

Towards Executable Applied Category Theory

Plan of the talk:

I. A Case Study in Applied Category Theory: from Categorical Rewriting to

Rule-algebraic Combinatorics
II. The coreact.wiki Initiative

Plan of the talk:

I. A Case Study in Applied Category Theory:
from Categorical Rewriting to
Rule-algebraic Combinatorics
II. The coreact.wiki Initiative

A quick tour of categorical rewriting

A quick tour of categorical rewriting

A quick tour of categorical rewriting

"type \mathbb{T} cell"

Four flavours of categorical rewriting semantics

(Mi) linear Double-Pushout (DPO)

(M-) linear Sesqui-Pushout (SqPO)

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

Four flavours of categorical rewriting semantics

(Mi) linear Double-Pushout (DPO)

(M-) linear Sesqui-Pushout (SqPO)

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

Cloning in non-linear Double Pushout (DPO) rewriting
 -

Cloning in non-linear Double Pushout (DPO) rewriting

Cloning in non-linear Double Pushout (DPO) rewriting

Four flavours of categorical rewriting semantics

(Mi) linear Double-Pushout (DPO)

(M-) linear Sesqui-Pushout (SqPO)

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

Four flavours of categorical rewriting semantics

Four flavours of categorical rewriting semantics

Four flavours of categorical rewriting semantics
rm-adhesive categories

multigraphs

simple graphs

Set $/ \Delta$
undirected

multigraphs

simple graphs

comma category over an adhesive category
φ_{E} \& functor preserves all pullbacks
\Rightarrow adhesive category

Set $/ \Delta$

multigraphs

simple graphs

comma category over an adhesive category
φ_{E} \& functor preserves all pullbacks
\Rightarrow adhesive category

Set $/ \Delta$
Set // Δ

multigraphs

simple graphs

comma category over an adhesive category
$\varphi_{E} \quad \&$ functor preserves all pullbacks
\Rightarrow adhesive category
E
Artin gluing based upon quasi-topos
\& functor preserves all pullbacks
\Rightarrow quasi-topos (but not adhesive!)

Set $/ \Delta$
Set // Δ

multigraphs

simple graphs

comma category over an adhesive category
$\varphi_{E} \quad \&$ functor preserves all pullbacks
\Rightarrow adhesive category

Set $/ \Delta$

Set $/ \mathcal{P}^{(1,2)}$

Artin gluing based upon quasi-topos
\& functor preserves all pullbacks
\Rightarrow quasi-topos (but not adhesive!)

multigraphs

simple graphs

comma category over an adhesive category
φ_{E} \& functor preserves all pullbacks
\Rightarrow adhesive category
E
Artin gluing based upon quasi-topos
\& functor preserves all pullbacks
\Rightarrow quasi-topos (but not adhesive!)

Set $/ \Delta$
Set // Δ
$\mathrm{E} \longrightarrow \iota \longrightarrow \mathcal{P}^{(1,2)}(\mathrm{V}) \longleftarrow \mathcal{P}^{(1,2)}-\mathrm{V}$
comma category over an adhesive category
\& functor preserves only pullbacks along monos
$\Rightarrow \mathscr{M}$-adhesive category
$\mathrm{E}^{\prime}-\iota^{\prime} \longrightarrow \mathcal{P}^{(1,2)}\left(\mathrm{V}^{\prime}\right) \longleftarrow \mathcal{P}^{(1,2)}-\mathrm{V}^{\prime}$

Set $/ \mathcal{P}^{(1,2)}$

multigraphs

simple graphs

comma category over an adhesive category
$\varphi_{E} \quad \&$ functor preserves all pullbacks
\Rightarrow adhesive category

Set $/ \Delta$

$\mathrm{E} \longrightarrow \iota \longrightarrow \mathcal{P}^{(1,2)}(\mathrm{V}) \longleftarrow \mathcal{P}^{(1,2)}-\mathrm{V}$

comma category over an adhesive category
\& functor preserves ónly pullbacks along monos
$\Rightarrow \mathscr{M}$-adhesive category
$\mathrm{E}^{\prime}-\iota^{\prime} \longrightarrow \mathcal{P}^{(1,2)}\left(\mathrm{V}^{\prime}\right) \longleftarrow \mathcal{P}^{(1,2)}-\mathrm{V}^{\prime}$
$\underline{\text { Set } / \mathcal{P}^{(1,2)}}$
$\underline{\text { Set } / / \mathcal{P}^{(1,2)}}$

multigraphs

simple graphs

comma category over an adhesive category
$\varphi_{E} \quad \&$ functor preserves all pullbacks
\Rightarrow adhesive category

Set $/ \Delta$
$\mathrm{E} \longrightarrow \iota \longrightarrow \mathcal{P}^{(1,2)}(\mathrm{V}) \longleftarrow \mathcal{P}^{(1,2)}-\mathrm{V}$
comma category over an adhesive category
\& functor preserves only pullbacks along monos
$\Rightarrow \mathscr{M}$-adhesive category
$\mathrm{E}^{\prime}-\iota^{\prime} \longrightarrow \mathcal{P}^{(1,2)}\left(\mathrm{V}^{\prime}\right) \longleftarrow \mathcal{P}^{(1,2)}-\mathrm{V}^{\prime}$

Set $/ \mathcal{P}^{(1,2)}$

Artin gluing based upon quasi-topos
\& functor preserves all pullbacks
\Rightarrow quasi-topos (but not adhesive!)
$\mathrm{E}^{\prime} \longleftarrow \iota^{\prime} \longrightarrow \mathrm{V}^{\prime} \times \mathrm{V}^{\prime} \longleftarrow \Delta-\mathrm{V}^{\prime}$

$\underline{\text { Set } / / \mathcal{P}^{(1,2)}}$

Quasi-topoi - a natural setting for non-linear rewriting

Definition

A category C is a quasi-topos iff

1. it has finite limits and colimits
2. it is locally Cartesian closed
3. it has a regular-subobject-classifier.

