



INSTITUT **DE RECHERCHE** EN INFORMATIQUE FONDAMENTALE

### **Towards Executable Applied Category Theory** CAP'21, IHÉS, November 30, 2021





```
(** * Species Sum/Coproduct *)
                    Definition spec_sum (X Y : Species) : Species
                           := ((X.1 + Y.1)%type; sum_rect _ X.2 Y.2).
                   Lemma sigma_functor_sum (X : Type) (P \ Q : X \rightarrow Type) (f_X : X \ P \ X) + f_X \cdot Y \ S \ Q \ X)
                    \begin{aligned} & \left\{ x : X \& P x \right\} + \left\{ x : X \& Q x \right\} \right\} & \left\{ P Q : X \rightarrow Iype \right\} \\ & \left\{ x : X \& P x \right\} + \left\{ x : X \& Q x \right\} \right\} \\ & \left\{ x : X \& \left( P x + Q x \right) \% type \right\}. \end{aligned}
               roon,
refine (equiv_adjointify
_ intros [[x w] | [x w]]; exists x; [left | right]; apply w.
intros [x [w | w]]; [left | right]; apply (x; w),
99
100 Definition stuff_spec_sum (P Q : FinSet -> Type) := fun A => (P A + Q A)%type.
                                  cumap
(path_universe_uncurried (sigma_functor_sum FinSet P Q))
```

### Nicolas Behr

CNRS, Université de Paris, IRIF (UMR 8243)





## **Plan of the talk:**

## I. A Case Study in Applied Category Theory: from Categorical Rewriting to Rule-algebraic Combinatorics II. The coreact.wiki Initiative

## **Plan of the talk:**

## I. A Case Study in Applied Category Theory: from Categorical Rewriting to Rule-algebraic Combinatorics II. The coreact.wiki Initiative

## A quick tour of categorical rewriting



## A quick tour of categorical rewriting



"type T cell"

## A quick tour of categorical rewriting



"type T cell"









#### (*M*-) linear Double-Pushout (DPO)



#### (*M*-) linear Sesqui-Pushout (SqPO)

Nicolas Behr, CAP'21, IHÉS, November 30, 2021



non-linear Double-Pushout (DPO)



non-linear Sesqui-Pushout (SqPO)



#### (*M*-) linear Double-Pushout (DPO)



#### (*M*-) linear Sesqui-Pushout (SqPO)

Nicolas Behr, CAP'21, IHÉS, November 30, 2021



#### non-linear Double-Pushout (DPO)



#### non-linear Sesqui-Pushout (SqPO)



## Cloning in non-linear Double Pushout (DPO) rewriting



















#### (*M*-) linear Double-Pushout (DPO)



#### (*M*-) linear Sesqui-Pushout (SqPO)

Nicolas Behr, CAP'21, IHÉS, November 30, 2021



non-linear Double-Pushout (DPO)



non-linear Sesqui-Pushout (SqPO)







Nicolas Behr, CAP'21, IHÉS, November 30, 2021









Nicolas Behr, CAP'21, IHÉS, November 30, 2021







directed



 $\underline{\operatorname{Set}}/\Delta$ 

# undirected

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

## simple graphs





# undirecteo

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

## simple graphs





## undirected

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

## simple graphs



 $\underline{\mathsf{Set}}\,/\!\!/\Delta$ 





# undirected

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

## simple graphs

#### $\underline{\mathsf{Set}}\,/\!\!/\Delta$

undirecte



 $\underline{\operatorname{Set}}\,/\Delta$ 



 $\underline{\operatorname{Set}}/\mathcal{P}^{(1,2)}$ 

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

## simple graphs

#### $\underline{\mathsf{Set}}\,/\!\!/\Delta$

undirecte







 $\underline{\operatorname{Set}}/\mathcal{P}^{(1,2)}$ 

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

## simple graphs



irecte







 $\underline{\operatorname{Set}}/\mathcal{P}^{(1,2)}$ 

## simple graphs

Set  $/\!\!/\Delta$ 

 $\underline{\mathsf{Set}}\,/\!\!/\mathcal{P}^{(1,2)}$ 

irecte







 $\underline{\operatorname{Set}}/\mathcal{P}^{(1,2)}$ 

## simple graphs



 $\underline{\mathsf{Set}}\,/\!\!/\mathcal{P}^{(1,2)}$ 

### **Quasi-topoi** — a natural setting for non-linear rewriting

## Definition

- A category C is a quasi-topos iff

  - 2. it is locally Cartesian closed

Johnstone, P.T., Lack, S., Sobociński, P.: Quasitoposes, Quasiadhesive Categories and Artin Glueing. In: Algebra and Coalgebra in Computer Science. LNCS, vol. 4624, pp. 312–326 (2007). https://doi.org/10.1007/978-3-540-73859-6\_21

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

## 1. it has finite limits and colimits

## 3. it has a regular-subobject-classifier.

## **Quasi-topoi** — a natural setting for non-linear rewriting

### Proposition

Every quasi-topos C enjoys the following properties:

- and  $e \in epi(\mathbf{C})$ , then  $e \in iso(\mathbf{C})$ .
- It has (by definition) a  $\mathcal{M}$ -partial map classifier  $(\mathsf{T}, \eta)$ .
- ble under pullbacks, and pushouts along regular monos are pullbacks.
- It is  $\mathcal{M}$ -adhesive.
- pullback-complement (FPC)  $A \xrightarrow{n} F \xrightarrow{g} C$ , and with  $n \in \mathcal{M}$ .

• It has (by definition) a stable system of monics  $\mathcal{M} = rm(\mathbf{C})$  (the class of regular monos), which coincides with the class of extremal monomorphisms, i.e., if  $m = f \circ e$  for  $m \in rm(\mathbf{C})$ 

• It is rm-quasi-adhesive, i.e., it has pushouts along regular monomorphisms, these are sta-

• For all pairs of composable morphisms  $A \xrightarrow{t} B$  and  $B \xrightarrow{m} C$  with  $m \in \mathcal{M}$ , there exists a final

• It possesses an epi-*M*-factorization: each morphism A  $\xrightarrow{f}$  B factors as f = m  $\circ$  e, with morphisms  $A \xrightarrow{e} B$  in epi(C) and  $B \xrightarrow{m} A$  in  $\mathcal{M}$  (uniquely up to isomorphism in B).



categories

*M* -adhesive

Nicolas Behr, CAP'21, IHÉS, November 30, 2021









Nicolas Behr, CAP'21, IHÉS, November 30, 2021









Nicolas Behr, CAP'21, IHÉS, November 30, 2021









Nicolas Behr, CAP'21, IHÉS, November 30, 2021

#### **rm-adhesive categories**



#### quasi-topoi















\$1:1











(iso-class of a) rule

basis vector of a vector space  $\mathcal{R}$ 

**Definition:** the rule algebra product  $*_{\mathcal{R}}$  :  $\mathcal{R} \times \mathcal{R} \to \mathcal{R}$  is defined via

$$\mathcal{R} \ \delta(\mathbf{r}_1) := \sum_{\mu} \delta\left(\mathbf{r}_2 \overset{\mu}{\triangleleft}_{\mathsf{T}} \mathbf{r}_1\right)$$

"sum over ways to compose the rules"

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

The rule algebra  $(\mathcal{R}, *_{\mathcal{R}})$  is an associative unital algebra, with **unit element**  $\delta(\emptyset \leftarrow \emptyset)$ .





(iso-class of an) **object** 

## $\rho_{\mathbb{T}}: \mathcal{R} \to \mathsf{End}(\hat{\mathbf{C}})$ $\rho_{\mathbb{T}}\left(\delta(\mathbf{r})\right)|\mathbf{X}\rangle := \sum \left|\mathbf{r}_{\mathsf{m}}(\mathbf{X})\right\rangle$

Nicolas Behr, CAP'21, IHÉS, November 30, 2021





"sum over all ways to apply r to X"





\$1:1

 $O_2 \stackrel{\mathbf{r}_2}{\frown} I_2 \qquad \mu \qquad O_1 \stackrel{\mathbf{r}_1}{\frown} I_1$ → ---- P<sub>21</sub>  $\mathbf{r}_2 \overset{\mu}{\lhd}_{\mathbb{T}} \mathbf{r}_1$  $X_0$ 



$$\mathbf{r}_{2}) *_{\mathcal{R}} \delta(\mathbf{r}_{1}) := \sum_{\mu} \delta\left(\mathbf{r}_{2} \triangleleft_{\mathbb{T}} \mathbf{r}_{1}\right)$$

$$: \mathcal{R} \to \text{End}(\hat{\mathbf{C}})$$

$$\rho_{\mathbb{T}}(\delta(\mathbf{r})) |X\rangle := \sum_{m} |\mathbf{r}_{m}(X)\rangle$$

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

 $\rho_{\mathbb{T}} : \mathcal{R} \to \text{End}(\hat{\mathbf{C}})$  is a **representation** of the **rule algebra**  $(\mathcal{R}, *_{\mathcal{R}})$ , i.e.  $\rho_{\mathbb{T}}(\delta(\mathbf{r}_{2}))\rho_{\mathbb{T}}(\delta(\mathbf{r}_{1}))|\mathbf{X}\rangle = \rho_{\mathbb{T}}(\delta(\mathbf{r}_{2})*_{\mathcal{R}}\delta(\mathbf{r}_{1}))|\mathbf{X}\rangle$ 



## **On Stochastic Rewriting and Combinatorics** via Rule-Algebraic Methods\*

Université de Paris, CNRS, IRIF F-75006, Paris, France nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the relationship of stochastic rewriting systems described in terms of continuous-time Markov chains, their embedded discrete-time Markov chains and certain types of generating function expressions in combinatorics. We introduce a number of generating function techniques that permit a novel form of static analysis for rewriting systems based upon marginalizing distributions over the states of the rewriting systems via pattern-counting observables.

#### Nicolas Behr


### The enumerative combinatorics "workflow" (à la Flajolet):



#### choice of patterns P



Nicolas Behr, CAP'21, IHÉS, November 30, 2021

multi-variate generating function

### The enumerative combinatorics "workflow" (à la Flajolet):



#### choice of patterns P



Nicolas Behr, CAP'21, IHÉS, November 30, 2021

#### multi-variate generating function

**Combinatorics Philippe Flajolet and Robert Sedgewick** CAMBRIDGE





Nicolas Behr, CAP'21, IHÉS, November 30, 2021

### **Example:** planar rooted binary trees (PRBTs)





Nicolas Behr, CAP'21, IHÉS, November 30, 2021

#### **Example:** planar rooted binary trees (PRBTs)







Nicolas Behr, CAP'21, IHÉS, November 30, 2021

#### **Example:** planar rooted binary trees (PRBTs)

$$\mathscr{T}_0 := \left\{ \begin{array}{c} I \\ I \\ \bullet \end{array} \right\}, \ \mathscr{T}_1 := \left\{ \begin{array}{c} I \\ I \\ I \\ \bullet \end{array} \right\}, \ \mathscr{T}_2 := \left\{ \begin{array}{c} I \\ I \\ \bullet \\ I \\ \bullet \end{array}, \begin{array}{c} I \\ \bullet \\ I \\ \bullet \end{array} \right\}, \ \ldots$$

$$\mathcal{G}(\lambda) := \sum_{n \ge 0} \frac{\lambda^n}{n!}$$
 (# of structures of size *n*)





Nicolas Behr, CAP'21, IHÉS, November 30, 2021

#### **Example:** planar rooted binary trees (PRBTs)

$$\mathscr{T}_0 := \left\{ \begin{array}{c} I \\ I \\ I \end{array} \right\}, \ \mathscr{T}_1 := \left\{ \begin{array}{c} I \\ I \\ I \\ I \end{array} \right\}, \ \mathscr{T}_2 := \left\{ \begin{array}{c} I \\ I \\ I \\ I \\ I \end{array}, \begin{array}{c} I \\ I \\ I \\ I \\ I \end{array} \right\}, \ \ldots$$

$$\mathcal{G}(\lambda) := \sum_{n \ge 0} \frac{\lambda^n}{n!} (\text{\# of structures of size } n)$$

Choose some patterns:

$$P_1 := \begin{vmatrix} \\ \\ \end{vmatrix} \qquad P_2 := \bigvee_{\stackrel{*}{|}}$$

$$P_3 := \bigvee_{*} P_4 :=$$





$$\mathscr{T}_0 := \left\{ \begin{array}{c} I \\ I \\ \bullet \end{array} \right\}, \ \mathscr{T}_1 := \left\{ \begin{array}{c} I \\ I \\ I \\ \bullet \end{array} \right\}, \ \mathscr{T}_2 := \left\{ \begin{array}{c} I \\ I \\ \bullet \end{array} \right\}, \ I \\ I \\ \bullet \end{array} \right\}, \ \ldots$$

$$\mathcal{G}(\lambda) := \sum_{n \ge 0} \frac{\lambda^n}{n!} (\text{\# of structures of size } n)$$

