Dirac current

jµ = ψ†γµψ, (6)

I with ψ† = ψ̄Tγ5, where

γ5 = γ0γ1γ2γ3 =

(
I2 0
0 −I2

)
, I2 =

(
1 0
0 1

)
.
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I In fact, the four-component complex function ψ is composed

of two two-component spinors, ξα and χβ̇,

ψ =

(
ξ
χ

)
,

I which are supposed to transform under two non-equivalent

representations of the SL(2,C) group:

ξα′ = Sα
α′ξα, χβ̇′ = S β̇

β̇′χβ̇′ , (7)
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I The electric charge conservation is equivalent to the

annulation of the four-divergence of jµ:

∂µj
µ =

(
∂µψ

†γµ
)
ψ + ψ† (γµ∂µψ) = 0, (8)

I from which we infer that this condition will be satisfied if we

have

∂µψ
†γµ = −mψ† and γµ∂µψ = mψ, (9)

which is the Dirac equation.
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I In terms of the spinorial components ξ and χ the Dirac

equation can be seen as a pair of two coupled equations

which can be written in terms of Pauli’s σ-matrices:(
−i~1

c

∂

∂t
+ mc

)
ξ = i~σ · ∇χ,

I (
−i~1

c

∂

∂t
−mc

)
χ = i~σ · ∇ξ. (10)

I The relativistic invariance imposed on this equation is usually

presented as follows: under a Lorentz transformation Λ the

4-current jµ undergoes the following change:

jµ → jµ
′

= Λµ′
µ jµ. (11)
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I This means that the matrices γµ must transform as

components of a 4-vector, too. Parallelly, the components of

the bi-spinor ψ must be transformed in a way such as to leave

the form of the Dirac equations unchanged: writing

symbolically the transformation of | ψ > as | ψ′ >= S | ψ >,

and < ψ′ |=< ψ | S−1, we should have

I

jµ
′

=< ψ′ | γµ′ | ψ′ >=< ψ | S−1γµ′
S | ψ >=

Λµ′
µ jµ = Λµ′

µ < ψ | γµ | ψ > (12)

from which we infer the transformation rules for

gamma-matrices:

S−1γµ
′
S = Λµ′

µ γ
µ. (13)
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Pauli’s exclusion principle

I The exclusion principle for the fermions is one of the most

important facts of the elementary particle physics. In its first

formulation in 1924 by Wolfgang Pauli only the states of the

electrons in atomic shells were concerned: two electrons with

the same quantum numbers can coexist only if their extra

quantum number related to the proper spin of the electron,

takes on different values out of the only two accessible ones.

I Not only does it explain the structure of atoms and the

periodic table of elements, but it also guarantees the stability

of matter preventing its collapse, as suggested by Ehrenfest,

and proved later by Dyson in his seminal papers.
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Pauli’s exclusion principle

I In purely algebraical terms Pauli’s exclusion principle amounts

to the anti-symmetry of wave functions describing two

coexisting particle states.

I The easiest way to see how the principle works is to apply

Dirac’s formalism in which wave functions of particles in given

state are obtained as products between the “bra” and “ket”

vectors.
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Pauli’s exclusion principle

Consider the wave function of a particle in the state | x >,

Φ(x) =< ψ | x > . (14)

A two-particle state of (| x >, | y >) is a tensor product

| ψ >=
∑

Φ(x , y) (| x > ⊗ | y >). (15)

If the wave function Φ(x , y) is anti-symmetric, i.e. if it satisfies

Φ(x , y) = −Φ(y , x), (16)

then Φ(x , x) = 0 and such states have vanishing probability.
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Pauli’s exclusion principle

Conversely, suppose that Φ(x , x) does vanish. This remains valid in

any basis provided the new basis | x ′ >, | y ′ > was obtained from

the former one via unitary transformation.
Let us form an arbitrary state being a linear combination of | x >
and | y >,

| z >= α | x > +β | y >, α, β ∈ C,

and let us form the wave function of a tensor product of such a
state with itself:

Φ(z , z) =< ψ | (α | x > +β | y >)⊗ (α | x > +β | y >), (17)
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Pauli’s exclusion principle

I which develops as follows:

α2 < ψ | x , x > +αβ < ψ | x , y >

+βα < ψ | y , x > +β2 < ψ | y , y >=

= α2 Φ(x , x) + αβ Φ(x , y) + βαΦ(y , x) + β2 Φ(y , y). (18)

I Now, as Φ(x , x) = 0 and Φ(y , y) = 0, the sum of remaining two

terms will vanish if and only if (16) is satisfied, i.e. if Φ(x , y)

is anti-symmetric in its two arguments.
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Pauli’s exclusion principle

I After second quantization, when the states are obtained with

creation and annihilation operators acting on the vacuum, the

anti-symmetry is encoded in the anti-commutation relations

ψ(x)ψ(y) + ψ(y)ψ(x) = 0 (19)

where ψ(x) | 0 >=| x >.

I This anti-symmetry is so fundamental that it should be also

Lorentz-invariant, or rather act as a Lorentz symmetry

generating principle.
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Quantum covariance

I The Pauli exclusion principle gives a hint about how it might

work. In its simplest version, it introduces an anti-symmetric

form on the Hilbert space describing electron’s states:

εαβ = −εβα, α, β = 1, 2; ε12 = 1,

I Now, if we require that Pauli’s principle must apply

independently of the choice of a basis in Hilbert space, i.e.

that after a linear transformation we get

εα
′β′

= Sα′
α Sβ′

β ε
αβ = −εβ′α′

, ε1
′2′ = 1,
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More explicitly,

εα
′β′

= Sα′
α Sβ′

β ε
αβ = −εβ′α′

, ε1
′2′ = 1,

yields
S1′
1 S2′

2 − S1′
2 S2′

1 = 1

which means that the matrix Sα
′

α must have the determinant equal

to 1, which defines the SL(2,C) group.
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I Its real dimension is 6 (an arbitrary complex 2× 2 matrix

depends on four complex parameters, or equivalently, on 8

real partameters; imposing that the determinant must be

equal to 1 is equivalent to two real equations, the imaginary

part of the determinant being equal to 0, and this leaves just

6 free real parameters.

I It is also easy to prove that the Lie algebras of both SL(2,C)

and the Lorentz group do coincide, both satisfying

commutation relations defined by the formulae (22).
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The spinor realization of six D = 4 Lorentz algebra generators is

often represented by two sets containing three generators each, the

generators of three independent spatial rotations Ji and the three

generators of the Lorentz “boosts” Kl involving the space-time

transformations along the three space axes, defined as follows:

Ji =
i

2
εijk

[
γj , γk

]
, Kl =

1

2
[γl , γ0] (20)

. The explicit form in terms of tensorial products of 2× 2 matrices

is then as follows:

Jl = − i

2
l12 ⊗ σl , Ki = −1

2
σ1 ⊗ σi . (21)
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The full set of relations defining the Lorentz algebra is given
by the following equations:

[Ji , Jk ]=εiklJl , [Ji ,Kk ]=εiklKl ,

[Ki ,Kk ]=−εiklJl .
(22)
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I The notion of isospin was introduced as early as in 1932 by W.

Heisenberg who noticed that at high energies when the strong

nuclear interacions prevail, proton and neutron behave almost

as two states of the same particle (“the nucleon” as far as the

electromagnetic forces, much weaker that the nuclear ones,

can be neglected.

I To acknowledge the new discrete degree of freedom, taking

on two values only, one needs a two-component wave

function, just like in the case of the half-integer spin of the

electron.
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I In the high energy limit, when neutron and proton become
undistinguishable, their state vectors in the Hilbert space of
states can be linearly superposed under the condition that the
resulting state vector is normalized to 1:

| p′ >=| α | p > +β | n >|= 1, < p′ | p′ >= 1 implies ᾱα+β̄β = 1,
(23)

I Such transformations form a group which can be represented
by matrices of the following special type:

M =

(
α −β̄
β ᾱ

)
, with detM = 1. (24)

This real three-dimensional Lie group is called SU(2), and is

topologically isomorphic with a 3-sphere.
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The Lie algebra of the SU(2) group is isomorphic with the Lie

algebra SO(3) of three-dimensional Euclidean rotations. Its

lowest-dimensional representation is given by the following three

2× 2 matrices:

I1 =
i

2

(
0 1
1 0

)
, I2 =

i

2

(
0 −i
i 0

)
, I3 =

i

2

(
1 0
0 −1

)
. (25)

The two states of the nucleon form a basis of the

lowest-dimensional spin 1
2 representation of the SU(2) group. Two

commuting operators of the SU(2) Lie algebra are I 2 and I3, the

Casimir operator, and the third component of the isospin vector.
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In the first model of isospin symmetry proposed by Heisenberg, the

two states of a nucleon, proton and neutron, are represented by

two “iso-spinors”, the two-component columns as follows:

p =

(
1
0

)
, n =

(
0
1

)
. (26)

The third component of isospin I3 acting on basic vectors produce

the eigenvalues + 1
2 for the proton and − 1

2 for the neutron. A

simple rule for the electric charge follows,

Q = I3 +
1

2
, (27)

attributing the electric charge +1 to the proton, and 0 to the

neutron state, respectively.
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It was also conjectured by Yukawa that strong interactions must

be mediated by lighter particles called mesons, belonging to a

three-dimensional representation of the SU(2) group, intertwining

between two isospinors belonging to the half-integer

representation. The three intermediary particles, called later the

π-mesons, can be represented by the following three-component

columns, spanning the integer isopin = 1 representation:

π+ =

1
0
0

 , π+ =

0
1
0

 , π+ =

0
0
1

 . (28)
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I The eigenvalues of the I3 operator on these states are +1, 0,

and −1, respectively, coinciding with their electric charges.

Therefore, the isospin 1 pion states satisfy the simple relation

between the eigenvalues of electric charge and the third

component of the isospin, Q = I3. To produce a single formula

valid for nucleons and pions alike, a new conserved quantity

has to be introduced: the hypercharge Y .

I Called also the baryon number, its eigenvalue is 1 for strongly

interacting fermions (nucleons and hyperons discovered later),

and 0 for mesons. As a result, one gets the

Gell-Mann-Okubo formula relating the three quantum

numbers characterizing strongly interacting particles:

Q = I3 +
Y

2
. (29)
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In Quantum Chromodynamics quarks are considered as fermions,

endowed with spin 1
2 . Only three quarks or anti-quarks can coexist

inside a fermionic baryon (respectively, anti-baryon), and a pair

quark-antiquark can form a meson with integer spin.

Besides, they must belong to different colors, also a three-valued

set. There are two quarks in the first generation, u and d (“up”

and “down”), which may be considered as two states of a more

general object, just like proton and neutron in SU(2) symmetry are

two isospin components of a nucleon doublet.

According to the QCD model, in stable bound state there is place

for two quarks in the same u-state or d-state, but not three.
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Quarks display quite unusual quatum numbers. Conservation and

additivity of the baryon number lead to the concludion that the

baryon charge of quarks must be equal to 1
3 , that of anti-quarks

being − 1
3 .

The half-integer isospin representation attributes the value I3 = + 1
2

to the u-quark (the “up” state) and the value I3 = − 1
2 to the

d-quark (the “down” state).

Then, according to the Gell-Mann-Okubo formula, the electric

charges of quarks are:

Q(u) =
1

2
+

1

3
× 1

2
=

2

3
, Q(d) = −1

2
+

1

3
× 1

2
= −1

3
, (30)

and obviously, Q(ū) = − 2
3 , Q(d̄) = 1

3 .
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I This suggests that a natural generalization of Pauli’s exclusion

principle would be that no three quarks in the same state can

form a stable configuration perceived as one of the strongly

interacting particles (even the relatively short-lived

resonances).