Johnstone, P.T., Lack, S., Sobociński, P.: Quasitoposes, Quasiadhesive Categories and Artin Glueing. In: Algebra and Coalgebra in Computer Science. LNCS, vol. 4624, pp. 312-326 (2007). https://doi.org/10.1007/978-3-540-73859-6_21

Quasi-topoi - a natural setting for non-linear rewriting

Proposition

Every quasi-topos C enjoys the following properties:

- It has (by definition) a stable system of monics $\mathcal{M}=\operatorname{rm}(\mathrm{C})$ (the class of regular monos), which coincides with the class of extremal monomorphisms, i.e., if $m=f o e$ for $m \in r m(C)$ and $e \in \operatorname{epi}(C)$, then $e \in \operatorname{iso}(C)$.
- It has (by definition) a \mathcal{M}-partial map classifier (T, η).
- It is rm-quasi-adhesive, i.e., it has pushouts along regular monomorphisms, these are stable under pullbacks, and pushouts along regular monos are pullbacks.
- It is \mathcal{M}-adhesive.
- For all pairs of composable morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{m} C$ with $m \in \mathcal{M}$, there exists a final pullback-complement (FPC) $\mathrm{A} \xrightarrow{\mathrm{n}} \mathrm{F} \xrightarrow{\mathrm{g}} \mathrm{C}$, and with $\mathrm{n} \in \mathcal{M}$.
- It possesses an epi- \mathcal{M}-factorization: each morphism $A \xrightarrow{f} B$ factors as $f=m \circ e$, with morphisms $A \xrightarrow{e} B$ in epi (C) and $B \xrightarrow{m} A$ in \mathcal{M} (uniquely up to isomorphism in B).

Case of directed simple graphs (a quasi-topos!)
rm-adhesive categories

Case of directed simple graphs (a quasi-topos!)
rm-adhesive categories

Case of directed simple graphs (a quasi-topos!)
rm-adhesive categories

Case of directed simple graphs (a quasi-topos!)
rm-adhesive categories

Rule algebras for categorical rewriting systems

Rule algebras for categorical rewriting systems

Rule algebras for categorical rewriting systems

Rule algebras for categorical rewriting systems

$(\mathrm{O} \stackrel{\mathrm{r}}{\mathrm{l}} \mathrm{I}) \Longrightarrow \delta(\mathrm{O} \stackrel{r}{ } \mathrm{l})$
(iso-class of a) rule
basis vector of a vector space \mathcal{R}

Definition: the rule algebra product $*_{\mathcal{R}}: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is defined via

$$
\delta\left(r_{2}\right) *_{\mathcal{R}} \delta\left(r_{1}\right):=\sum_{\mu} \delta\left(r_{2}{ }_{\mu}^{\mu} \triangleleft_{T} r_{1}\right) \quad \text { "sum over ways to compose the rules" }
$$

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020
The rule algebra $\left(\mathcal{R}, *_{\mathcal{R}}\right)$ is an associative unital algebra, with unit element $\delta(\varnothing \leftharpoonup \varnothing)$.

Rule algebras for categorical rewriting systems

Rule algebras for categorical rewriting systems

$$
\delta\left(r_{2}\right) *_{\mathcal{R}} \delta\left(r_{1}\right):=\sum_{\mu} \delta\left(r_{2}{ }^{\mu} \triangleleft_{\mathbb{T}} r_{1}\right)
$$

Theorem
$\rho_{\mathbb{\pi}}: \mathcal{R} \rightarrow \operatorname{End}(\hat{\mathbf{C}})$ is a representation of the rule $\operatorname{algebra}\left(\mathcal{R}, *_{\mathcal{R}}\right)$, i.e.

$$
\rho_{\mathbb{T}}\left(\delta\left(\mathbf{r}_{2}\right)\right) \rho_{\mathbb{T}}\left(\delta\left(\mathbf{r}_{1}\right)\right)|\mathbf{X}\rangle=\rho_{\mathbb{T}}\left(\delta\left(\mathbf{r}_{2}\right) *_{\mathcal{R}} \delta\left(\mathbf{r}_{1}\right)\right)|\mathbf{X}\rangle
$$

On Stochastic Rewriting and Combinatorics via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF
F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the relationship of stochastic rewriting systems described in terms of continuous-time Markov chains, their embedded discrete-time Markov chains and certain types of generating function expressions in combinatorics. We introduce a number of generating function techniques that permit a novel form of static analysis for rewriting systems based upon marginalizing distributions over the states of the rewriting systems via pattern-counting observables.