### This talk

### An **alternative approach** to enumerative combinatorics based upon **rewriting theory**:



- generate structure S via applying • rewriting rules to some initial configuration "in all possible ways"
- count patterns via applying special types of rewriting rules
- formulate generating functions via • linear operators associated to rewriting rules

### Key tool: the rule-algebra formalism!









#### The Rémy uniform generator (heuristics)









$$\mathcal{G}(\lambda;\omega_1,\ldots,\omega_k) := \sum_{n\geq 0} \frac{\lambda^n}{n!} \sum_{p_1,\ldots,p_k\geq 0} \frac{\omega_1^{p_1}\cdots\omega_k^{p_k}}{p_1!\cdots p_k!} \left( \#\right)$$

 $\Rightarrow$  combinatorics of partial observations: rather than trying to reason about the full structure of the combinatorial species, we instead **pick** a (finite) set of patterns  $P_1, \ldots, P_k$  and try to reason about their combinatorics within the species via EGFs

> of structures of size *n* of structures of size *n* and with  $p_i$  occurrences of pattern  $P_i$  (for  $1 \le i \le k$ )



$$\mathcal{G}(\boldsymbol{\lambda};\omega_{1},\ldots,\omega_{k}) := \sum_{n\geq 0} \frac{\boldsymbol{\lambda}^{n}}{n!} \sum_{p_{1},\ldots,p_{k}\geq 0} \frac{\boldsymbol{\omega}_{1}^{p_{1}}\cdots\boldsymbol{\omega}_{k}^{p_{k}}}{p_{1}!\cdots p_{k}!} \left( \begin{array}{c} \# \end{array} \right)$$

Insight from stochastic mechanics: introduce so-called observables  $O_P$ 

$$\hat{O}_P | t \rangle := (\#$$

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

 $\Rightarrow$  combinatorics of partial observations: rather than trying to reason about the full structure of the combinatorial species, we instead pick a (finite) set of patterns  $P_1, \ldots, P_k$  and try to reason about their combinatorics within the species via **EGFs** 

> of structures of size *n* or structures of size *n* and with  $p_i$  occurrences of pattern  $P_i$  (for  $1 \le i \le k$ )

#### $f_{P}(t)) \cdot |t\rangle$ P – a PBRT pattern

# of occurrences of *P* in the PBRT *t* 



## implement the operation of summation over coefficients)



**Definition** Let  $\langle |$  be defined via  $\langle | t \rangle := 1_{\mathbb{R}}$  for arbitrary PRBT iso-class t. (Note: this permits to



## implement the operation of **summation over coefficients**)

Definition



**Definition** Let  $\langle |$  be defined via  $\langle | t \rangle := 1_{\mathbb{R}}$  for arbitrary PRBT iso-class t. (Note: this permits to

(12)



**Definition** Let  $\langle |$  be defined via  $\langle |t \rangle := 1_{\mathbb{R}}$  for arbitrary PRBT iso-class t. (Note: this permits to implement the operation of summation over coefficients)

Definition

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

let  $|X_0\rangle \in \widehat{\mathbf{C}}$  denote the **initial state** 





(12)

implement the operation of summation over coefficients)

Let  $\widehat{\mathbf{G}}$  be a linear operator (the **generator**), Definition let  $|X_0\rangle \in \widehat{\mathbf{C}}$  denote the **initial state** 

**Definition** Let  $\langle |$  be defined via  $\langle | t \rangle := 1_{\mathbb{R}}$  for arbitrary PRBT iso-class t. (Note: this permits to



(12)



implement the operation of **summation over coefficients**)

Definition many) pattern observables, and let  $|X_0\rangle \in \widehat{C}$  denote the initial state

**Definition** Let  $\langle |$  be defined via  $\langle | t \rangle := 1_{\mathbb{R}}$  for arbitrary PRBT iso-class t. (Note: this permits to

Let  $\widehat{G}$  be a linear operator (the **generator**), let  $\widehat{O}_1, \ldots, \widehat{O}_m$  be a choice of (finitely

$$e^{\underline{\omega}\cdot\hat{O}}e^{\lambda\,\hat{G}}\ket{X_0}$$

Nicolas Behr, CAP'21, IHÉS, November 30, 2021



(12)

implement the operation of **summation over coefficients**)

Let  $\widehat{G}$  be a linear operator (the **generator**), let  $\widehat{O}_1, \ldots, \widehat{O}_m$  be a choice of (finitely Definition many) pattern observables, and let  $|X_0\rangle \in \widehat{C}$  denote the initial state. Then the exponential moment-generating function (EMGF)  $\mathcal{G}(\lambda; \underline{\omega})$  is defined as

 $\mathcal{G}(\lambda;\underline{\omega}) :=$ 

formal variables.

**Definition** Let  $\langle |$  be defined via  $\langle | t \rangle := 1_{\mathbb{R}}$  for arbitrary PRBT iso-class t. (Note: this permits to

$$= \langle | e^{\underline{\omega} \cdot \hat{O}} e^{\lambda \hat{G}} | X_0 \rangle$$
(12)

Here, we employed the shorthand notation  $\underline{\omega} \cdot \widehat{\underline{O}} := \sum_{j=1}^{m} \omega_j \widehat{O}_j$ , and  $\lambda$  as well as  $\omega_1, \ldots, \omega_m$  are



#### The formal EMGF evolution equation for $\mathcal{G}(\lambda; \underline{\omega})$ reads as follows:

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

#### $\frac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \langle |\left(e^{ad_{\underline{\omega}}\cdot\underline{\hat{o}}}\,\hat{G}\right)\,e^{\underline{\omega}\cdot\underline{\hat{O}}}\,e^{\lambda\,\hat{G}}\,|X_0\rangle \qquad (ad_A(B):=AB-BA)$ (15)

#### The formal EMGF evolution equation for $\mathcal{G}(\lambda; \underline{\omega})$ reads as follows:

$$\frac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \langle |\left(e^{ad_{\underline{\omega}}\cdot\underline{\hat{o}}}\,\hat{G}\right)\,e^{\underline{\omega}\cdot\underline{\hat{O}}}\,e^{\lambda\,\hat{G}}\,|X_0\rangle \qquad (ad_A(B):=AB-BA) \tag{15}$$

Applying the version of the **jump-closure theorem** appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper evolution equation on formal power series if the following polynomial jump-closure holds:

$$(\mathsf{PJC}') \quad \forall q \in \mathbb{Z}_{\geq 0} : \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R} : \ \langle | ad_{\underline{\omega} \cdot \underline{\hat{O}}}^{\circ q}(\hat{G}) = \sum_{\underline{k}=\underline{0}}^{\underline{N(q)}} \gamma_{\underline{k}}(\underline{\omega}, \underline{k}) \, \langle | \underline{\hat{O}}^{\underline{k}}$$
(16)

#### The formal EMGF evolution equation for $\mathcal{G}(\lambda; \underline{\omega})$ reads as follows:

$$rac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \langle | \left( e^{ad_{\underline{\omega}}\cdot\hat{\underline{o}}} \hat{G} 
ight) e^{\underline{\omega}\cdot\underline{\hat{o}}} \hat{G} 
ight) e^{\underline{\omega}\cdot\underline{\hat{o}}}$$

Applying the version of the **jump-closure theorem** appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper **evolution equation on formal power series** if the following **polynomial jump-closure** holds:

$$(\mathsf{PJC}') \quad \forall q \in \mathbb{Z}_{\geq 0} : \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R} : \ \langle | ad_{\underline{\omega} \cdot \underline{\hat{O}}}^{\circ q}(\hat{G}) = \sum_{\underline{k}=\underline{0}}^{\underline{N(q)}} \gamma_{\underline{k}}(\underline{\omega}, \underline{k}) \, \langle | \underline{\hat{O}}^{\underline{k}}$$
(16)

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

or  $\mathcal{G}(\lambda;\underline{\omega})$  reads as follows:  $\hat{\mathcal{G}}e^{\lambda\hat{G}}|X_0\rangle \qquad (ad_A(B):=AB-BA)$ (15)



#### The formal EMGF evolution equation for $\mathcal{G}(\lambda; \underline{\omega})$ reads as follows:

$$rac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \langle | \left( e^{ad_{\underline{\omega}}\cdot\hat{\underline{o}}} \hat{G} 
ight) e^{\underline{\omega}\cdot\underline{\hat{o}}} \hat{G} 
ight) e^{\underline{\omega}\cdot\underline{\hat{o}}}$$

Applying the version of the **jump-closure theorem** appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper **evolution equation on formal power series** if the following **polynomial jump-closure** holds:

$$(\mathsf{PJC}') \quad \forall q \in \mathbb{Z}_{\geq 0} : \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R} : \ \langle | ad_{\underline{\omega} \cdot \underline{\hat{O}}}^{\circ q}(\hat{G}) = \sum_{\underline{k}=\underline{0}}^{\underline{N(q)}} \gamma_{\underline{k}}(\underline{\omega}, \underline{k}) \, \langle | \underline{\hat{O}}^{\underline{k}}$$
(16)

If a given set of observables satisfies (PJC'), the formal evolution equation (12) for the EMGF  $\mathcal{G}(\lambda; \underline{\omega})$  may be refined into

$$\frac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \mathbb{G}(\underline{\omega},\underline{\partial\omega})\mathcal{G}(\lambda;\underline{\omega}),$$

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

or  $\mathcal{G}(\lambda;\underline{\omega})$  reads as follows:  $\frac{\hat{\mathcal{O}}}{\hat{\mathcal{O}}}e^{\lambda\hat{\mathcal{G}}}|X_0\rangle \qquad (ad_A(B):=AB-BA)$ (15)

$$\mathbb{G}(\underline{\omega},\underline{\partial}\underline{\omega}) = \left( \left\langle \left| e^{ad_{\underline{\omega}} \cdot \underline{\hat{o}}}(\hat{G}) \right\rangle \right|_{\underline{\hat{O}} \mapsto \underline{\partial}\underline{\omega}} \right.$$
(17)



### 



**On Stochastic Rewriting and Combinatorics** via Rule-Algebraic Methods\*

> Nicolas Behr Université de Paris, CNRS, IRIF F-75006, Paris, France nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the relationship of stochastic rewriting systems described in terms of continuous-time Markov chains, their embedded discrete-time Markov chains and certain types of generating function expressions in combinatorics. We introduce a number of generating function techniques that permit a novel form of static analysis for rewriting systems based upon marginalizing distributions over the states of the rewriting systems via pattern-counting observables.