I Now we need statistical properties that would allow the

coexistence of two quarks with the same isospin, but not

three. By analogy with the Fermi-Dirac statistics based on the

Z2 nilpotent operators, we should introduce the Z3 nilpotent

operators θA, A,B = 1, 2, such that θ2A 6= 0, but θ3A = 0.
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Let us require then the vanishing of wave functions representing

the tensor product of three (but not necessarily two) identical

states. That is, we require that Φ(x , x , x) = 0 for any state | x >.
As in the former case, consider an arbitrary superposition of three
different states, | x >, | y > and | z >,

| w >= α | x > +β | y > +γ | z >

and apply the same criterion, Φ(w ,w ,w) = 0.
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We get then, after developing the tensor products,

Φ(w ,w ,w) = α3Φ(x , x , x) + β3Φ(y , y , y) + γ3Φ(z , z , z)

+α2β[Φ(x , x , y)+Φ(x , y , x)+Φ(y , x , x)]+γα2[Φ(x , x , z)+Φ(x , z , x)+Φ(z , x , x)]

+αβ2[Φ(y , y , x)+Φ(y , x , y)+Φ(x , y , y)]+β2γ[Φ(y , y , z)+Φ(y , z , y)+Φ(z , y , y)]

+βγ2[Φ(y , z , z)+Φ(z , z , y)+Φ(z , y , z)]+γ2α[Φ(z , z , x)+Φ(z , x , z)+Φ(x , z , z)]

+αβγ[Φ(x , y , z)+Φ(y , z , x)+Φ(z , x , y)+Φ(z , y , x)+Φ(y , x , z)+Φ(x , z , y)] = 0.
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The terms Φ(x , x , x), Φ(y , y , y) and Φ(z , z , z) do vanish by virtue of

the original assumption. Among the remaining terms, the

combinations preceded by various independent powers of numerical

coefficients α, β and γ, must vanish separately.

This is achieved if the following Z3 symmetry is imposed on our

wave functions:

Φ(x , y , z) = j Φ(y , z , x) = j2 Φ(z , x , y).

with j representing the primitive root of 1,

j = e
2πi
3 , j3 = 1, j + j2 + 1 = 0. (31)

Note that the complex conjugates of functions Φ(x , y , z) transform

under cyclic permutations of their arguments with j2 = j̄ replacing

j in the above formula

Ψ(x , y , z) = j2 Ψ(y , z , x) = j Ψ(z , x , y).
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Let A,B, ... = 1, 2, ..N; we suppose that the generators θA span an

associative algebra, in which the following cubic relations are

imposed:

θAθBθC = j θBθCθA = j2 θCθAθB , with j = e
2πi
3 (32)

We also introduce a similar set of conjugate generators θ̄Ȧ,

Ȧ, Ḃ, ... = 1, 2, ...,N, satisfying similar condition with j2 replacing j:

θ̄Ȧθ̄Ḃ θ̄Ċ = j2 θ̄Ḃ θ̄Ċ θ̄Ȧ = j θ̄Ċ θ̄Ȧθ̄Ḃ , (33)

We complete the constitutive relations by the commutation

between the generators θ and their conjugates θ̄:

θAθ̄Ḃ = −j θ̄ḂθA. (34)
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The cubic analogue of binary anti-commutation relations defines a

Z3-graded generalization of Grassmann algebra AZ3 The natural Z3

grading attributes the Z3-grade 1 to θ’s and the Z3-grade 2 to θ̄’s.

Under the associative multiplication the grades add up modulo 3,

so that e.g. the product θAθB has the Z3-grade 2, the product

θAθ̄Ḃ has the Z3-grade 0, etc.
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The following two properties of the Z3-graded analogue of
Grassmann algebra are useful for modelling basic properties of
quarks. First, it is easy to prove that only quadratic and cubic
expressions do not vanish; all products of four and more generators
must vanish. Indeed, let us consider a fourth-order expression,
θAθBθCθD . We have, using the associativity property, the following
identities:

θAθBθCθD = j θBθCθAθD = j2 θBθAθDθC = j3 θAθDθBθC = j4 θAθBθCθD ,
(35)

and because j4 = j 6= 1, the only solution is θAθBθCθD = 0.
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Secondly, foreseeing that cubic combinations of quarks result in

composite particles perceived as fermions (e.g. proton and

neutron), the corresponding operators should anti-commute. This

is true indeed, as the following simple computation shows:

(θAθBθC )(θ̄Ḋ θ̄Ė θ̄Ḟ ) = (−j)3θ̄Ḋ(θAθBθC )(θ̄Ė θ̄Ḟ ) = ...