Motivation

The enumerative combinatorics "workflow" (à la Flajolet):

Motivation

The enumerative combinatorics "workflow" (à la Flajolet):

Motivation

Example: planar rooted binary trees (PRBTs)

Motivation

Example: planar rooted binary trees (PRBTs)
combinatorial structure \mathbf{S}

Motivation

Example: planar rooted binary trees (PRBTs)
combinatorial structure \mathbf{S}

$\mathcal{G}(\lambda):=\sum_{n \geq 0} \frac{\lambda^{n}}{n!}(\#$ of structures of size $n)$

Motivation

Example: planar rooted binary trees (PRBTs)

multi-variate generating function

$$
\mathcal{G}(\lambda):=\sum_{n \geq 0} \frac{\lambda^{n}}{n!}(\# \text { of structures of size } n)
$$

Choose some patterns:

$$
P_{1}:=\frac{1}{\mid}
$$

Motivation

Example: planar rooted binary trees (PRBTs)

$$
\mathcal{G}(\lambda):=\sum_{n \geq 0} \frac{\lambda^{n}}{n!}(\# \text { of structures of size } n)
$$

Choose some patterns:

multi-variate generating function

$P_{3}:=$

$$
\mathcal{G}\left(\lambda ; \omega_{1}, \ldots, \omega_{k}\right):=\sum_{n \geq 0} \frac{\lambda^{n}}{n!} \sum_{p_{1}, \ldots, p_{k} \geq 0} \frac{\omega_{1}^{p_{1}} \cdots \omega_{k}^{p_{k}}}{p_{1}!\cdots p_{k}!}\binom{\# \text { of structures of size } n}{\text { and with } p_{i} \text { occurrences of pattern } P_{i}(\text { for } 1 \leq i \leq k)}
$$

This talk

An alternative approach to enumerative combinatorics based upon rewriting theory:

- generate structure \mathbf{S} via applying rewriting rules to some initial configuration "in all possible ways"
- count patterns via applying special types of rewriting rules
- formulate generating functions via linear operators associated to rewriting rules

Key tool: the rule-algebra formalism!

Example: generating planar rooted binary trees (PRBTs) uniformly

The Rémy uniform generator (heuristics)

or

Example: generating planar rooted binary trees (PRBTs) uniformly \Rightarrow combinatorics of partial observations: rather than trying to reason about the full structure of the combinatorial species, we instead pick a (finite) set of patterns P_{1}, \ldots, P_{k} and try to reason about their combinatorics within the species via EGFs

$$
\mathcal{G}\left(\lambda ; \omega_{1}, \ldots, \omega_{k}\right):=\sum_{n \geq 0} \frac{\lambda^{n}}{n!} \sum_{p_{1}, \ldots, p_{k} \geq 0} \frac{\omega_{1}^{p_{1}} \cdots \omega_{k}^{p_{k}}}{p_{1}!\cdots p_{k}!}\binom{\# \text { of structures of size } n}{\text { and with } p_{i} \text { occurrences of pattern } P_{i}(\text { for } 1 \leq i \leq k)}
$$

Example: generating planar rooted binary trees (PRBTs) uniformly \Rightarrow combinatorics of partial observations: rather than trying to reason about the full structure of the combinatorial species, we instead pick a (finite) set of patterns P_{1}, \ldots, P_{k} and try to reason about their combinatorics within the species via EGFs

$$
\mathcal{G}\left(\lambda ; \omega_{1}, \ldots, \omega_{k}\right):=\sum_{n \geq 0} \frac{\lambda^{n}}{n!} \sum_{p_{1}, \ldots, p_{k} \geq 0} \frac{\omega_{1}^{p_{1}} \cdots \omega_{k}^{p_{k}}}{p_{1}!\cdots p_{k}!}\binom{\# \text { of structures of size } n}{\text { and with } p_{i} \text { occurrences of pattern } P_{i}(\text { for } 1 \leq i \leq k)}
$$

Insight from stochastic mechanics: introduce so-called observables \hat{O}_{P}

$$
\begin{aligned}
\hat{O}_{P}|t\rangle & :=\left(\#_{P}(t)\right) \cdot|t\rangle \quad P-\text { a PBRT pattern } \\
& \text { \# of occurrences } \\
& \text { of } P \text { in the PBRT } t
\end{aligned}
$$

A rule-algebraic generating-functionology

Definition Let $\langle |$ be defined via $\langle\mid t\rangle:=1_{\mathbb{R}}$ for arbitrary PRBT iso-class t. (Note: this permits to implement the operation of summation over coefficients)

A rule-algebraic generating-functionology

Definition Let $\langle |$ be defined via $\langle\mid t\rangle:=1_{\mathbb{R}}$ for arbitrary PRBT iso-class t. (Note: this permits to implement the operation of summation over coefficients)

Definition

A rule-algebraic generating-functionology

Definition Let $\langle |$ be defined via $\langle\mid t\rangle:=1_{\mathbb{R}}$ for arbitrary PRBT iso-class t. (Note: this permits to implement the operation of summation over coefficients)

Definition

$$
\text { let }\left|X_{0}\right\rangle \in \widehat{\mathbf{C}} \text { denote the initial state }
$$

$$
\begin{equation*}
\left|X_{0}\right\rangle \tag{12}
\end{equation*}
$$

A rule-algebraic generating-functionology

Definition Let $\langle |$ be defined via $\langle\mid t\rangle:=1_{\mathbb{R}}$ for arbitrary PRBT iso-class t. (Note: this permits to implement the operation of summation over coefficients)