**On Stochastic Rewriting and Combinatorics** via Rule-Algebraic Methods\*

> ersité de Paris, CNRS, IRIF F-75006, Paris, France nicolas.behr@irif.f

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the relationship of stochastic rewriting systems described in terms of continuous-time Markov chains, dded discrete-time Markov chains and certain types of generating function expressions in prics. We introduce a number of generating function techniques that permit a novel form f static analysis for rewriting systems based upon marginalizing distributions over the states of the



 $O_E := *$ Pattern E: an edge of any type





**On Stochastic Rewriting and Combinatorics** via Rule-Algebraic Methods\*

> rsité de Paris, CNRS, IRIF F-75006, Paris, France nicolas bebr@irif f

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the relationship of stochastic rewriting systems described in terms of continuous-time Markov chains, lded discrete-time Markov chains and certain types of generating function expressions in rics. We introduce a number of generating function techniques that permit a novel form



Pattern E : an edge of any type  $O_E :=$ 



 $\begin{cases} \frac{\partial}{\partial\lambda} \mathscr{G}(\lambda;\varepsilon) = 2e^{2\varepsilon} \frac{\partial}{\partial\varepsilon} \mathscr{G}(\lambda;\varepsilon) \\ \mathscr{G}(0;\varepsilon) = \langle |e^{\varepsilon \hat{O}_E}|| \rangle = e^{\varepsilon} \end{cases} \Rightarrow$ 



#### **On Stochastic Rewriting and Combinatorics** via Rule-Algebraic Methods\*

rsité de Paris, CNRS, IRIF F-75006, Paris, Franc icolas bebr@irif

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the elationship of stochastic rewriting systems described in terms of continuous-time Markov chains, d discrete-time Markov chains and certain types of generating function expressions in ics. We introduce a number of generating function techniques that permit a novel form

$$\mathscr{G}(\lambda; \varepsilon) = \frac{1}{\sqrt{e^{-2\varepsilon} - 4\lambda}} = \sum_{n \ge 0} \frac{\lambda^n}{n!} \left( \frac{(2n)!}{n!} e^{\varepsilon(2n+1)} \right)$$



























$$\begin{split} \hat{A}\hat{G} ||\rangle, \quad \underline{\omega} \cdot \underline{\hat{O}} := \varepsilon \hat{O}_{E} + \gamma \hat{O}_{P1} + \mu \hat{O}_{P2} + \nu \hat{O}_{P3} \\ \hat{P}(\hat{G}) e^{\underline{\omega} \cdot \underline{\hat{O}}} e^{\lambda \hat{G}} ||\rangle \stackrel{(*)}{=} \langle | \left( e^{ad_{\nu \hat{O}_{P3}}} \left( e^{ad_{\mu \hat{O}_{P2}}} \left( e^{ad_{\varepsilon \hat{O}_{E}} + \gamma \hat{O}_{P1}} \left( \hat{G} \right) \right) \right) \right) e^{\underline{\omega} \cdot \underline{\hat{O}}} \\ \langle e^{ad_{\nu \hat{O}_{P3}}} \left( e^{ad_{\mu \hat{O}_{P2}}} \left( \hat{G} \right) \right) e^{\underline{\omega} \cdot \underline{\hat{O}}} e^{\lambda \hat{G}} ||\rangle \\ \langle e^{ad_{\nu \hat{O}_{P3}}} \left( \hat{G} + \left( e^{\mu} - 1 \right) \left[ \hat{O}_{P2}, \hat{G} \right] \right) \right) e^{\underline{\omega} \cdot \underline{\hat{O}}} e^{\lambda \hat{G}} ||\rangle \\ \hat{\zeta}' + (e^{\mu} - 1) \left[ \hat{O}_{P2}, \hat{G} \right] \\ + e^{\mu} (e^{\nu} - 1) \left[ \hat{O}_{P3}, \hat{G} \right] + (e^{\nu} - 1) (e^{\mu} - e^{-\nu}) \hat{R}_{P3'}) e^{\underline{\omega} \cdot \underline{\hat{O}}} e^{\lambda \hat{G}} ||\rangle \\ \hat{\zeta}' \hat{L}_{E} + 3 (e^{\mu} - 1) \left[ \hat{O}_{P3}, \hat{G} \right] + (e^{\nu} - 1) (e^{\mu} - e^{-\nu}) \hat{R}_{P3'}) e^{\underline{\omega} \cdot \underline{\hat{O}}} e^{\lambda \hat{G}} ||\rangle \\ \hat{\zeta}_{\hat{O}E} + 3 (e^{\mu} - 1) \left[ \hat{\partial}_{\hat{P}3} + (4e^{\mu} + \nu - 6e^{\mu} + 2) \hat{\partial}_{\hat{P}4} + (3e^{\mu} + e^{-\nu} + 3e^{\mu} + \nu - 6e^{\mu} + 2) \frac{\partial}{\partial\mu} + (3e^{\mu} + e^{-\nu} + 3e^{\mu} + \nu - 6e^{\mu} + 2) \frac{\partial}{\partial\mu} + (3e^{\mu} + e^{-\nu} + 3e^{\mu} + \nu - 6e^{\mu} + 2) \frac{\partial}{\partial\mu} + (3e^{\mu} + e^{-\nu} + 3e^{\mu} + \nu - 6e^{\mu} + 2) \frac{\partial}{\partial\mu} + (3e^{\mu} + e^{-\nu} + 3e^{\mu} + \nu - 6e^{\mu} + 2) \frac{\partial}{\partial\mu} + (4e^{\mu} + \nu - 6e^{\mu} + 2) \frac{\partial}{\partial\mu} + (4e^{\mu} + 2e^{-\nu} + 3e^{\mu} + 3e^{\mu} + 2e^{-\nu} + 3e^{\mu} + 3e^{\mu} + 2e^{-\nu} + 3e^{\mu} + 3$$



### $|e^{\lambda \hat{G}}|\rangle$

$$\hat{O}_{P1} := \bigvee_{\mathbb{T}} \equiv \sum_{T \in \{I, L, R\}} \bigvee_{\mathbb{T}} f_{T}, \qquad \bigvee_{\mathbb{T}} \bigvee_{\mathbb{T}} f_{\mathbb{T}} \\ \hat{\emptyset}_{P2} := 0$$

 $\mathscr{G}(\lambda;\underline{\omega}) := \langle |e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle, \quad \underline{\omega}\cdot\hat{\underline{O}} := \varepsilon\hat{O}_E + \gamma\hat{O}_{P1} + \mu\hat{O}_{P2} + \nu\hat{O}_{P3}$  $\frac{\partial}{\partial\lambda}\mathscr{G}(\lambda;\underline{\omega}) = \langle | \left( e^{ad_{\underline{\omega}}\cdot\hat{\underline{o}}}(\hat{G}) \right) e^{\underline{\omega}\cdot\hat{\underline{O}}} e^{\lambda\hat{G}} | | \rangle \stackrel{(*)}{=} \langle | \left( e^{ad_{\nu\hat{O}_{P3}}} \left( e^{ad_{\mu\hat{O}_{P2}}} \left( e^{ad_{\varepsilon\hat{O}_E} + \gamma\hat{O}_{P1}}(\hat{G}) \right) \right) \right) e^{\underline{\omega}\cdot\hat{\underline{O}}} e^{\lambda\hat{G}} | | \rangle$  $=e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{v\hat{O}_{P3}}}\left(e^{ad_{\mu\hat{O}_{P2}}}(\hat{G})\right)\right)e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||\rangle$  $=e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{v\hat{O}_{P3}}}\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P2},\hat{G}]\right)\right)e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||\rangle$  $= e^{2\varepsilon + \gamma} \langle | (\hat{G} + (e^{\mu} - 1) [\hat{O}_{P2}, \hat{G}] \rangle$  $=e^{2\varepsilon+\gamma}\langle |(2\hat{O}_{E}+3(e^{\mu}-1)\hat{O}_{P1}+(4e^{\mu+\nu}-6e^{\mu}+2)\hat{O}_{P2})\rangle |$ + $(3e^{\mu}+e^{-\nu}-3e^{\mu+\nu}-1)\hat{O}_{P3}e^{\underline{\omega}\cdot\underline{\hat{O}}}e^{\lambda\hat{G}}||\rangle$  $=e^{2\varepsilon+\gamma}\langle |\left(2\frac{\partial}{\partial\varepsilon}+3(e^{\mu}-1)\frac{\partial}{\partial\gamma}+(4e^{\mu+\nu}-6e^{\mu}+2)\frac{\partial}{\partial\mu}\right.$ + $(3q^{\mu} e^{-\nu} - 3e^{\mu+\nu} - 1)\frac{\partial}{\partial\nu}e^{\hat{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}|\rangle$ 

$$[\hat{O}_{P2},\hat{G}] = \bigvee_{i} + \bigvee_{i} + \bigvee_{i} + \bigvee_{i} - \bigvee_{i} - \bigvee_{i}$$

$$[\hat{O}_{P3},\hat{G}] = \bigvee_{i} + \bigvee_{i} + \bigvee_{i} + \bigvee_{i} + \bigvee_{i} - \bigvee_{i} + \bigvee_{i} - \bigwedge_{i} + \bigvee_{i} - \hat{R}_{P3}$$
$$[\hat{O}_{P2},[\hat{O}_{P2},\hat{G}]] = [\hat{O}_{P2},\hat{G}], \quad [\hat{O}_{P2},[\hat{O}_{P3},\hat{G}]] = [\hat{O}_{P3},\hat{G}] + \hat{R}_{P3}$$

 $[\hat{O}_{P3}, [\hat{O}_{P3}, \hat{G}]] = [\hat{O}_{P3}, \hat{G}] + 2\hat{R}_{P3'}, \quad [\hat{O}_{P2}, \hat{R}_{P3'}] = 0, \quad [\hat{O}_{P3}, \hat{R}_{P3'}] = -\hat{R}_{P3'}$  $\langle | [\hat{O}_{P2}, \hat{G}] = \langle | (3\hat{O}_{P1} - 2\hat{O}_{P2}), \langle | [\hat{O}_{P3}, \hat{G}] = \langle | (4\hat{O}_{P2} - 3\hat{O}_{P2}), \rangle$ 

 $\hat{\mathbf{I}} = \hat{\mathcal{D}} \mathscr{G}(\lambda \hat{\mathbf{I}}; \underline{\ln x}) \hat{\mathbf{I}} = \hat{\mathcal{D}} \mathscr{G}(\hat{\mathbf{I}}; \underline{\ln x})$ 





Granted that the derivation of the evolution equation for  $\mathscr{G}(\lambda; \underline{\omega})$  is somewhat involved, one may extract from it a very interesting insight via a transformation of variables  $\omega_i \rightarrow \ln x_i$  (which entails that and collecting operation ts for the openators h





$$\hat{O}_{P1}:=\bigvee_{*}\equiv\sum_{T\in\{I,L,R\}}\bigvee_{T},\ \hat{O}_{P2}:=\bigvee_{*}\equiv\sum_{T\in\{I,L,R\}}\bigvee_{T},\ \hat{C}_{P2}$$

$$\begin{split} \mathscr{G}(\lambda;\underline{\omega}) &:= \langle |e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||\rangle, \quad \underline{\omega}\cdot\hat{Q} := \varepsilon\hat{O}_{E}\\ \frac{\partial}{\partial\lambda}\mathscr{G}(\lambda;\underline{\omega}) &= \langle |\left(e^{ad_{\underline{\omega}\cdot\hat{Q}}}(\hat{G})\right)e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||\rangle \stackrel{(*)}{=} \langle |\\ &= e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{v\hat{O}_{P3}}}\left(e^{ad_{\mu\hat{O}_{P2}}}(\hat{G})\right)\right)\right)\\ &= e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{v\hat{O}_{P3}}}\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P2},\hat{G}]\right)\right)\\ &= e^{2\varepsilon+\gamma}\langle |\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P3},\hat{G}]+\right.\\ &= e^{2\varepsilon+\gamma}\langle |\left(2\hat{O}_{E}+3(e^{\mu}-1)\hat{O}_{P1}+\right.\\ &\quad +(3e^{\mu}+e^{-\nu}-3e^{\mu+\nu}-1)\hat{O}_{P1}+\right. \end{split}$$

$$= e^{2\varepsilon + \gamma} \langle | \left( 2\frac{\partial}{\partial\varepsilon} + 3(e^{\mu} - 1)\frac{\partial}{\partial\gamma} + (e^{\mu} -$$

 $[\hat{O}_{P2},\hat{G}]) e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||
angle$  $-(e^{\nu}-1)(e^{\mu}-e^{-\nu})\hat{R}_{P3'})e^{\underline{\omega}\cdot\underline{\hat{O}}}e^{\lambda\hat{G}}||\rangle$  $+(4e^{\mu+\nu}-6e^{\mu}+2)\hat{O}_{P2}$  $\hat{R}_{P3'} :=$  $(-1)\hat{O}_{P3}e^{\underline{\omega}\cdot\underline{\hat{O}}}e^{\lambda\hat{G}}|\rangle$  $(4e^{\mu+\nu}-6e^{\mu}+2)\frac{\partial}{\partial\mu}$  $[\hat{O}_{P3},\hat{G}] = (++) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+$  $(-1)\frac{\partial}{\partial v} e^{\underline{\omega}\cdot \hat{Q}} e^{\lambda \hat{G}} | \rangle$  $[\hat{O}_{P2}, [\hat{O}_{P2}, \hat{G}]] = [\hat{O}_{P2}, \hat{G}], \quad [\hat{O}_{P2}, [\hat{O}_{P3}, \hat{G}]] = [\hat{O}_{P3}, \hat{G}] + \hat{R}_{P3}$ Nicolas Behr, CAP'21, IHÉS, November 30, 2021









$$\hat{O}_{P1}:=\bigvee_{*}\equiv\sum_{T\in\{I,L,R\}}\bigvee_{T},\ \hat{O}_{P2}:=\bigvee_{*}\equiv\sum_{T\in\{I,L,R\}}\bigvee_{T},\ \hat{C}_{P2}$$

$$\begin{split} \mathscr{G}(\lambda;\underline{\omega}) &:= \langle |e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||\rangle, \quad \underline{\omega}\cdot\hat{Q} := \varepsilon\hat{O}_{E}\\ \frac{\partial}{\partial\lambda}\mathscr{G}(\lambda;\underline{\omega}) &= \langle |\left(e^{ad_{\underline{\omega}\cdot\hat{Q}}}(\hat{G})\right)e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||\rangle \stackrel{(*)}{=} \langle |\\ &= e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{v\hat{O}_{P3}}}\left(e^{ad_{\mu\hat{O}_{P2}}}(\hat{G})\right)\right)\right)\\ &= e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{v\hat{O}_{P3}}}\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P2},\hat{G}]\right)\right)\\ &= e^{2\varepsilon+\gamma}\langle |\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P3},\hat{G}]+\right.\\ &= e^{2\varepsilon+\gamma}\langle |\left(2\hat{O}_{E}+3(e^{\mu}-1)\hat{O}_{P1}+\right.\\ &\quad +(3e^{\mu}+e^{-\nu}-3e^{\mu+\nu}-1)\hat{O}_{P1}+\right.\\ \end{split}$$

$$= e^{2\varepsilon + \gamma} \langle | \left( 2\frac{\partial}{\partial\varepsilon} + 3(e^{\mu} - 1)\frac{\partial}{\partial\gamma} + (e^{\mu} -$$