= (−j)9(θ̄Ḋ θ̄Ė θ̄Ḟ )(θAθBθC ) = −(θ̄Ḋ θ̄Ė θ̄Ḟ )(θAθBθC ), (36)

The conjugate generators θ̄Ḃ span an algebra Ā isomorphic with A.
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With two quark states, u and d , we get only two independent
cubic combinations and three independent quadratic combinations.
Considering the formulae (32) and (33) with only two generators
and replacing θ1 by u and θ2 by d , we see that the only
non-vanishing cubic monomials are

udu = jduu = j2uud , dud = judd = j2ddu, ūd̄ ū = j2d̄ d̄ ū = j2 = j ūūd̄ ,
(37)

corresponding to the proton and neutron, anti-proton and
anti-neutron states. Due to the equation (35), all combinations of
order four and higher do vanish identically. The only quadratic
combinations satisfying relations (34) are as follows:

ud̄ = −j d̄u, ūd = −j2dū, uū − dd̄ , uū − dd̄ . (38)

corresponding to three pions , π+, π− and π0.
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By analogy with the derivation of the SL(2,C) symmetry from the

skew Z2-symmetry of Pauli’s exclusion principle, let us show that

certain complex representation of the same symmetry group can be

derived from the Z3-graded generalization of the exclusion principle

defined above. Let us suppose that as usual Dirac fermions, quark

should be described by a four-component column composed of two

Pauli-like spinors. According to the ternary Z3-skew symmetric

anti-commutation hypothesis, these spinors are operator-valued.

Let us denote them in the usual way:(
u1

u2

)
,

(
d1

d2

)
,

(
ū1̇

ū2̇

)
, ,

(
d̄ 1̇

d̄ 2̇

)
. (39)

where u1 is the operator corresponding to the spin-up state of the

u-quark, u2 is the spin-down state of the u-quark, etc., with the

conjugate operator valued spinors denoted by means of dotted

indices: ū1̇, ū2̇, etc.
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The cubic combinations supposed to produce the observable

fermionic states will contain the mixed products of the components

of both u and d quarks, which should also obey the Pauli exclusion

principle. This means that although there can be two u or two d

quarks out of three, they cannot display the same spin direction.

Therefore the only possible products must be tthe following:

u1u2d1, u1u2d2, d1d2u1, d1d2u2, (40)

and of course the four similar expressions made of the conjugate

quarks with dotted indices:

ū1̇ū2̇d̄ 1̇, ū1̇ū2̇d̄ 2̇, d̄ 1̇d̄ 2̇ū1̇, d̄ 1̇d̄ 2̇ū2̇. (41)
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We notice that there are four independent cubic terms made of

the combinations (uud) and (ūūd̄), and also four independent cubic

expressions made of the combinations (udd) and (ūd̄ d̄).

This is exactly the number of components one needs to describe

two independent Dirac fermions, the proton and the neutron. This

is so because the order in cubic products does not matter:

according to the ternary anti-commutation laws (32, 33), all

permutations are linearly dependent:

u1u2d1 = ju2d1u1 = j2d1u1u2, d1d2u1 = jd2u1d1 = j2u1d1d2,

ū1̇ū2̇d̄ 1̇ = j2ū2̇d̄ 1̇ū1̇ = j d̄ 1̇ū1̇ū2̇, d̄ 1̇d̄ 2̇ū2̇ = j2d̄ 2̇ū2̇d̄ 1̇ = j ū2̇d̄ 1̇d̄ 2̇.
(42)
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We can therefore produce a more symmetric expression containing

all possible permutations as follows:

u1u2d1 =
1

3

[
u1u2d1 + ju2d1u1 + j2d1u1u2

]
,

u1d2d1 =
1

3

[
u1d2d1 + jd2d1u1 + j2d1u1d2

]
,

u2u1d2 =
1

3

[
u2u1d2 + ju1d2u2 + j2d2u2u1

]
,

d2d1u2 =
1

3

[
d2d1u2 + jd1u2d2 + j2u2d2d1

]
,
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and

ū1̇ū2̇d̄ 1̇ =
1

3

[
ū1̇ū2̇d̄ 1̇ + j2 ū2̇d̄ 1̇ū1̇ + j d̄ 1̇ū2̇ū1̇

]
,

ū1̇d̄ 2̇d̄ 1̇ =
1

3

[
ū1̇d̄ 2̇d̄ 1̇ + j2 d̄ 2̇d̄ 1̇ū1̇ + j d̄ 1̇ū1̇d̄ 2̇

]
,

ū2̇ū1̇d̄ 2̇ =
1

3

[
ū2̇ū1̇d̄ 2̇ + j2 ū1̇d̄ 2̇ū2̇ + j d̄ 2̇ū2̇ū1̇

]
,

d̄ 2̇d̄ 1̇ū2̇ =
1

3

[
d̄ 2̇d̄ 1̇ū2̇ + j2 d̄ 1̇ū2̇d̄ 2̇ + j ū2̇d̄ 2̇d̄ 1̇

]
.
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This is similar to the “averaging” the product of two

anti-commuting spinors using the skew-symmetric 2-form εαβ:

α, β = 1, 2, ε12 = 1. If the variables χα anti-commute, i.e. if
χαχβ = −χβχα, then we can write

χ1χ2 =
1

2

[
εαβ χ

αχβ
]
. (43)

By analogy with this Z2 skew-symmetric case, we can introduce

the Z3 skew-symmetric 3-form playing a similar role; however, due

to the existence of two independent combinations of indices, (121)

and (212), two independent Z3-skew symmetric 3-forms must be

introduced, with an extra upper index labeling them. For the sake

of generality, let us consider some abstract Z3-graded algebra

spanned by two generators θA, A,B,= 1, 2 and their conjugates

θ̄1̇, θ̄2̇, satisfying the set of constitutive relations (32, 33 and 34).
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We introduce the following two 3-forms ραABC and their conjugates

ρ̄β̇
ḊĖ Ḟ

, with α, β̇ = 1, 2 and A, Ḃ = 1, 2, whose components are
given explicitly below:

ρ1121 = 1, ρ1211 = j2, ρ1112 = j , ρ2212 = 1, ρ2122 = j2, ρ2221 = j .
(44)

ρ̄1̇
1̇2̇1̇

= 1, ρ̄1̇
2̇1̇1̇

= j , ρ̄1̇
1̇1̇2̇

= j2, ρ̄2̇
2̇1̇2̇

= 1, ρ̄2̇
1̇2̇2̇

= j , ρ̄2̇
2̇2̇1̇

= j2,
(45)
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Quite obviously, the 3-forms ραABC and ρ̄β̇
ḊĖ Ḟ

satisfy the following
Z3-symmetry properties:

ρ1121 = j2 ρ1211 = j ρ1112, ρ2212 = j2 ρ2122 = j ρ2221, (46)

and
ρ̄1̇
1̇2̇1̇

= j ρ̄1̇
2̇1̇1̇

= j2 ρ̄1̇
1̇1̇2̇

ρ̄2̇
2̇1̇2̇

= j ρ̄2̇
1̇2̇2̇

= j2 ρ̄2̇
2̇2̇1̇

(47)
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The constitutive ternary commutation formulae take on the
following shortened form:

u1u2d1 =
1

3
ρ1ABCu

AuBdC , u2u1d2 =
1

3
ρ2ABCu

AuBdC ,

ū1̇ū2̇d̄ 1̇ =
1

3
ρ̄1̇
ȦḂĊ

ūȦūḂ d̄ Ċ , ū2̇ū1̇d̄ 2̇ =
1

3
ρ̄2̇
ȦḂĊ

ūȦūḂ d̄ Ċ , (48)

mapping the 12 degrees of freedom of the three quarks (u, u, d)
onto the four degrees of freedom of the proton, supposed to be a
1/2-spin fermion, and

d1u2d1 =
1

3
ρ1ABCd

AuBdC , d2u1d2 =
1

3
ρ2ABCu

AuBdC ,

d̄ 1̇u2̇d 1̇ =
1

3
ρ̄1̇
ȦḂĊ

d ȦuḂd Ċ , d̄ 2̇u1̇d 2̇ =
1

3
ρ̄2̇
ȦḂĊ

d ȦuḂd Ċ (49)

mapping the 12 degrees of freedom of the three quarks (d , d , u)
onto the four degrees of freedom of the neutron.
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I The constitutive cubic relations between the generators of the

Z3 graded algebra can be considered as intrinsic if they are

conserved after linear transformations with commuting (pure

number) coefficients, i.e. if they are independent of the

choice of the basis.