Definition Let $\widehat{\mathrm{G}}$ be a linear operator (the generator), let $\left|X_{0}\right\rangle \in \widehat{\mathbf{C}}$ denote the initial state

$$
\begin{equation*}
e^{\lambda \hat{G}}\left|X_{0}\right\rangle \tag{12}
\end{equation*}
$$

A rule-algebraic generating-functionology

Definition Let $\langle |$ be defined via $\langle\mid t\rangle:=1_{\mathbb{R}}$ for arbitrary PRBT iso-class t. (Note: this permits to implement the operation of summation over coefficients)

Definition Let $\widehat{\mathrm{G}}$ be a linear operator (the generator), let $\widehat{\mathrm{O}}_{1}, \ldots, \widehat{\mathrm{O}}_{\mathrm{m}}$ be a choice of (finitely many) pattern observables, and let $\left|\mathrm{X}_{0}\right\rangle \in \widehat{\mathbf{C}}$ denote the initial state

$$
\begin{equation*}
e^{\omega \cdot \underline{\hat{0}}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \tag{12}
\end{equation*}
$$

A rule-algebraic generating-functionology

Definition Let $\langle |$ be defined via $\langle\mid t\rangle:=1_{\mathbb{R}}$ for arbitrary PRBT iso-class t. (Note: this permits to implement the operation of summation over coefficients)

Definition Let $\widehat{\mathrm{G}}$ be a linear operator (the generator), let $\widehat{\mathrm{O}}_{1}, \ldots, \widehat{\mathrm{O}}_{\mathrm{m}}$ be a choice of (finitely many) pattern observables, and let $\left|\mathrm{X}_{0}\right\rangle \in \widehat{\mathbf{C}}$ denote the initial state. Then the exponential moment-generating function (EMGF) $\mathcal{G}(\lambda ; \underline{\omega})$ is defined as

$$
\begin{equation*}
\mathcal{G}(\lambda ; \underline{\omega}):=\langle | e^{\omega} \cdot \underline{\hat{0}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \tag{12}
\end{equation*}
$$

Here, we employed the shorthand notation $\underline{\omega} \cdot \underline{\hat{O}}:=\sum_{j=1}^{m} \omega_{j} \widehat{O}_{j}$, and λ as well as $\omega_{1}, \ldots, \omega_{m}$ are formal variables.

Combinatorial evolution equations

The formal EMGF evolution equation for $\mathcal{G}(\lambda ; \underline{\omega})$ reads as follows:

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\langle |\left(e^{a d_{\underline{\omega}} \cdot \underline{o}} \hat{G}\right) e^{\omega \cdot \hat{o}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \quad\left(a d_{A}(B):=A B-B A\right) \tag{15}
\end{equation*}
$$

Combinatorial evolution equations

The formal EMGF evolution equation for $\mathcal{G}(\lambda ; \underline{\omega})$ reads as follows:

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\langle |\left(e^{a d_{\underline{\omega}} \cdot \underline{o}} \hat{G}\right) e^{\omega \cdot \cdot} \cdot \underline{\hat{o}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \quad\left(a d_{A}(B):=A B-B A\right) \tag{15}
\end{equation*}
$$

Applying the version of the jump-closure theorem appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper evolution equation on formal power series if the following polynomial jump-closure holds:

$$
\begin{equation*}
\left(\mathrm{PJC}^{\prime}\right) \quad \forall q \in \mathbb{Z}_{\geq 0}: \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R}:\langle | a a_{\underline{\omega} \cdot \underline{\hat{\theta}}}^{\circ q}(\hat{G})=\sum_{\underline{k}=\underline{0}}^{N(q)} \gamma_{\underline{k}}(\underline{\omega}, \underline{k})\langle | \underline{\hat{O}}^{\underline{k}} \tag{16}
\end{equation*}
$$

Combinatorial evolution equations

The formal EMGF evolution equation for $\mathcal{G}(\lambda ; \underline{\omega})$ reads as follows:

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\langle |\left(e^{a d_{\underline{\omega}} \cdot \underline{o}} \hat{G}\right) e^{\omega \cdot} \cdot \underline{\hat{o}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \quad\left(a d_{A}(B):=A B-B A\right) \tag{15}
\end{equation*}
$$

Applying the version of the jump-closure theorem appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper evolution equation on formal power series if the following polynomial jump-closure holds:

$$
\begin{equation*}
\left(\mathrm{PJC}^{\prime}\right) \quad \forall q \in \mathbb{Z}_{\geq 0}: \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R}:\langle | a d_{\underline{\omega} \cdot \underline{\hat{O}}}^{\circ q}(\hat{G})=\sum_{\underline{k}=\underline{0}}^{N(q)} \gamma_{\underline{k}}(\underline{\omega}, \underline{k})\langle | \underline{\hat{O}}^{\underline{k}} \tag{16}
\end{equation*}
$$

Combinatorial evolution equations

The formal EMGF evolution equation for $\mathcal{G}(\lambda ; \underline{\omega})$ reads as follows:

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\langle |\left(e^{a d_{\underline{\omega}} \cdot \underline{o} \hat{G}}\right) e^{\omega \cdot} \cdot \underline{\hat{o}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \quad\left(a d_{A}(B):=A B-B A\right) \tag{15}
\end{equation*}
$$