 $[\hat{O}_{P2},\hat{G}]) e^{\underline{\omega}\cdot\hat{Q}}e^{\lambda\hat{G}}||
angle$  $-(e^{\nu}-1)(e^{\mu}-e^{-\nu})\hat{R}_{P3'})e^{\underline{\omega}\cdot\underline{\hat{O}}}e^{\lambda\hat{G}}||\rangle$  $+(4e^{\mu+\nu}-6e^{\mu}+2)\hat{O}_{P2}$  $\hat{R}_{P3'} :=$  $(-1)\hat{O}_{P3}e^{\underline{\omega}\cdot\underline{\hat{O}}}e^{\lambda\hat{G}}|\rangle$  $(4e^{\mu+\nu}-6e^{\mu}+2)\frac{\partial}{\partial\mu}$  $[\hat{O}_{P3},\hat{G}] = (++) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+) + (+$  $(-1)\frac{\partial}{\partial v} e^{\underline{\omega}\cdot \hat{Q}} e^{\lambda \hat{G}} | \rangle$  $[\hat{O}_{P2}, [\hat{O}_{P2}, \hat{G}]] = [\hat{O}_{P2}, \hat{G}], \quad [\hat{O}_{P2}, [\hat{O}_{P3}, \hat{G}]] = [\hat{O}_{P3}, \hat{G}] + \hat{R}_{P3}$ Nicolas Behr, CAP'21, IHÉS, November 30, 2021









#### The formal EMGF evolution equation for $\mathcal{G}(\lambda; \underline{\omega})$ reads as follows:

$$\frac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \langle |\left(e^{ad_{\underline{\omega}}\cdot\underline{\hat{o}}}\,\hat{G}\right)\,e^{\underline{\omega}\cdot\underline{\hat{O}}}\,e^{\lambda\,\hat{G}}\,|X_0\rangle \qquad (ad_A(B):=AB-BA) \tag{15}$$

Applying the version of the jump-closure theorem appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper evolution equation on formal power series if the following polynomial jump-closure holds:

$$(\mathsf{PJC}') \quad \forall q \in \mathbb{Z}_{\geq 0} : \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R} : \ \langle | \ ad_{\underline{\omega} \cdot \underline{\hat{O}}}^{\circ q}(\hat{G}) = \sum_{\underline{k}=\underline{0}}^{\underline{N(q)}} \gamma_{\underline{k}}(\underline{\omega}, \underline{k}) \, \langle | \, \underline{\hat{O}}^{\underline{k}}$$
(16)

If a given set of observables satisfies (PJC'), the formal evolution equation (12) for the EMGF  $\mathcal{G}(\lambda;\omega)$  may be refined into

$$\frac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \mathbb{G}(\underline{\omega},\underline{\partial\omega})\mathcal{G}(\lambda;\underline{\omega})$$

$$\mathbb{G}(\underline{\omega},\underline{\partial}\underline{\omega}) = \left( \left\langle \left| e^{ad_{\underline{\omega}} \cdot \underline{\hat{o}}} (\hat{G}) \right\rangle \right|_{\underline{\hat{O}} \mapsto \underline{\partial}\underline{\omega}} \right.$$
(17)

#### The formal EMGF evolution equation for $\mathcal{G}(\lambda; \underline{\omega})$ reads as follows:

$$rac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \langle | \left( e^{ad_{\underline{\omega}}\cdot\hat{\underline{o}}} \hat{G} 
ight) e^{\underline{\omega}\cdot\underline{\hat{o}}} \hat{G} 
ight) e^{\underline{\omega}\cdot\underline{\hat{o}}}$$

Applying the version of the **jump-closure theorem** appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper **evolution equation on formal power series** if the following **polynomial jump-closure** holds:

$$(\mathsf{PJC}') \quad \forall q \in \mathbb{Z}_{\geq 0} : \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R} : \ \langle | ad_{\underline{\omega} \cdot \underline{\hat{O}}}^{\circ q}(\hat{G}) = \sum_{\underline{k}=\underline{0}}^{\underline{N(q)}} \gamma_{\underline{k}}(\underline{\omega}, \underline{k}) \, \langle | \underline{\hat{O}}^{\underline{k}}$$
(16)

If a given set of observables satisfies (PJC'), the formal evolution equation (12) for the EMGF  $\mathcal{G}(\lambda; \underline{\omega})$  may be refined into

$$\frac{\partial}{\partial\lambda}\mathcal{G}(\lambda;\underline{\omega}) = \mathbb{G}(\underline{\omega},\underline{\partial\omega})\mathcal{G}(\lambda;\underline{\omega}),$$

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

or  $\mathcal{G}(\lambda;\underline{\omega})$  reads as follows:  $\frac{\hat{\mathcal{O}}}{\hat{\mathcal{O}}}e^{\lambda\hat{\mathcal{G}}}|X_0\rangle \qquad (ad_A(B):=AB-BA)$ (15)

$$\mathbb{G}(\underline{\omega},\underline{\partial}\underline{\omega}) = \left( \left\langle \left| e^{ad_{\underline{\omega}} \cdot \underline{\hat{o}}}(\hat{G}) \right\rangle \right|_{\underline{\hat{O}} \mapsto \underline{\partial}\underline{\omega}} \right.$$
(17)



### **Plan of the talk:**

# I. A Case Study in Applied Category Theory: from Categorical Rewriting to Rule-algebraic Combinatorics II. The coreact.wiki Initiative

Consortium: IRIF (UP), LIP (ENS-Lyon), LIX (École Polytechnique), Sophia-Antipolis (Inria)

| Partner                | Last name   | First name |
|------------------------|-------------|------------|
| Université de Paris    | BEHR        | Nicolas    |
|                        | GALLEGO     | Emilio     |
|                        | GHEERBRANT  | Amélie     |
|                        | HERBELIN    | Hugo       |
|                        | MELLIÈS     | Paul-André |
|                        | ROGOVA      | Alexandra  |
| ENS-Lyon               | HARMER      | Russell    |
|                        | HIRSCHOWITZ | Tom        |
|                        | POUS        | Damien     |
| École Polytechnique    | MIMRAM      | Samuel     |
|                        | WERNER      | Benjamin   |
|                        | ZEILBERGER  | Noam       |
| Inria Sophia-Antipolis | BERTOT      | Yves       |
|                        | COHEN       | Cyril      |
|                        | TASSI       | Enrico     |

#### COREACT Coq-based Rewriting: towards Executable Applied Category Theory



#### <u>coreact.wiki</u>
# Main objectives of the CoREACT/GReTA ExACT initiative

- Development of a methodology for **diagrammatic reasoning in Coq**
- **Formalization** (in Coq) and **certification** of a representative collection of axioms and theorems for compositional categorical rewriting theory
- Development of a Coq-enabled interactive database and wiki system
- Development of a CoREACT wiki-based "proof-by-pointing" engine
- Executable reference prototype algorithms from categorical structures in Coq (via the use of SMT solvers/theorem provers such as Z3)

# Main objectives of the CoREACT/GReTA ExACT initiative

- Development of a methodology for **diagrammatic reasoning in Coq**
- **Formalization** (in Coq) and **certification** of a representative collection of axioms and theorems for compositional categorical rewriting theory
- Development of a Coq-enabled interactive database and wiki system
- Development of a CoREACT wiki-based "proof-by-pointing" engine
- Executable reference prototype algorithms from categorical structures in Coq (via the use of SMT solvers/theorem provers such as Z3)

# A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT



https://ncatlab.org



# A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

|                            |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attp://planetmath.org     | ]          |                                            |        |
|----------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|--------------------------------------------|--------|
| No plab                    |                  |                  | G Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Repositories 64           | 🕅 Package  | es 🕺 People 2 📄 Project                    | ts     |
| Si ILab                    | <u>Home Page</u> | <u>All Pages</u> | Popular reposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ories                     |            |                                            |        |
| species                    |                  |                  | 00_General<br>● HTML ☆ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                         | Public     | <b>11_Number_theory</b><br>● HTML ☆ 16 양 9 | Public |
| Contents                   |                  |                  | fem2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | Public     | 68_Computer_science                        | Public |
| <u>1. Idea</u>             |                  |                  | 2016 Edition of the comparison | he Free Encyclopedia of M | athematics |                                            |        |
| 2. Definition              |                  |                  | <b>1</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |            | ●HTML ☆10 왕3                               |        |
| <u>1-categorical</u>       |                  |                  | 03_Mathemat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ical_logic_and_founda     | ati Public | 05_Combinatorics                           | Public |
| 2-categorical              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| (∞, <u>1)-categorical</u>  |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | https:                    | //pla      | netmath.org                                |        |
| Operations on species      |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | •          |                                            |        |
| Sum                        |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| Cauchy product             |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| Hadamard product           |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| Dirichlet product          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| Composition product        |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| 3. In Homotopy Type Theory |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| Operations on species      |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| Coproduct                  |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |
| Hadamard product           |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                            |        |

https://ncatlab.org



### (semi-) automatic cross-linking provided via NNexus system





# A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

|                            |                    |                  |                                             | http://planetmath.org          |                                     |           |
|----------------------------|--------------------|------------------|---------------------------------------------|--------------------------------|-------------------------------------|-----------|
| No. nl ab                  |                    |                  |                                             | Repositories 64 🕜 Packa        | ages 🛛 People 2 🛗 Project           | S         |
|                            | <u>Home Page</u>   | <u>All Pages</u> | Popular repositories                        | S                              |                                     |           |
| species                    |                    |                  | <b>00_General</b><br>● HTML ☆ 22            | (Public)<br>양 4                | 11_Number_theory<br>● HTML ☆ 16 양 9 | Public    |
| Contents                   |                    |                  | fem2016                                     | Public                         | 68_Computer_science                 | Public    |
| <u>1. Idea</u>             |                    |                  | 2016 Edition of the Fre<br>(top-level repo) | ee Encyclopedia of Mathematics |                                     |           |
| 2. Definition              |                    |                  | <b>☆</b> 13                                 |                                | ●HTML ☆ 10 😵 3                      |           |
| <u>1-categorical</u>       |                    |                  | 03_Mathematical_                            | _logic_and_foundati            | 05_Combinatorics                    | Public    |
| 2-categorical              |                    |                  |                                             |                                |                                     |           |
| (∞, 1)-categorical         | (∞, 1)-categorical |                  |                                             | https://planetmath.org         |                                     |           |
| Operations on species      |                    |                  |                                             |                                |                                     |           |
| Sum                        |                    |                  |                                             |                                |                                     |           |
| Cauchy product             |                    |                  |                                             |                                |                                     |           |
| Hadamard product           |                    |                  |                                             |                                | I I                                 |           |
| Dirichlet product          |                    |                  |                                             |                                | ₹ <u>₹</u> .                        |           |
| Composition product        |                    |                  |                                             |                                |                                     |           |
| 3. In Homotopy Type Theory |                    |                  |                                             |                                |                                     |           |
| Operations on species      |                    |                  |                                             | ker                            | oaon                                |           |
| <u>Coproduct</u>           |                    |                  | an online r                                 | resource for hom               | otony-cohorent ma                   | thematics |
| Hadamard product           |                    |                  |                                             |                                |                                     |           |
|                            |                    |                  |                                             |                                |                                     |           |

https://ncatlab.org



https://kerodon.net



(semi-) automatic cross-linking provided via **NNexus** system

- J. Lurie's online textbook on • categorical homotopy theory
- technology based upon online • tags view via the Gerby system

