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Thue’s theorem

A packing of spheres in Rn is a union of interior disjoint balls.
Its density is defined by

δ := lim sup
k→∞

area of Bn(0, k) covered by the spheres

volume of Bn(0, k)
.

Theorem (Thue 1910, Tóth 1943)

Any packing of equal circles in R2 has density at most π
2
√
3

.
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Proof (following H.-C. Chang & L.-C. Wang, 2010)

Delaunay triangulation: circumscribed circles have empty interior.

Saturated packing: no further circle can be added.

Lemma
In a Delaunay triangulation of the centers of a saturated packing
of unit circles, the density within each triangle is at most π

2
√
3

.

I Let ABC be a triangle with largest angle Â  Â ≥ π
3 .

I If Â ≥ 2π
3 , then its smallest angle, say B̂, satisfies B̂ ≤ π

6 .

This yields a circumradius R = AC

2 sin B̂
≥ 2: a new circle can

thus be added at the circumcenter. Contradiction  Â < 2π
3 .

I The area is 1
2 sin Â ·AB ·AC ≥

√
3, covered by half a unit disc.
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The Kepler conjecture

In R3, close-packings of equal spheres achieve the density π
3
√
2

:

Theorem (Hales-Ferguson, 1992–2014)

Any packing of equal spheres in R3 has density at most π
3
√
2

.
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Frustration

One could try to mimic the proof of Thue’s theorem:

Lemma (Rogers, 1958)

In a Delaunay decomposition of the centers of a saturated packing
of unit spheres, the densest possible tetrahedron is regular of size 2.

But there is no decomposition made of regular tetrahedra only!
The global optimum (densest packing) is not locally optimal.

This lemma only yields an upper bound on the optimal density:

√
2 arccos 23

27 ≈ 0.7796 > π
3
√
2
≈ 0.7405.
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More frustration

Already in R2, this situation is the norm for unequal circles:

Theorem (Florian, 1960)

In a Delaunay triangulation of the centers of a saturated packing of
unequal circles, the densest possible triangle connects the centers
of two smallest circles and a largest one, all mutually tangent.

There is no decomposition made of such triangles only (exercise).
Again, this only yields an upper bound on the optimal density.
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The Problem

We have to maximize the density over all the packings in the plane.
This is a nonconvex optimization pb. in infinitely many variables. . .

Can we reduce to finitely many variables over a compact set?

Even better:
Can we express it in the elementary language of the real numbers
(quantifiers, logical connectives, +, −, ×, variables, constants)?

 This would, at least, be decidable (Tarski, 1931)
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Localization (following J. C. Lagarias, 2002)

Decomposition: with each packing is associated a partition of the
space into uniformly bounded cells.

The density varies through cells. What about the average density?

Weighting rule: each cell shares its density (actually a function of)
among spheres within uniformly bounded distance.

Local density inequality: an upper bound on the total weight
received by each sphere.

Each local density inequality yields an upper bound on the density.
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Localization in practice

We have to find a local density inequality which

I is true;

I can be proved;

I yields an optimal upper bound on the density.

Such local density inequalities may not exist!

Several local density inequalities proposed for the Kepler conjecture
still have an unclear status (including Hales’ first attempt in 1992).

For unequal circles (see suite), I used an enhanced mix of the
localizations proposed by Heppes in 2003 and Kennedy in 2004.
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Triangulated (or compact) circle packings

A packing is triangulated if its contact graph is a triangulation.

Theorem (Kennedy, 2006)

There are exactly 9 sizes allowing a triangulated binary packing.

Theorem (Heppes 2000-03, Kennedy 2004, Bédaride-F. 2020)

In each case, the density is maximized by such a packing.

Theorem (Fernique-Hashemi-Sizova, 2019)

There are exactly 164 sizes allowing a triangulated ternary packing.

In some cases (not all), the density is maximized by such a packing.
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Playing with stoichiometry

Theorem (F. 2020)

The densest packings with circles of size 1 and
√

2− 1 are
I recodings of square-triangle tilings for a large circles excess;

I twinnings of two periodic packings otherwise.

The maximum density as a function of the stoichiometry follows.
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Global picture for two sizes of circle

Maximal density δ(r) of packings of circles of size 1 and r?
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Global picture for two sizes of circle

Trivial lower bound: the density of the hexagonal compact packing.
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Global picture for two sizes of circle

The already mentionned Florian’s upper bound.
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Global picture for two sizes of circle

7
5

Blind’s upper bound (1969) yields a sharp bound over [0.74 . . . , 1].
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Global picture for two sizes of circle

12
3

45

6
7

8

9

Flip & flow on the 9 triangulated binary packing  lower bound.
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Global picture for two sizes of circle

12
3

45

6
7

8

9

Flip & flow on any suitable packing improves the lower bound.
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Global picture for two sizes of circle

Massive computations for localization improve the upper bound.
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The Complete picture for two sizes of circle

The localization is challenged by nontriangulated optimal packings
and circles that fit well locally (around a circle), but not globally.
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The most uniform packing

What is the largest r such that circles with sizes in [r , 1] can be
packed more densely than all equal circles?

r ≥ 0.6375 . . . (Tóth, 1964) r ≤ 0.7430 . . . (Blind, 1969).
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The most uniform packing

What is the largest r such that circles with sizes in [r , 1] can be
packed more densely than all equal circles?

r ≥ 0.6457 . . . (Tóth, 1964) r ≤ 0.7430 . . . (Blind, 1969).
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The most uniform packing

What is the largest r such that circles with sizes in [r , 1] can be
packed more densely than all equal circles?

r < 0.6464 if there are only two sizes of circle (Fernique, 2020).
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The most uniform packing

What is the largest r such that circles with sizes in [r , 1] can be
packed more densely than all equal circles?

r ≥ 0.6510 . . . (Fernique-Hashemi-Sizova, 2018).
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The most uniform packing

What is the largest r such that circles with sizes in [r , 1] can be
packed more densely than all equal circles?

r ≥ 0.6585 . . . (Connelly-Pierre, 2019).

Optimal? (Connelly-Zhang)
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An aperiodic densest packing

Does exist circle sizes such that the densest packings are aperiodic?

Theorem (Bédaride-Fernique, 2012 )

The tilings with the highest proportion of rhombus are aperiodic:

Density for triangulated packings ∼ tile proportions for tilings:
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