Applying the version of the jump-closure theorem appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper evolution equation on formal power series if the following polynomial jump-closure holds:

$$
\begin{equation*}
\left(P J C^{\prime}\right) \quad \forall q \in \mathbb{Z}_{\geq 0}: \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R}:\langle | a d_{\underline{\omega} \cdot \underline{\hat{0}}}^{\circ}(\hat{G})=\sum_{\underline{k}=\underline{0}}^{\frac{N(q)}{(q)}} \gamma_{\underline{k}}(\underline{\omega}, \underline{k})\langle | \underline{\hat{O}}^{\underline{k}} \tag{16}
\end{equation*}
$$

If a given set of observables satisfies (PJC'), the formal evolution equation (12) for the EMGF $\mathcal{G}(\lambda ; \underline{\omega})$ may be refined into

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\mathbb{G}(\underline{\omega}, \underline{\partial \omega}) \mathcal{G}(\lambda ; \underline{\omega}), \quad \mathbb{G}(\underline{\omega}, \underline{\partial \omega})=\left.\left(\langle | e^{a d_{\underline{\omega}} \cdot \hat{o}}(\hat{G})\right)\right|_{\underline{\hat{O}} \rightarrow \underline{\partial \omega}} . \tag{17}
\end{equation*}
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

$\hat{O}_{E}:=\dagger \quad$ Pattern E : an edge of any type

Example: generating planar rooted binary trees (PRBTs) uniformly

$$
\begin{aligned}
& \hat{o}_{E}:=\dagger \quad \text { Pattern } E \text { : an edge of any type } \\
& {\left[\hat{o}_{E}, \hat{G}\right]=\left[1+\backslash+/, Y_{0}+\ldots\right]=V_{0}+V_{0}+V_{0}}
\end{aligned}
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

$$
\hat{o}_{E}:=\quad \text { Pattern } E \text { : an edge of any type }
$$

$$
\left[\hat{o}_{E}, \hat{G}\right]=[1+\backslash+/, Y+Y]=V_{0}+Y_{+}+\underset{b}{V}+\ldots-\ldots=2 \hat{G}
$$

$$
\langle | \hat{G}=2\langle | \hat{O}_{E}
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

$$
\hat{o}_{E}:=\quad \text { Pattern } E \text { : an edge of any type }
$$

On Stochastic Rewriting and Combinatorics
via Rule-Algebraic Methods ${ }^{*}$

Nat

$$
\left[\hat{O}_{E}, \hat{G}\right]=\left[1+1+1, * V_{0}+Y_{*}\right]=V_{0}+V_{0}+V_{*}+V_{*}+\ldots-\ldots=2 \hat{G}
$$

$$
\langle | \hat{G}=2\langle | \hat{O}_{E}
$$

$$
\left\{\begin{array}{rl}
\frac{\partial}{\partial \lambda} \mathscr{G}(\lambda ; \varepsilon) & =2 e^{2 \varepsilon} \frac{\partial}{\partial \varepsilon} \mathscr{G}(\lambda ; \varepsilon) \\
\mathscr{G}(0 ; \varepsilon) & \left.=\langle | e^{\varepsilon \hat{O}_{E}}| |\right\rangle=e^{\varepsilon}
\end{array} \quad \Rightarrow \quad \mathscr{G}(\lambda ; \varepsilon)=\frac{1}{\sqrt{e^{-2 \varepsilon}-4 \lambda}}=\sum_{n \geq 0} \frac{\lambda^{n}}{n!}\left(\frac{(2 n)!}{n!} e^{\varepsilon(2 n+1)}\right)\right.
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

$$
\left.o_{p i}:=Y \equiv \equiv_{r \in\{L, R\}}\right\},
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

$$
\begin{aligned}
\hat{O}_{P 1}:=Y & \sum_{T \in\{I, L, R\}} Y_{i},
\end{aligned}
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