### Gerby

online tag-based view for large LaTeX documents

https://gerby-project.github.io







# A (very non-exhaustive!) view on proof assistants in mathematics



# https://github.com/agda

# The Coq Proof Assistant

# https://coq.inria.fr



Microsoft Research

https://leanprover.github.io

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

Hu Jason, CPP21: "Formalizing Category Theory in Agda"

https://youtu.be/a2txkoybw2M

EPIT Spring School on HoTT: **Bas Spitters** Part 1 (Introduction to Coq and HoTT)

https://youtu.be/k8T9L0qR38o



Jeremy Avigad: "Formal mathematics, dependent type theory, and the Topos Institute"

https://youtu.be/Kpa8cCUZLms

Kevin Buzzard: "What is the point of Lean's maths library?'

https://youtu.be/alByz\_LoANE



# A (very non-exhaustive!) view on proof assistants in mathematics



# https://github.com/agda

# The Coq Proof Assistant https://coq.inria.fr



Microsoft Research

https://leanprover.github.io

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

Hu Jason, CPP21: "Formalizing Category Theory in Agda"

https://youtu.be/a2txkoybw2M

EPIT Spring School on HoTT: **Bas Spitters** Part 1 (Introduction to Coq and HoTT)

https://youtu.be/k8T9L0qR38o



Jeremy Avigad: "Formal mathematics, dependent type theory, and the Topos Institute"

https://youtu.be/Kpa8cCUZLms

Kevin Buzzard: "What is the point of Lean's maths library?'

https://youtu.be/alByz\_LoANE









# Coq – overview

# The Coq Proof Assistant

# https://coq.inria.fr

- Thierry Coquand and Gérard Huet
- and **Benjamin Werner** (start of the SSReflect development)
- · (...)
- · (...)
- version: **8.14**)

# 1984 implementation of the Calculus of Constructions at INRIA-Rocquencourt by

# 1991 Calculus of Inductive Constructions (CIC) by Christine Paulin-Mohring 2002 completion of the four color theorem proof in Coq by Georges Gonthier

# • 2012 completion of the Feit-Thompson theorem by Georges Gonthier et al.

more than 200 people contributed over the past >30 years (most recent stable)



# Coq – famous milestones





### SOFTWARE FOUNDATIONS

#### The Software Foundations series is a broad introduction to the mathematical underpinnings of reliable software.

The principal novelty of the series is that every detail is one hundred percent formalized and machine-checked: the entire text of each volume, including the exercises, is literally a "proof script" for the Coq proof assistant.

The exposition is intended for a broad range of readers, from advanced undergraduates to PhD students and researchers. No specific background in logic or programming languages is assumed, though a degree of mathematical maturity is helpful. A one-semester course can expect to cover Logical Foundations plus most of Programming Language Foundations or Verified Functional Algorithms, or selections from both.





#### Algebraic Combinatorics in Coq/SSReflect Documentation

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

| 🖵 math-c                               | 🖬 math-comp / Coq-Combi Public |  |  |  |  |  |  |
|----------------------------------------|--------------------------------|--|--|--|--|--|--|
| Code Issues 1 11 Pull requests Actions |                                |  |  |  |  |  |  |
| រុះ master 🚽 រុំ 19 branches 🕤 7 tags  |                                |  |  |  |  |  |  |
| hivert Transfert to mathcomp           |                                |  |  |  |  |  |  |
| Author: Florent Hivert                 |                                |  |  |  |  |  |  |

https://github.com/math-comp/Coq-Combi



#### Algebraic Combinatorics in Coq/SSReflect Documentation





### **Shapes and Integer Partitions**

Partitions (and more generally shapes) are stored by terms of type seq (seq nat). We define the following predicates and operations on seq (seq nat): (r, c) is in sh if r < sh[i]</pre>

- is in shape sh r c == the box with coordinate (r, c) belongs to the shape sh, that is: c < sh[r].
- is box in shape (r, c) == uncurried version: same as is in shape sh r c.
- box in sh == a sigma type for boxes in sh : { b | is box in shape sh b } is is canonically a subFinType.
- enum box in sh == a full duplicate free list of the boxes in sh. **Integer Partitions:** 
  - is part sh == sh is a partition
  - rem trail0 sh == remove the trailing zeroes of a shape
  - is add corner sh i == i is the row of an addable corner of sh
  - is rem corner sh i == i is the row of a removable corner of sh
  - incr\_nth sh i == the shape obtained by adding a box at the end of the i-th row. This gives a partition if i is an addable corner of sh (Lemma is part incr nth)
  - decr nth sh i == the shape obtained by removing a box at the end of the i-th row. This gives a partition if i is an removable corner of sh

Section PartCombClass.

#### **Sigma Types for Partitions**

```
Structure intpart : Type := IntPart {pval :> seq nat; _ : is_part pval}.
Canonical intpart subType := Eval hnf in [subType for pval].
Definition intpart_eqMixin := Eval hnf in [eqMixin of intpart by <:].
Canonical intpart eqType := Eval hnf in EqType intpart intpart eqMixin.
Definition intpart choiceMixin := Eval hnf in [choiceMixin of intpart by <:].
Canonical intpart_choiceType := Eval hnf in ChoiceType intpart intpart_choiceMixin.
Definition intpart_countMixin := Eval hnf in [countMixin of intpart by <:].
Canonical intpart countType := Eval hnf in CountType intpart intpart countMixin.
Lemma intpartP (p : intpart) : is part p.
Hint Resolve intpartP.
Canonical conj_intpart p := IntPart (is_part_conj (intpartP p)).
Lemma conj intpartK : involutive conj intpart.
Lemma intpart_sum_inj (s t : intpart) :
  (\forall k, part sum s k = part sum t k) \rightarrow s = t.
Fixpoint enum_partnsk sm sz mx : (seq (seq nat)) :=
 if sz is sz.+1 then
    flatten [seq [seq i :: p | p <- enum partnsk (sm - i) sz i] | i <- iota 1 (minn sm mx)]</pre>
  else if sm is sm.+1 then [::] else [:: [::]].
Definition enum partns sm sz := enum partnsk sm sz sm.
Definition enum partn sm := flatten [seq enum partns sm sz | sz <- iota 0 sm.+1 ].
```



# **Major usability concerns (?)**

- Difficult and work-intensive to **install/compile from source** on some systems
- As both a **proof assistant** and a **programming language**, understanding the theory behind Coq and

- examples

. . .

acquiring a working knowledge of the semantics/technical peculiarities of the Cog system is quite work-intensive

### • Finding and analyzing proofs is mostly a manual (if assisted) process – standardization and searchability?

• Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging

• **"Burden of interdisciplinarity"** — documenting a given piece of mathematical knowledge in a wiki system requires substantial amounts of **human-readable** and potentially highly technical text, potentially with very involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form of programming which has to be aided by some form of **Coq API** documentation and ideally a library of **code** 



# **Major usability concerns (?)**

- Difficult and work-intensive to **install/compile from source** on some systems
- As both a **proof assistant** and a **programming language**, understanding the theory behind Coq and

- examples





Nicolas Behr, CAP'21, IHÉS, November 30, 2021

acquiring a working knowledge of the semantics/technical peculiarities of the Cog system is quite work-intensive

### • Finding and analyzing proofs is mostly a manual (if assisted) process — standardization and searchability?

• Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging

• **"Burden of interdisciplinarity"** — documenting a given piece of mathematical knowledge in a wiki system requires substantial amounts of **human-readable** and potentially highly technical text, potentially with very involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form of programming which has to be aided by some form of **Coq API** documentation and ideally a library of **code** 

https://youtu.be/4084o1hk1Qs



# ISCOQ

|                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                          | r> 🗗                                                                                                                                               |                                                                                                                           |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Welco                                                                                 | ome to the j                                                                                                                  | sCoq Interactive Online S                                                                                                                                                                                                                                | System!                                                                                                                                            | Goals                                                                                                                     |
| Welcome<br>Theorem                                                                    | to the jsCoq tech<br>prover, and is a c                                                                                       | nology demo! jsCoq is an interactive, w<br>collaborative development effort. See the                                                                                                                                                                     | eb-based environment for the Coq<br>e list of contributors below.                                                                                  | jsCoq (0.13.3), Coq 8.13.2/81300 (September 2021),<br>compiled on Sep 21 2021 15:32:50<br>OCaml 4.12.0, Js of ocaml 3.9.0 |
| sCoq is o<br>We await                                                                 | open source. If yo<br>your feedback at                                                                                        | u find any problem or want to make any GitHub and Zulip.                                                                                                                                                                                                 | contribution, you are extremely welcome!                                                                                                           |                                                                                                                           |
| Instruct                                                                              | ions:                                                                                                                         |                                                                                                                                                                                                                                                          |                                                                                                                                                    |                                                                                                                           |
| The follow<br>the page<br>viewing in                                                  | wing document co<br>. Once jsCoq finis<br>ntermediate proof                                                                   | ntains embedded Coq code. All the cod<br>hes loading, you are free to experiment<br>states on the right panel.                                                                                                                                           | le is editable and can be run directly on<br>by stepping through the proof and                                                                     | Coq worker is ready.<br>===> Loaded packages [init]                                                                       |
| Actions:                                                                              |                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                    |                                                                                                                           |
| Button                                                                                | Key binding                                                                                                                   | Action                                                                                                                                                                                                                                                   | ]                                                                                                                                                  |                                                                                                                           |
| **                                                                                    | $\frac{Alt}{Alt} + \frac{1}{N} / \frac{1}{P}$                                                                                 | Move through the proof.                                                                                                                                                                                                                                  |                                                                                                                                                    |                                                                                                                           |
| <b>♦</b> ] <b></b>                                                                    | Alt + Enter Or<br>Alt + →                                                                                                     | Run (or go back) to the current point.                                                                                                                                                                                                                   |                                                                                                                                                    |                                                                                                                           |
| 0                                                                                     | F8                                                                                                                            | Toggles the goal panel.                                                                                                                                                                                                                                  |                                                                                                                                                    |                                                                                                                           |
| Creating<br>The scra<br>other use<br>A First<br>If you are<br>we displa<br>ibrary fro | tchpad offers simplers in a manner that<br>Example: The lag new to Coq, cheat<br>a new to Coq, cheat<br>any a proof of the in | scripts:<br>ole, local storage functionality. It also allo<br>at is similar to Pastebin.<br>Infinitude of Primes<br>ck out this introductory tutorial by Mike N<br>finitude of primes in Coq. The proof relie<br>team led by Georges Gonthier, so our fi | was you to share your development with<br>Nahas. As a more advanced showcase,<br>es on the Mathematical Components<br>rst step will be to load it: |                                                                                                                           |
| ,                                                                                     | m Coq Require<br>m mathcomp Re                                                                                                | Import ssreflect ssrfun ssrb<br>quire Import eqtype ssrnat di                                                                                                                                                                                            | ool.<br>v prime.                                                                                                                                   | <pre>Coq.Init.Logic_Type loaded.<br/>Coq.Init.Specif loaded.</pre>                                                        |
| 1 Fro<br>2 Fro                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                    | Coq.Init.Decimal loaded.                                                                                                  |
| 1 Fro<br>2 Fro<br><i>Ready to</i>                                                     | o do Proofs!                                                                                                                  |                                                                                                                                                                                                                                                          |                                                                                                                                                    | Cog Init Hovadoginal loadod                                                                                               |
| 1 Fro<br>2 Fro<br><i>Ready to</i><br>Once the                                         | o <i>do Proofs!</i><br>basic environmer                                                                                       | nt has been set up, we can proceed to tl                                                                                                                                                                                                                 | he proof:                                                                                                                                          | Coq.Init.Hexadecimal loaded.<br>Coq.Init.Number loaded.                                                                   |

### ♂ Core developer team

- Emilio Jesús Gallego Arias , Inria, Université de Paris, IRIF
- Shachar Itzhaky, Technion

### Past Contributors

• Benoît Pin, CRI, MINES ParisTech

# https://github.com/jscoq





# jsCoq

Core dev

### Welcome to the jsCoq Interactive Online System!

Welcome to the jsCoq technology demo! jsCoq is an interactive, web-based environment for Theorem prover, and is a collaborative development effort. See the list of contributors below.

jsCoq is open source. If you find any problem or want to make any contribution, you are extremely We await your feedback at GitHub and Zulip.

#### Instructions:

The following document contains embedded Coq code. All the code is editable and can be rul the page. Once jsCoq finishes loading, you are free to experiment by stepping through the proviewing intermediate proof states on the right panel.