I Let UA′

A denote a non-singular N ×N matrix, transforming the

generators θA into another set of generators, θB
′

= UB′

B θB .

I We are looking for the solution of the covariance condition for

the ρ-matrices:

Sα′
β ρβABC = UA′

A UB′
B UC ′

C ρα
′

A′B′C ′ . (50)
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Now, ρ1121 = 1, and we have two equations corresponding to the
choice of values of the index α′ equal to 1 or 2. For α′ = 1′ the
ρ-matrix on the right-hand side is ρ1

′
A′B′C ′ , which has only three

components,

ρ1
′

1′2′1′ = 1, ρ1
′

2′1′1′ = j2, ρ1
′

1′1′2′ = j ,

which leads to the following equation:

S1′

1 = U1′

1 U2′

2 U1′

1 +j2 U2′

1 U1′

2 U1′

1 +j U1′

1 U1′

2 U2′

1 = U1′

1 (U2′

2 U1′

1 −U2′

1 U1′

2 ),
(51)

because j2 + j = −1.
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For the alternative choice α′ = 2′ the ρ-matrix on the right-hand

side is ρ2
′

A′B′C ′ , whose three non-vanishing components are

ρ2
′

2′1′2′ = 1, ρ2
′

1′2′2′ = j2, ρ2
′

2′2′1′ = j .

The corresponding equation becomes now:

S2′

1 = U2′

1 U1′

2 U2′

1 +j2 U1′

1 U2′

2 U2′

1 +j U2′

1 U2′

2 U1′

1 = U2′

1 (U1′

2 U2′

1 −U1′

1 U2′

2 ),
(52)

The remaining two equations are obtained in a similar manner.
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The determinant of the 2× 2 complex matrix UA′

B appears on the

right-hand side.

S2′
1 = −U2′

1 [det(U)], (53)

The remaining two equations are obtained in a similar manner,

resulting in the following:

S1′
2 = −U1′

2 [det(U)], S2′
2 = U2′

2 [det(U)]. (54)

The determinant of the 2× 2 complex matrix UA′

B appears

everywhere on the right-hand side. Taking the determinant of the

matrix Sα
′

β one gets immediately

det (S) = [det (U)]3. (55)
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The matrices Sα
′

β belong to the SL(2,C) group if the resulting

cubic combinations of quarks (proton and neutron) behave like

Dirac spinors; therefore we have

det(Sα′
β ) = 1. (56)

This means that also [
det(UA′

B )
]3

= 1, (57)

which means that

det(U) = 1, j , or j2. (58)
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I We see that the invariance group of the Z3-graded algebra of

isospin quark components satisfying Z3-symmetric cubic

commutation relations is a Z3-covering of the SL(2,C) group.

The Lie algebra of this group is a Z3-covering of the Lorentz

algebra.

I There is another representation of Z3 symmetry corresponding

to an extra degree of freedom of quarks, the colour.

Incorporating the colour, which is akin to three-valued spin

due to its exclusivity - no quarks displaying the same colour

can be present in a stable bound state - leads to a Z3-graded

generalization of the Dirac equation.
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A Z3-graded analog of Pauli’s exclusion principle and the Z3-graded

Dirac’s equation were introduced in our papers in 2017, 2018, 2019.

R. Kerner, Ternary generalization of Pauli’s principle and the Z6-graded
algebras, Physics of Atomic Nuclei, 80 (3), pp. 529-531 (2017).
R. Kerner, Ternary Z2 × Z3 graded algebras and ternary Dirac equation,
Physics of Atomic Nuclei 81 (6), pp. 871-889 (2018),
R. Kerner, The Quantum nature of Lorentz invariance, Universe, 5 (1),
p.1, (2019).
R. Kerner and J. Lukierski, Z3-graded colour Dirac equation for
quarks, confinementt and generalized Lorentz symmetries, Phys. Letters
B, Vol. 792, pp. 233-237 (2019),

R. Kerner and J. Lukierski, Internal quark symmetries and colour

SU(3) entangled with Z3-graded orentz algebra, Nuclear Physics B, Vol.

972, (November 2021), 115529
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