Example: generating planar rooted binary trees (PRBTs) uniformly

$\hat{o}_{P 3}:=$

$$
\equiv \sum_{T \in\{I, L, R\}}
$$

$$
\begin{aligned}
& \left.\mathscr{G}(\lambda ; \underline{\omega}):=\langle | e^{\underline{\omega} \cdot \underline{\hat{0}}} e^{\lambda \hat{G}}| |\right\rangle, \quad \underline{\omega} \cdot \underline{\hat{O}}:=\varepsilon \hat{O}_{E}+\gamma \hat{O}_{P 1}+\mu \hat{O}_{P 2}+v \hat{O}_{P 3} \\
& \left.\left.\frac{\partial}{\partial \lambda} \mathscr{G}(\lambda ; \underline{\omega})=\langle |\left(e^{a d_{\underline{\omega}} \cdot \hat{o}}(\hat{G})\right) e^{\omega} \cdot \underline{\hat{o}} e^{\lambda \hat{G}}| |\right\rangle \stackrel{(*)}{=}\langle |\left(e^{a d_{v \hat{o}_{P 3}}}\left(e^{a d_{\mu} \hat{o}_{P 2}}\left(e^{a d_{\varepsilon \hat{o}_{E}+\gamma \hat{o}_{P_{1}}}}(\hat{G})\right)\right)\right) e^{\omega \cdot \underline{\hat{o}}} e^{\lambda \hat{G}}| |\right\rangle \\
& \left.=e^{2 \varepsilon+\gamma}\langle |\left(e^{a d_{v o} \hat{o}_{P 3}}\left(e^{a d_{\mu} \hat{o}_{P 2}}(\hat{G})\right)\right) e^{\omega \cdot \hat{o}} e^{\lambda \hat{G}}| |\right\rangle \\
& \left.=e^{2 \varepsilon+\gamma}\langle |\left(e^{a d_{v} \hat{o}_{P 3}}\left(\hat{G}+\left(e^{\mu}-1\right)\left[\hat{O}_{P 2}, \hat{G}\right]\right)\right) e^{\omega \cdot \underline{\hat{o}}} e^{\lambda \hat{G}}| |\right\rangle \\
& =e^{2 \varepsilon+\gamma}\langle |\left(\hat{G}+\left(e^{\mu}-1\right)\left[\hat{O}_{P 2}, \hat{G}\right]\right. \\
& \left.\left.+e^{\mu}\left(e^{\nu}-1\right)\left[\hat{O}_{P 3}, \hat{G}\right]+\left(e^{\nu}-1\right)\left(e^{\mu}-e^{-v}\right) \hat{R}_{P 3^{\prime}}\right) e^{\omega \cdot \underline{\hat{O}}} e^{\lambda \hat{G}}| |\right\rangle \\
& =e^{2 \varepsilon+\gamma}\langle |\left(2 \hat{O}_{E}+3\left(e^{\mu}-1\right) \hat{O}_{P 1}+\left(4 e^{\mu+v}-6 e^{\mu}+2\right) \hat{O}_{P 2}\right. \\
& \left.\left.+\left(3 e^{\mu}+e^{-v}-3 e^{\mu+v}-1\right) \hat{O}_{P 3}\right) e^{\omega \cdot \underline{\hat{O}}} e^{\lambda \hat{G}}| |\right\rangle \\
& =e^{2 \varepsilon+\gamma}\langle |\left(2 \frac{\partial}{\partial \varepsilon}+3\left(e^{\mu}-1\right) \frac{\partial}{\partial \gamma}+\left(4 e^{\mu+v}-6 e^{\mu}+2\right) \frac{\partial}{\partial \mu}\right. \\
& \left.\left.+\left(3 e^{\mu}+e^{-v}-3 e^{\mu+v}-1\right) \frac{\partial}{\partial v}\right) e^{\omega \cdot \hat{O}} e^{\lambda \hat{G}}| |\right\rangle
\end{aligned}
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

Granted that the derivation of the evolution equation for $\mathscr{G}(\lambda ; \underline{\omega})$ is somewhat involved, one may extract from it a very interesting insight via a transformation of variables $\omega_{i} \rightarrow \ln x_{i}$ (which entails that $\left.\frac{\partial}{\partial \omega_{i}} \rightarrow x_{i} \frac{\partial}{\partial x_{i}}\right)$, and collecting coefficients for the operators $\hat{n}_{i}:=x_{i} \frac{\partial}{\partial x_{i}}$:

$$
\begin{align*}
& \frac{\partial}{\partial \lambda} \mathscr{G}(\lambda ; \underline{\ln x})=\hat{\mathrm{D}} \mathscr{G}(\lambda ; \underline{\ln x}) \\
& \hat{\mathrm{D}}=x_{\varepsilon}^{2} x_{v}\left(2 \hat{n}_{\varepsilon}-3 \hat{n}_{\gamma}+2 \hat{n}_{\mu}-\hat{n}_{v}\right)+x_{\varepsilon}^{2} x_{v} x_{\mu}\left(3 \hat{n}_{\gamma}-6 \hat{n}_{\mu}+3 \hat{n}_{v}\right)+x_{\varepsilon}^{2} x_{v} x_{\mu}^{2}\left(4 \hat{n}_{\mu}-3 \hat{n}_{v}\right)+x_{\varepsilon}^{2} \hat{n}_{V} \tag{58}
\end{align*}
$$

Example: generating planar rooted binary trees (PRBTs) uniformly

Example: generating planar rooted binary trees (PRBTs) uniformly

Combinatorial evolution equations

The formal EMGF evolution equation for $\mathcal{G}(\lambda ; \underline{\omega})$ reads as follows:

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\langle |\left(e^{a d_{\underline{\omega}} \cdot \underline{o} \hat{G}}\right) e^{\omega \cdot} \cdot \underline{\hat{o}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \quad\left(a d_{A}(B):=A B-B A\right) \tag{15}
\end{equation*}
$$

Applying the version of the jump-closure theorem appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper evolution equation on formal power series if the following polynomial jump-closure holds:

$$
\begin{equation*}
\left(\mathrm{PJC}^{\prime}\right) \quad \forall q \in \mathbb{Z}_{\geq 0}: \exists \underline{\exists N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{\underline{k}}) \in \mathbb{R}:\langle | a d_{\underline{\omega} \cdot \underline{\hat{O}}}^{\circ q}(\hat{G})=\sum_{\underline{k}=\underline{0}}^{\sum_{\underline{k}}(\underline{\omega}, \underline{k})\langle | \underline{\hat{O}}^{\underline{k}}} \tag{16}
\end{equation*}
$$

If a given set of observables satisfies (PJC'), the formal evolution equation (12) for the EMGF $\mathcal{G}(\lambda ; \underline{\omega})$ may be refined into