#### Actions:

| Button              | Key binding                                                                             | Action                                 |
|---------------------|-----------------------------------------------------------------------------------------|----------------------------------------|
| **                  | $\frac{Alt}{Alt} + \frac{1}{\sqrt{P}} $ or $\frac{Alt}{\sqrt{P}} + \frac{1}{\sqrt{P}} $ | Move through the proof.                |
| <b>♦</b> [ <b>♦</b> | Alt + Enter Or<br>Alt + $\rightarrow$                                                   | Run (or go back) to the current point. |
| 0                   | F8                                                                                      | Toggles the goal panel.                |

#### Creating your own proof scripts:

The scratchpad offers simple, local storage functionality. It also allows you to share your deve other users in a manner that is similar to Pastebin.

#### A First Example: The Infinitude of Primes

If you are new to Coq, check out this introductory tutorial by Mike Nahas. As a more advanced we display a proof of the infinitude of primes in Coq. The proof relies on the Mathematical Con library from the MSR/Inria team led by Georges Gonthier, so our first step will be to load it:

| • Emilio 、                 | 1 From Coq Require Import ssreflect ssrfun ssrbool. 2 From mathcomp Require Import eqtype ssrnat div prime.               |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Shacha</li> </ul> | <i>Ready to do Proofs!</i><br>Once the basic environment has been set up, we can proceed to the proof:                    |
| Past Con                   | <pre>3 (* A nice proof of the infinitude of primes, by Georges Gonthier<br/>4 Lemma prime_above m : {p   m 5 Proof.</pre> |
|                            |                                                                                                                           |

Benoît Pin, CRI, MINES ParisTech

| 📝 😃                 | 😴 🗙 🔶 📥 🔺 📲                                             | 0<br>0<br>0                                                                  |                        |
|---------------------|---------------------------------------------------------|------------------------------------------------------------------------------|------------------------|
|                     | Goals                                                   | •                                                                            |                        |
| the Coq             | <pre>jsCoq (0.13.3), Coq 8.13.2/81300 (September</pre>  | 2021),                                                                       |                        |
| emely welcome!      |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              | scuq                   |
| in directly on      | Coq worker is ready.                                    |                                                                              | -                      |
| oof and             | ===> Loaded packages [init]                             |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
| elopment with       |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
|                     |                                                         |                                                                              |                        |
| d showcase,         |                                                         |                                                                              |                        |
| mponents            |                                                         |                                                                              |                        |
|                     | Messages Info $\diamond$<br>UCOQ.INIC.Datatypes IDaded. | •                                                                            |                        |
|                     | Coq.Init.Logic_Type loaded.                             |                                                                              |                        |
|                     | Coq.Init.Decimal loaded.                                |                                                                              |                        |
|                     | Coq.Init.Hexadecimal loaded.                            |                                                                              |                        |
|                     | Coq.Init.Number loaded.                                 |                                                                              |                        |
| *)                  | Coq.Init.Byte loaded.                                   |                                                                              |                        |
|                     | Coq.Init.Numeral loaded.                                |                                                                              |                        |
| 58                  | Con Trit WE looded                                      | /iib/cog/ltac/tauto_plugip_cma_1                                             | tation_plugin.cma load |
| 59<br>60 (** ** Dec |                                                         | <pre>/lib/Coq/cc/cc_plugin.cma loaded /lib/Cog/firstondom/smound plusi</pre> | ·                      |
|                     |                                                         |                                                                              |                        |



# jsCoq

10 Proof.

11

12

13

14

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - apply mult_1_r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Defined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ome to the j                                 | jsCoq Interactive                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ie to the jsCoq tech<br>n prover, and is a c | nnology demo! jsCoq is an<br>collaborative development o                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lemma contr_stuff_spec (P : FinSet $\rightarrow$ Type) (HP : $\forall$ A, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| open source. If yo                           | ou find any problem or want                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ctions:                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | path_via (spec_from_stuff ( $\lambda \_ \Rightarrow$ Unit)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| owina document co                            | ontains embedded Cog cod                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul><li>apply path_stuff_spec. intro A.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e. Once jsCoq finis                          | hes loading, you are free to                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | apply equiv_contr_unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| intermediate proof                           | states on the right panel.                                                                                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - apply path_sigma_uncurried. refine (_; _).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Key binding                                  | Action                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + apply path_universe_uncurried.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alt $+ \downarrow / \uparrow$ or             | Move through the proof.                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | refine (equiv_adjointify).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Alt+N/P                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * apply pr <sub>1</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Alt + Enter Or<br>Alt + →                    | Run (or go back) to the c                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * apply $(\lambda A \Rightarrow (A; tt))$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| F8                                           | Toggles the goal panel.                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * intro A. reflexivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| g your own proof                             | scripts:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * intro A. apply path_sigma_hprop. reflexivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| atchpad offers simp                          | ole, local storage functiona                                                                                                                                                                                                                                                                                                                                                                                                                     | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + simpl. apply path_arrow. intro A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sers in a manner th                          | at is similar to Pastebin.                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | refine ((transport_arrow) @ _).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Example: The                                 | Infinitude of Primes                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | refine ((transport_const) @ _).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| re new to Coq, che                           | ck out this introductory tuto                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | path_via (transport idmap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| rom the MSR/Inria                            | team led by Georges Gont                                                                                                                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (path_universe_uncurried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| om Coq Require                               | Import ssreflect s                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (equiv_inverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| om mathcomp Re                               | equire Import eqtype                                                                                                                                                                                                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (equiv_adjointify pr <sub>1</sub> ( $\lambda A_0$ : FinSet $\Rightarrow$ (A <sub>0</sub> ; tt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <i>to do Proots!</i><br>e basic environme    | nt has been set up, we can                                                                                                                                                                                                                                                                                                                                                                                                                       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\lambda \ \overline{A_0} : FinSet \Rightarrow 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A nice proof                                 | of the infinitude of                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\lambda A_0 : \{ : FinSet \& Unit \} \Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mma prime_abov<br>oof.                       | 7em:{p m <p&]< th=""><th>40</th><th>path sigma hprop (let (proj1 sig, ) <math>:= A_0</math></th></p&]<>                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | path sigma hprop (let (proj1 sig, ) $:= A_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1))) A).1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>f_ap. f_ap. simpl. symmetry. apply path_universe_</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | path_via ((equiv_inverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (equiv adjointify pr <sub>1</sub> ( $\lambda A_0$ : FinSet $\Rightarrow$ (A <sub>0</sub> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\lambda \ \overline{A_0} : FinSet \rightarrow 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\lambda A_0 : \{ : FinSet \& Unit \} \Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ି ପି ପି                                      | ore deve                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | path sigma hprop (let (proj1 sig, ) :=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $A_0$ $1))) A).1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f ap. apply transport path universe uncurried.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                                            | Emilio J                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Defined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | Shachar                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lemma qf contr stuff spec (P : FinSet $\rightarrow$ Type) (HP : $\forall$ A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                              | Ondenar                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : $qf(spec from stuff P) n = qcard (BAut(Fin n)).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | refine ( @ (gf ensembles )). f ap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ି Pa                                         | ist Cont                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | apply contr stuff spec. apply HP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Defined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | Benoît E                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | Bonon                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (** ** Decidable (-1)-stuff *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                              | Come to the isCoq tech<br>n prover, and is a consist your feedback at<br>coord a copen source. If you<br>is open source. If you<br>conce isCoq finis<br>intermediate proof<br>intermediate proof<br>at high a differs simples<br>at the failed offers simples<br>at the memory of the in<br>room the MSR/Inria<br>om Coq Required<br>of at hoof source.<br>If a differs simples<br>to do Proofs!<br>the basic environme<br>a prime_about<br>oof. | come to the jsCoq Interactive         the to the jsCoq technology demol jsCoq is an in prover, and is a collaborative development or variative proves as a collaborative development or variative development or variatity development or variative development or v | Image: Section of the section of th |

| 9<br>10    | Lemma gf_ensembles (n : $\mathbb{N}$ ) : gf ensembles n = gcard (BAut (Fin n)).<br>Proof.                                                                       |                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 11         | unfold gf. path_via (gcard (BAut (Fin n)) * 1).                                                                                                                 |                                                          |
| 12         | - f_ap. unfold hfiber. simpl. path_via (gcard Unit).                                                                                                            |                                                          |
| 13         | + apply gcard_equiv'. apply equiv_contr_unit.                                                                                                                   |                                                          |
| 14         | + apply gcard_unit.                                                                                                                                             | Coq worker is ready.                                     |
| 15         | - apply mult_1_r.                                                                                                                                               | ===> Loaded packages [init]                              |
| 16         | Defined.                                                                                                                                                        | Ioaaea packages [IIIIe]                                  |
| 17         |                                                                                                                                                                 |                                                          |
| 18         | Lemma contr_stuff_spec (P : FinSet $\rightarrow$ Type) (HP : V A, Contr (P A))                                                                                  |                                                          |
| 19         | : spec_from_stuff P = ensembles.                                                                                                                                |                                                          |
| 20         | Prool.                                                                                                                                                          |                                                          |
|            | path_via (spec_from_stuff ( $\lambda \rightarrow 0$ nit)).                                                                                                      |                                                          |
| 22         | - apply path_stuff_spec. intro A.                                                                                                                               |                                                          |
| 23         | apply equiv_contr_unit.                                                                                                                                         |                                                          |
| 24         | - apply path_sigma_uncurried. refine (_; _).                                                                                                                    |                                                          |
| 20         | + apply path_universe_uncurried.                                                                                                                                |                                                          |
| 20         | $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$                                                                                           |                                                          |
| 2 /<br>2 Q | $\stackrel{\circ}{} apply pli:$                                                                                                                                 |                                                          |
| 20         | $\begin{array}{c} \text{``appry} (\mathcal{A} \ \mathcal{A} \ \rightarrow \ (\mathcal{A}; \ \mathcal{C})) \\ \text{``appro} \end{array}$                        |                                                          |
| 20         | * intro A apply path sigma hprop reflexivity                                                                                                                    |                                                          |
| 3 U<br>3 1 | + simply apply path arrow, intro A.                                                                                                                             |                                                          |
| 32         | refine ((transport arrow ) @ ).                                                                                                                                 |                                                          |
| 33         | refine ((transport const) @ ).                                                                                                                                  |                                                          |
| 34         | path via (transport idmap                                                                                                                                       |                                                          |
| 35         | (path universe uncurried                                                                                                                                        |                                                          |
| 36         | (equiv inverse                                                                                                                                                  |                                                          |
| 37         | (equiv adjointify pr <sub>1</sub> ( $\lambda A_0$ : FinSet $\Rightarrow$ (A <sub>0</sub> : tt))                                                                 |                                                          |
| 38         | $(\lambda A_0 : FinSet \Rightarrow 1)$                                                                                                                          |                                                          |
| 39         | $(\lambda A_0 : \{ : FinSet \& Unit \} \Rightarrow$                                                                                                             |                                                          |
| 40         | path sigma hprop (let (proj1 sig, ) := $A_0$ in proj1 sig; tt) $A_0$                                                                                            |                                                          |
| 41         | 1))) A).1.                                                                                                                                                      |                                                          |
| 42         | <pre>f_ap. f_ap. simpl. symmetry. apply path_universe_V_uncurried. simpl.</pre>                                                                                 | Messages Info 🗢                                          |
| 43         | path_via ((equiv_inverse                                                                                                                                        | Cog Init Logic Type loaded                               |
| 44         | $(equiv_adjointify pr_1 (\lambda A_0 : FinSet \Rightarrow (A_0; tt))$                                                                                           | Cog Trit Crogif loodod                                   |
| 45         | $(\lambda A_0 : FinSet \rightarrow 1)$                                                                                                                          | Coq. Init. Specific loaded.                              |
| 46         | $(\lambda A_0 : \{ : FinSet \& Unit \} \Rightarrow$                                                                                                             | Coq.Init.Decimal loaded.                                 |
| 4 /        | path_sigma_hprop (let (projl_sig, _) := A <sub>0</sub> in projl_sig; tt)                                                                                        | Coq.Init.Hexadecimal loaded.                             |
| 48         | A <sub>0</sub> I))) A).I.                                                                                                                                       | Coq.Init.Number loaded.                                  |
| 49         | I_ap. apply transport_path_universe_uncurried.                                                                                                                  | <pre>Coq.Init.Nat loaded.</pre>                          |
| 50         | Derined.                                                                                                                                                        | Coq.Init.Byte loaded.                                    |
| 5 T        | $I_{\text{opprox}}$ of contractuff chood (D. FinSot $\mathcal{M}_{\text{WDO}}$ ) (HD. $\mathcal{H}_{\text{O}}$ Contractuff chood (D. $\mathcal{M}_{\text{O}}$ ) | Coq.Init.Numeral loaded.                                 |
| 52         | Lemma gi_conci_stuff_spec (P : Finset $\rightarrow$ type) (HP : V A, conci (P A)) (H : N)<br>• af (spec from stuff D) n = gaard (B)ut (Fin n))                  | Cog.Init.Peano loaded.                                   |
| 57         | Proof                                                                                                                                                           | Cog.Init.Wf loaded.                                      |
| 55         | refine ( @ (df ensembles )), f an                                                                                                                               | Cog.Init.Tactics loaded.                                 |
| 56         | apply contr stuff spec, apply HP.                                                                                                                               | Cog. Init. Tauto loaded                                  |
| 57         | Defined.                                                                                                                                                        | /lib/Cog/gyntax/number string notation plugin gma loaded |
| 58         |                                                                                                                                                                 | /lib/Cog/ltog/touto_plugin_gmo_logded                    |
| 59         |                                                                                                                                                                 | (1) / Lib/Cog/Itac/tauto_piugin.cma loaded.              |
| 60         | (** ** Decidable (-1)-stuff *)                                                                                                                                  | <pre>/lib/Coq/cc/cc_plugin.cma loaded.</pre>             |
|            |                                                                                                                                                                 |                                                          |



# Towards automated theorem-proving and tactics-learning



### https://coqhammer.github.io

### **SMTCoq**

Communication between Cog and SAT/SMT solvers

### **SMTCoq**

#### Presentation

SMTCoq is a Coq plugin that checks proof witnesses coming from external SAT and SMT solvers. It provides:

- a certified checker for proof witnesses coming from the SAT solver ZChaff and the SMT solvers veriT and CVC4. This checker increases the confidence in these tools by checking their answers a posteriori and allows to import new theroems proved by these solvers in Coq;
- decision procedures through new tactics that discharge some Coq goals to ZChaff, veriT, CVC4, and their combination.