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\mathbb{G}(\underline{\omega}, \underline{\partial \omega}) \mathcal{G}(\lambda ; \underline{\omega}), \quad \mathbb{G}(\underline{\omega}, \underline{\partial \omega})=\left.\left(\langle | e^{a d_{\underline{\omega} \cdot} \cdot \hat{o}}(\hat{\mathcal{G}})\right)\right|_{\underline{\hat{\hat{}} \rightarrow} \rightarrow \underline{\partial \omega}} . \tag{17}
\end{equation*}
$$

Combinatorial evolution equations

The formal EMGF evolution equation for $\mathcal{G}(\lambda ; \underline{\omega})$ reads as follows:

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\langle |\left(e^{a d_{\underline{\omega}} \cdot \underline{o} \hat{G}}\right) e^{\omega \cdot} \cdot \underline{\hat{o}} e^{\lambda \hat{G}}\left|X_{0}\right\rangle \quad\left(a d_{A}(B):=A B-B A\right) \tag{15}
\end{equation*}
$$

Applying the version of the jump-closure theorem appropriate for the chosen rewriting semantics (DPO or SqPO), the above formal evolution equation may be converted into a proper evolution equation on formal power series if the following polynomial jump-closure holds:

$$
\begin{equation*}
\left(P J C^{\prime}\right) \quad \forall q \in \mathbb{Z}_{\geq 0}: \exists \underline{N(n)} \in \mathbb{Z}_{\geq 0}^{m}, \gamma_{q}(\underline{\omega}, \underline{k}) \in \mathbb{R}:\langle | a d_{\underline{\omega} \cdot \underline{\hat{0}}}^{\circ}(\hat{G})=\sum_{\underline{k}=\underline{0}}^{\frac{N(q)}{(q)}} \gamma_{\underline{k}}(\underline{\omega}, \underline{k})\langle | \underline{\hat{O}}^{\underline{k}} \tag{16}
\end{equation*}
$$

If a given set of observables satisfies (PJC'), the formal evolution equation (12) for the EMGF $\mathcal{G}(\lambda ; \underline{\omega})$ may be refined into

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda ; \underline{\omega})=\mathbb{G}(\underline{\omega}, \underline{\partial \omega}) \mathcal{G}(\lambda ; \underline{\omega}), \quad \mathbb{G}(\underline{\omega}, \underline{\partial \omega})=\left.\left(\langle | e^{a d_{\underline{\omega}} \cdot \hat{o}}(\hat{G})\right)\right|_{\underline{\hat{O}} \rightarrow \underline{\partial \omega}} . \tag{17}
\end{equation*}
$$

Plan of the talk:

I. A Case Study in Applied Category Theory: from Categorical Rewriting to Rule-algebraic Combinatorics
II. The coreact.wiki Initiative

CoREACT

Coq-based Rewriting: towards Executable Applied Category Theory
Consortium: IRIF (UP), LIP (ENS-Lyon), LIX (École Polytechnique), Sophia-Antipolis (Inria)

Partner	Last name	First name
Université de Paris	BEHR	Nicolas
	GALLEGO	Emilio
	GHEERBRANT	Amélie
	HERBELIN	Hugo
	MELLIĖS	Paul-André
	ROGOVA	Alexandra
ENS-Lyon	HARMER	Russell
	HIRSCHOWITZ	Tom
	POUS	Damien
École Polytechnique	MIMRAM	Samuel
	WERNER	Benjamin
	ZEILBERGER	Noam
Inria Sophia-Antipolis	BERTOT	Yves
	COHEN	Cyril
	TASSI	Enrico

coreact.wiki

Main objectives of the CoREACT/GReTA ExACT initiative

- Development of a methodology for diagrammatic reasoning in Coq
- Formalization (in Coq) and certification of a representative collection of axioms and theorems for compositional categorical rewriting theory
- Development of a Coq-enabled interactive database and wiki system
- Development of a CoREACT wiki-based "proof-by-pointing" engine
- Executable reference prototype algorithms from categorical structures in Coq (via the use of SMT solvers/theorem provers such as Z3)

Main objectives of the CoREACT/GReTA ExACT initiative

- Development of a methodology for diagrammatic reasoning in Coq
- Formalization (in Coq) and certification of a representative collection of axioms and theorems for compositional categorical rewriting theory
- Development of a Coq-enabled interactive database and wiki system
- Development of a CoREACT wiki-based "proof-by-pointing" engine
- Executable reference prototype algorithms from categorical structures in Coq (via the use of SMT solvers/theorem provers such as Z3)

A (very non-exhaustive!) view on wiki svstems in mathematics/ (A)CT

```
nLab
species
Contents
1. Idea
2. Definition
1-categorical
2-categorical
(\infty,1)-categorical
Operations on species
Sum
Cauchy_product
Hadamard product
Dirichlet product
Composition product
3. In Homotopy Type Theory
Operations on species
Coproduct
Hadamard product
```

A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

https://planetmath.org

(semi-) automatic cross-linking provided via NNexus system

A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

औै		Home Page	All Pages
species			
Contents			
1. Idea			
2. Definition			
1-categorical			
2-categorical			
($\underline{\mathbf{\infty}, ~ 1 \text {)-categorical }}$			
Operations on species			
Sum			
Cauchy_product			
Hadamard product			
Dirichlet product			
Composition product			
3. In Homotopy Type Theory			
Operations on species			
Coproduct			
Hadamard product			

https://planetmath.org

an online resource for homotopy-coherent mathematics

(semi-) automatic cross-linking provided via NNexus system

- J. Lurie's online textbook on categorical homotopy theory
- technology based upon online tags view via the Gerby system