### https://smtcoq.github.io

### https://github.com/math-comp/hierarchy-builder

**The Tactician** 

A Seamless, Interactive Tactic Learner and Prover for Coq

Online Demo

Install Now



### https://coq-tactician.github.io

| 📮 math-comp / hierar    | chy-builder Public           | L. Noti              | fications 🛱 Star 55 💡 Fork 8                                          |
|-------------------------|------------------------------|----------------------|-----------------------------------------------------------------------|
| <> Code Issues 24       | 13 Pull requests 13 Ac       | tions 🔟 Projects 🛱   | Wiki 🕐 Security 🛛 😶                                                   |
| ਿ master - ਿ ਮੈਂ 34 bra | unches 🔿 10 tags             | Go to file Code -    | About                                                                 |
| CohenCyril Merge pull   | request #2 × 2fa17b7 21 day  | ys ago 🕚 915 commits | High level commands to declare a<br>hierarchy based on packed classes |
| .github/workflows       | complete CI mathcomp on HB   | 21 days ago          | coq mathcomp elpi                                                     |
| .nix                    | complete CI mathcomp on HB   | 21 days ago          | 🛱 Readme                                                              |
| .vscode                 | Introducing FactoryName.sort | 7 months ago         | 述 MIT License                                                         |
| НВ                      | #[hnf]                       | 3 months ago         |                                                                       |
| build-support/coq       | Duplication from nixpkgs     | 8 months ago         | Releases 6                                                            |
| examples                | optim successfull            | 4 months ago         | S Hierarchy Builder 1.2.0 Latest on 24 Sep                            |

# **Coq-community**

| Why GitHub?                                                                            | $\sim$ Team Enterprise Explore $\sim$ Marketpl                                                                            | lace Pricing V Search                                                                                                              | / Sign in Sign up                                                      |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Coq-community<br>A project for a collaborativ<br>∂ https://coq-community.org           | e, community-driven effort for the long-term main                                                                         | ntenance and advertisement of Coq packages.                                                                                        |                                                                        |
| Pinned                                                                                 |                                                                                                                           |                                                                                                                                    | People                                                                 |
| <b>Public</b> Documentation on goals of the coq- community organization, the shared    | <b>hydra-battles</b> Public Variations on Kirby & Paris' hydra battles and other entertaining math in Coq (collaborative, | <b>Public</b><br>A curated list of awesome Coq libraries, plugins, tools, verification projects, and                               |                                                                        |
| contributing guide and code of conduct.<br>な 59 ぷ 6                                    | documented, includes exercises)<br>[maintainer=@Casteran]<br>● Coq ☆ 17 왕 5                                               | resources [maintainers=@anton-<br>trunov,@palmskog]<br>☆ 118 양 6                                                                   | Top languages<br>● Coα ● Shell ● OCaml ●                               |
| ☐ vscoq                                                                                | G docker-coq                                                                                                              | 📮 templates                                                                                                                        | <ul> <li>JavaScript</li> </ul>                                         |
| Public<br>A Visual Studio Code extension for Coq<br>[maintainers=@maximedenes,@fakusb] | Public<br>Docker images of the Coq proof assistant<br>[maintainer=@erikmd]                                                | Public<br>Templates for configuration files and scripts<br>useful for maintaining Coq projects<br>[maintainers=@palmskog,@Zimmi48] | Most used topics<br>coq docker-coq-action ma<br>nix-action coq-library |
| 🔵 TypeScript 🛛 🏠 163 🥰 33                                                              | ● Dockerfile 🟠 26 😵 3                                                                                                     | 🛑 Mustache 🛣 8 😵 7                                                                                                                 |                                                                        |

https://github.com/coq-community

"A project for a collaborative, community-driven effort for the long-term maintenance and advertisement of Coq packages."

**58 repositories** 

| Abole       Public         A proof of Abel-Rufflini theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q Find a repository Type - Language - Sort                                                        | •      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|
| coq       sscellect       galois-theory       mathcomp       abel-ruffini         • Coq       ♥ 3       ✿ 26       O       ♣ 1       updated 25 days ago         algebra-tactics       Fublic       Fublic       Fublic       Fublic       Fublic         Ring and field tactics for Mathematical Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Abel Public<br>A proof of Abel-Ruffini theorem.                                                   | ۸۸ م   |
| • Coq       ¥ 3       ☆ 26       ⊙ 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0       № 0                                                                                                                                                                 | coq ssreflect galois-theory mathcomp abel-ruffini                                                 |        |
| algebra-tactics       Public         Ring and field tactics for Mathematical Components       coq         coq       proof-automation       ssreflect         mathcomp       cop         analysis       Public         Mathematical Components compliant Analysis Library       Mathematical Components compliant Analysis Library         analysis       coq       ssreflect       mathcomp         • coq       ¥ 21       ∯ 107       O 33       ∬ 33       Updated 2 days ago         appry       Public       Public       Public       Public       Public         A formal proof of the irrationality of zeta(3), the Apéry constant       Public       Public         A graph public       Public       Public       Public         A graph of 1       ½ 2       Updated 28 days ago       Public         A graph of 1       ½ 2       Updated 28 days ago       Public         A graph of 1       ½ 2       Updated on 28 Sep 2020       Public         Coq       ¥ 1       ½ 0       0       1 0       Updated on 28 Sep 2020         coq       streflect       mathcomp       Public       Public       Public       Public       Public       Public       Public       Public       Public       P            | ● Coq 😵 3 ☆ 26 ① 0 ╏ 0 Updated 25 days ago                                                        |        |
| coq       proof-automation       ssreflect       mathcomp       eipi         • Coq       ♀ 0       ♀ 10       ⊙ 7 (1 issue needs help)       ♀ 1       ↓ 1       Updated 24 days ago         analysis       Public                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | algebra-tactics Public<br>Ring and field tactics for Mathematical Components                      |        |
| <ul> <li>Coq ♥0 ☆16 ⊙7(1 issue needs help) 1 1 Updated 24 days ago</li> <li>analysis Public</li> <li>Mathematical Components compliant Analysis Library</li> <li>analysis coq sareflect mathcomp</li> <li>Coq ♥21 ☆107 ⊙33 1 3 Updated 2 days ago</li> <li>apery Public</li> <li>A formal proof of the irrationality of zeta(3), the Apéry constant</li> <li>coq mathcomp</li> <li>Coq ♥3 ☆7 ⊙1 1 2 Updated 28 days ago</li> <li>bigenough Public</li> <li>Asymptotic reasoning with bigenough</li> <li>coq sareflect mathcomp</li> <li>coq ♥1 ☆2 ⊙0 1 0 Updated on 28 Sep 2020</li> <li>coq sareflect mathcomp</li> <li>coq ♥1 ☆2 ⊙0 1 0 Updated on 28 Sep 2020</li> <li>coq sareflect mathcomp</li> <li>coq sareflect mathcomp</li> <li>coq \$\frac{1}{2}\$ 1 \$\phi\$ 0 Updated on 28 Cet 2018</li> <li>Coq ♥1 ☆0 1 1 0 Updated on 28 Cet 2018</li> </ul>                                                                                                                                                                                                                                                                                                                                                             | coq proof-automation ssreflect mathcomp elpi                                                      |        |
| analysis       Public         Mathematical Components compliant Analysis Library       MAMM         analysis       coq       ssteflect       mathcomp         • Coq       \$21       \$107       O 33       \$1,33       Updated 2 days ago         appery       Public       Public                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🔵 Coq 😵 0 🏠 16 💽 7 (1 issue needs help) ╏ 1 Updated 24 days ago                                   |        |
| analysis       coq       ssreflect       mathcomp         • Coq       ♀ 21       ☆ 107       ⊙ 33       ♀ 33       ♀ 33       ♀ 33       ♀ 33       ♀ 33       ♀ 33       ♀ 7       ⊙ 1       ♀ 2       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10       ♀ 10                                                                       | analysis Public<br>Mathematical Components compliant Analysis Library                             | ۸.     |
| <ul> <li>Coq ♀ 21 ☆ 107 ⊙ 33 ♀ 33 ♀ 33 ∪pdated 2 days ago</li> <li>apery Public</li> <li>A formal proof of the irrationality of zeta(3), the Apéry constant</li> <li>coq matheomp</li> <li>Coq ♀ 3 ☆ 7 ⊙ 1 ♀ 2 ∪pdated 28 days ago</li> <li>bigenough Public</li> <li>Asymptotic reasoning with bigenough</li> <li>coq sereflect mathcomp</li> <li>Coq ♀ 1 ☆ 2 ⊙ 0 ♀ 0 ∪pdated on 28 Sep 2020</li> <li>coq sereflect mathcomp</li> <li>Coq ♀ 1 ☆ 2 ⊙ 0 ♀ 0 ∪pdated on 28 Sep 2020</li> <li>coq sereflect mathcomp</li> <li>Coq ♀ 1 ☆ 0 ⊙ 0 ♀ 0 ∪pdated on 26 Oct 2018</li> <li>Coq-Combi Public</li> <li>Algebraic Combinatorics in Coq</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | analysis coq ssreflect mathcomp                                                                   | ·\\~\W |
| apery       Public         A formal proof of the irrationality of zeta(3), the Apéry constant         coq       mathcomp         • Coq       ¥ 3       ☆ 7       ⊙ 1       \$\$, 2       Updated 28 days ago         bigenough       Public       Asymptotic reasoning with bigenough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ● Coq 😵 21 ☆ 107 ⊙ 33 🕄 33 Updated 2 days ago                                                     |        |
| coq       Imathcomp         • Coq       Imathcomp         • bigenough       Public         Asymptotic reasoning with bigenough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>apery</b> Public<br>A formal proof of the irrationality of zeta(3), the Apéry constant         |        |
| Coq       ♀ 3       ♀ 7       • 1       № 2       Updated 28 days ago         bigenough       Public         Asymptotic reasoning with bigenough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | coq mathcomp                                                                                      |        |
| bigenough       Public         Asymptotic reasoning with bigenough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ● Coq                                                                                             |        |
| coq       ssreflect       mathcomp         • Coq       ♀ 1       ☆ 2       ⊙ 0       ♀ 0       ♀ 0         Cad       Public         Formalizing Cylindrical Algebraic Decomposition related theories in mathcomp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bigenough Public<br>Asymptotic reasoning with bigenough                                           |        |
| <ul> <li>Coq ♀1 ☆2 ⊙0 ♀0 ∪pdated on 28 Sep 2020</li> <li>Cad Public</li> <li>Formalizing Cylindrical Algebraic Decomposition related theories in mathcomp</li> <li>Coq ♀1 ☆0 ⊙0 ♀0 ∪pdated on 26 Oct 2018</li> <li>Coq-Combi Public</li> <li>Algebraic Combinatorics in Coq</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | coq ssreflect mathcomp                                                                            |        |
| cad       Public         Formalizing Cylindrical Algebraic Decomposition related theories in mathcomp         coq       ssreflect         mathcomp         • Coq       Imathcomp         • Imathcomp       Imathcomp         • Coq       Imathcomp         • Coq       Imathcomp         • Imathcomp       Imathcomp         • Imathcomp       Imathcomp         • Imathcomp       Imathcomp         • Imathcomp       Imathcom         • Imathcomp                                                                                                                                                                                                          | ● Coq 😵 1 🏠 2 💽 0 ႈ 0 Updated on 28 Sep 2020                                                      |        |
| coq       ssreflect       mathcomp         ● Coq       ♀ 1       ☆ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0       ♀ 0 <td><b>Cad</b> Public<br/>Formalizing Cylindrical Algebraic Decomposition related theories in mathcomp</td> <td></td> | <b>Cad</b> Public<br>Formalizing Cylindrical Algebraic Decomposition related theories in mathcomp |        |
| <ul> <li>Coq ♀1 ☆0 ⊙0 ♫1 0 Updated on 26 Oct 2018</li> <li>Coq-Combi Public</li> <li>Algebraic Combinatorics in Coq</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | coq ssreflect mathcomp                                                                            |        |
| Coq-Combi<br>Algebraic Combinatorics in Coq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ● Coq 😵 1 ☆0 ⊙ 0 🎝 0 Updated on 26 Oct 2018                                                       |        |
| Algebraic Combinatorics in Coq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Algebraic Combinatorics in Coq                                                                    |        |

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

erfile



# The coreact.wiki proposal





### knowledge graphs

# (graph-) database

### Maintenance: collaborate with/ adopt standards of **Coq-community**





### PDF & HTML textbook

Machine-readable Coq-formalization

Including compatible Coq version and possibly different variants for (1) different Coq versions and/or (2) different implementation strategies/frameworks/theories.

### **Examples** (**both** maths & Coq)

Curated in jsCoq, directly executable from within the wiki entry in the form of a literate web document and/or as a bundle of a Coq file with instructions for a particular Docker image for Coq.

### Proof tactics and performance data

Machine-learned tactics data, cross-evaluation of performance of different variants of implementations, user annotations on different Coq versions/libraries used

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

### wiki entry (e.g., a Lemma)

**#hash** (auto-generated) tags list of cross-references bibliographic references code origin references

Human-readable text

cross-references via **NNexus** 





### COMBINATORIAL SPECIES AND LABELLED STRUCTURES

Brent Abraham Yorgey

### A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2014

https://repository.upenn.edu/edissertations/1512/

| dc                            | oughertyii <b>/ hott-spec</b>     | Public Public                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 다 Notifications ☆ Star 11 양 Fork 0 |                       |  |
|-------------------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|--|
| > C                           | ode 💿 Issues 🏦 P                  | Pull requests 🕟 Actions 🖳 Pro       | ojects 🛛 Wiki 🕕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Security                           | ✓ Insights            |  |
| 'n                            | naster 🚽 ີ່ 🥲 1 branch 🕻          | <b>⊙ 0</b> tags                     | Go to file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Code 🗸 🖌                           | About                 |  |
|                               | <b>jdoughertyii</b> mixed up ogfs | and egfs wrt labeling d0d45a7 or    | n 24 May 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mmits                              |                       |  |
|                               | coq                               | correcting the coproduct            | 7 уеа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ars ago a                          | ∯ MIT License         |  |
| )                             | .gitignore                        | adding notes                        | 7 уеа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ars ago                            |                       |  |
| )                             | LICENSE                           | Initial commit                      | 7 yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ars ago 🛛 🖡                        | Releases              |  |
| )                             | README.md                         | Initial commit                      | 7 yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ars ago N                          | No releases published |  |
| )                             | references.bib                    | initial commit                      | 7 vea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ars ago                            |                       |  |
| )                             | species.pdf                       | mixed up ogfs and egfs wrt labeling |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                  | pecies in HoTT        |  |
| )                             | species.tex                       | mixed up ogfs and egfs wrt labeling |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                  |                       |  |
|                               |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | John Dougherty        |  |
| EADME.md                      |                                   |                                     | May 23, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                       |  |
| hott-species                  |                                   |                                     | <b>Abstract</b><br>Combinatorial species were developed by Joyal (1981) as an abstract treatment of environments of species were developed by Joyal (1981) as an abstract treatment of environments, especially problems of counting the number of ways of putting some structure. Many of the results of species theory are special cases of more general properties of homotoping homotopy type theory (HoTT) a useful tool for dealing with species. These tools becapposite when one generalizes species to higher groupoids, as Baez and Dolan (2001) do. We notes I wrote while learning about species. They're mainly summary of the notes Derek W |                                    |                       |  |
| Combinatorial species in HoTT |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                       |  |

https://github.com/jdoughertyii/hott-species

Nicolas Behr, CAP'21, IHÉS, November 30, 2021

umerative com e on a finite set opy types, mak-Vhat follows are ise took during/ John Baez's "Quantization and Categorification" seminar in AY2004 (Baez and Wise, 2003, 2004b,a), with some reference to Bergeron et al. (2013), Baez and Dolan (2001), and Aguiar and Mahajan (2010).

| Defining species               |    |  |  |
|--------------------------------|----|--|--|
| Computing cardinalities        |    |  |  |
| <ul> <li>Speciation</li> </ul> | 5  |  |  |
| Coproduct                      | 5  |  |  |
| Hadamard product               | 5  |  |  |
| Cauchy product                 | 6  |  |  |
| Composition                    | 7  |  |  |
| Differentiation                | 8  |  |  |
| Pointing                       | 9  |  |  |
| Inhabiting                     | 9  |  |  |
| <ul> <li>Examples</li> </ul>   | 10 |  |  |
| (-2)-stuff                     | 10 |  |  |
| (-1)-stuff                     | 10 |  |  |
| 0-stuff                        | 11 |  |  |
| Fock space                     | 13 |  |  |
| Cayley's Formula               | 13 |  |  |
| References                     | 13 |  |  |



John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

Hen 
$$|F|(z) = \sum_{n} \frac{\partial_n}{n!} z^n$$
 where:since these numbers  
are cardinalities of: $\partial_n \in \mathbb{R}^+ = [0, \infty)$  $(tame)$  groupoids = 1-groupoids $pe$  $\partial_n \in \mathbb{R}^+ = [0, \infty)$  $(tame)$  groupoids = 1-groupoids $pe$  $\partial_n \in \mathbb{N}$  $(finile)$  sets = 0-groupoids $a_n \in [N]$  $(finile)$  sets = 0-groupoids $a_n \in \{0, 1\} \cong \{F, T\}$  $truth$  values = -1-groupoids $a_n \in \{0, 1\} \cong \{T\}$  $true$  = the only  
-2-groupoids

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf



| Defining species               |    |  |  |
|--------------------------------|----|--|--|
| Computing cardinalities        |    |  |  |
| <ul> <li>Speciation</li> </ul> | 5  |  |  |
| Coproduct                      | 5  |  |  |
| Hadamard product               | 5  |  |  |
| Cauchy product                 | 6  |  |  |
| Composition                    | 7  |  |  |
| Differentiation                | 8  |  |  |
| Pointing                       | 9  |  |  |
| Inhabiting                     | 9  |  |  |
| <ul> <li>Examples</li> </ul>   | 10 |  |  |
| (-2)-stuff                     | 10 |  |  |
| (-1)-stuff                     | 10 |  |  |
| 0-stuff                        | 11 |  |  |
| Fock space                     | 13 |  |  |
| Cayley's Formula               | 13 |  |  |
| References                     | 13 |  |  |



John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

Hen 
$$|F|(z) = \sum_{n \in n}^{a} z^n$$
 where:since these numbers  
are cardinalities of: $a_n \in \mathbb{R}^+ = [0, \infty)$  $(tame)$  groupoids = 1-groupoids $pe$  $a_n \in \mathbb{N}$  $(tame)$  groupoids = 1-groupoids $a_n \in [N]$  $(finile)$  sets = 0-groupoids $a_n \in \{0, 1\} \cong \{F, T\}$  $truth$  values = -1-groupoids $a_n \in \{0, 1\} \cong \{T\}$  $true$  $=$  the only  
-2-groupoids

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf



| Defining species               |    |  |  |
|--------------------------------|----|--|--|
| Computing cardinalities        | 2  |  |  |
| <ul> <li>Speciation</li> </ul> | 5  |  |  |
| Coproduct                      | 5  |  |  |
| Hadamard product               | 5  |  |  |
| Cauchy product                 | 6  |  |  |
| Composition                    | 7  |  |  |
| Differentiation                | 8  |  |  |
| Pointing                       | 9  |  |  |
| Inhabiting                     | 9  |  |  |
| <ul> <li>Examples</li> </ul>   | 10 |  |  |
| (-2)-stuff                     | 10 |  |  |
| (-1)-stuff                     | 10 |  |  |
| 0-stuff                        | 11 |  |  |
| Fock space                     | 13 |  |  |
| Cayley's Formula               | 13 |  |  |
| References                     | 13 |  |  |



John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

Hen 
$$|F|(z) = \sum_{n \in n}^{a} z^n$$
 where:since these numbers  
are cardinalities of: $a_n \in \mathbb{R}^+ = [0, \infty)$  $(tame)$  groupoids = 1-groupoids $pe$  $a_n \in \mathbb{N}$  $(tame)$  groupoids = 1-groupoids $a_n \in [N]$  $(finile)$  sets = 0-groupoids $a_n \in \{0, 1\} \cong \{F, T\}$  $truth$  values = -1-groupoids $a_n \in \{0, 1\} \cong \{T\}$  $true$  $=$  the only  
-2-groupoids

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf



#### **GReTA - Graph Transformation Theory and Applications**

International Online Workgroup on Executable Applied Category Theory for Rewriting Systems

GREIA BRACT

The central aims of this workgroup consist in providing an interdisciplinary forum for exploring the diverse aspects of applied category theory relevant in graph transformation systems and their generalizations, in developing a methodology for formalizing diagrammatic proofs as relevant in rewriting theories via proof assistants such as Coq, and in establishing a community-driven wiki system and repository for mathematical knowledge in our research field (akin to a domain-specific Coq-enabled variant of the nLab). A further research question will explore the possibility of deriving reference prototype implementations of concrete rewriting systems (e.g., over multi- or simple directed graphs) directly from the category-theoretical semantics, in the spirit of the translation-based approaches (utilizing theorem provers such as Microsoft Z3).

- To receive regular updates on the GReTA ExACT workgroup sessions, please consider subscribing to our mailing list.
- To suggest speakers and topics for upcoming sessions, and for any other form of feedback and discussions, please consider joining the GReTA ExACT Mattermost channel.

# coreact.wiki



86 - intros [x [w | w]]; reflexivity. Defined. 100 10.4 apply path\_sigma\_uncurried. refine (\_; \_). 107 - unfold stuff\_spec\_sum. simpl. symmetry. 109 110 apply sigma\_functor\_sum. - simpl. apply path\_arrow. intros x. 112 refine ((transport\_const \_\_)@\_). 113 111 17 f\_ap. f\_ap. apply inv\_V.



```
(** * Species Sum/Coproduct *)
                                                                     Definition spec_sum (X Y : Species) : Species
                                                                                       := ((X.1 + Y.1)) * ype; sum_rect - X.2 Y.2).
                                                                 \begin{aligned} & = \sup_{\{x \in X \& P \in X\}} \sup_{x \in X} (x \in Y P e) (P \in X \to Y P e) \\ & = \sup_{x \in X} \sup_{x \in Y} (x \in Y e) (P \in X \to Y e) \\ & = \sup_{x \in X} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in X} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y} \sup_{x \in Y} \sup_{x \in Y} (x \in Y e) \\ & = \sup_{x \in Y} \sup_{x \in Y
                                                  refine (equiv_adjointify
_____).
_ intros [[x w] | [x w]]; exists x; [left | right]; apply w.
_ intros [x [w | w]]; [left | right]; apply (x; w).
                                                   - intros [[x w] | [x w]]; reflexivity.
                          Definition stuff_spec_sum (P Q : FinSet -> Type) := fun A => (P A + Q A)%type.
 101
102 Lemma stuff_Spec_sum_correct (P Q : FinSet -> Type) ;
                           spec_sum (spec_from_stuff P) (spec_from_stuff Q).
                                                                                                               comap
(path_universe_uncurried (sigma_functor_sum FinSet P Q))
nath via ((siama functor sum FinSet P O) x).1.
```

# Merci beaucoup