Gerby

online tag-based view for large LaTeX documents

A (very non-exhaustive!) view on proof assistants in mathematics

https://github.com/agda

Hu Jason, CPP21: "Formalizing Category Theory in Agda"
https://youtu.be/a2txkoybw2M

EPIT Spring School on HoTT: Bas Spitters Part 1 (Introduction to Coq and HoTT)

 https://youtu.be/k8T9L0qR380

Microsoft Research
https://leanprover.github.io

Jeremy Avigad: "Formal mathematics, dependent type theory, and the Topos Institute"
https://youtu.be/Kpa8cCUZLms
Kevin Buzzard: "What is the point of Lean's maths library?"
https://youtu.be/alByz_LoANE

A (very non-exhaustive!) view on proof assistants in mathematics

https://github.com/agda

Hu Jason, CPP21: "Formalizing Category Theory in Agda"
https://youtu.be/a2txkoybw2M

35 The Coq Proof Assistant https://coq.inria.fr

EPIT Spring School on HoTT: Bas Spitters Part 1 (Introduction to Coq and HoTT) https://youtu.be/k8T9L0qR380

Microsoft Research
https://leanprover.github.io

Jeremy Avigad: "Formal mathematics, dependent type theory, and the Topos Institute"
https://youtu.be/Kpa8cCUZLms
Kevin Buzzard: "What is the point of Lean's maths library?"
https://youtu.be/alByz_LoANE

Coq - overview

The Coq Proof Assistant

https://coq.inria.fr

- 1984 implementation of the Calculus of Constructions at INRIA-Rocquencourt by Thierry Coquand and Gérard Huet
- 1991 Calculus of Inductive Constructions (CIC) by Christine Paulin-Mohring
- 2002 completion of the four color theorem proof in Coq by Georges Gonthier and Benjamin Werner (start of the SSRef lect development)
- (...)
- 2012 completion of the Feit-Thompson theorem by Georges Gonthier et al.
- (...)
- more than 200 people contributed over the past >30 years (most recent stable version: 8.14)

Coq - famous milestones

Coq-combi

Algebraic Combinatorics in Coq/SSReflect Documentation

ar math-comp / Coq-Combi Public

<> Code
\bigcirc Issues 1
? Pull requests
© Actions

$$
\xi^{9} \text { master } \quad \mathfrak{F} 19 \text { branches } \oslash 7 \text { tags }
$$

(G.) hivert Transfert to mathcomp

Author: Florent Hivert https://github.com/math-comp/Coq-Combi

Coq-combi

Author: Florent Hivert https://github.com/math-comp/Coq-Combi

Coq-combi

Combi.Combi. partition: Integer Partitions

- Shapes and Integer Partitions
- Shapes
- A finite type fintype for coordinate of boxes inside a shape
- Rewriting bigops running along the boxes of a shape
- Adding a box to a shape
- Integer Partitions
- Definitions and basic properties
- Corners, adding_and removing_corners
- Conjugate of a partition
- Partial sum of partitions
- Inclusion of Partitions and Skew Partitions
- Sigma Types for Partitions
- Counting functions
- TODO: Generalize and move in finOrdType

Coq-combi

Shapes and Integer Partitions

Partitions (and more generally shapes) are stored by terms of type seq (seq nat). We define the following predicates and operations on seq (seq nat): (r, c) is in sh if $r<\operatorname{sh}$ [i]

- is_in_shape shrc == the box with coordinate (r, c) belongs to the shape sh, that is: $\mathrm{c}<\operatorname{sh}[r]$.
- is_box_in_shape (r, c) $==$ uncurried version: same as is_in_shape shrc.
- box_in sh == a sigma type for boxes in sh : \{b|
is_box_in_shape sh b \} is is canonically a subFinType.
- enum_box_in sh $==$ a full duplicate free list of the boxes in sh. Integer Partitions:
- is part sh $==$ sh is a partition
- rem_trail0 sh $==$ remove the trailing zeroes of a shape
- is_add_corner sh $i==i$ is the row of an addable corner of sh
- is_rem_corner sh $i==i$ is the row of a removable corner of sh
- incr_nth sh i $==$ the shape obtained by adding a box at the end of the i-th row. This gives a partition if i is an addable corner of sh (Lemma is_part_incr_nth)
- decr_nth sh i == the shape obtained by removing a box at the end of the i-th row. This gives a partition if i is an removable corner of sh

Sigma Types for Partitions

Section PartCombClass
Structure intpart : Type := IntPart \{pval :> seq nat; _ : is_part pval\}. Canonical intpart_subType := Eval hnf in [subType for pval].
Definition intpart_eqMixin := Eval hnf in [eqMixin of intpart by <:].
Canonical intpart eqType := Eval hnf in EqType intpart intpart eqMixin.
Definition intpart_choiceMixin := Eval hnf in [choiceMixin of intpart by <:]. Canonical intpart_choiceType := Eval hnf in ChoiceType intpart intpart_choiceMixin. Definition intpart_countMixin := Eval hnf in [countMixin of intpart by <:]. Canonical intpart_countType := Eval hnf in CountType intpart intpart_countMixin.

Lemma intpartP (p : intpart) : is_part p.
Hint Resolve intpartP.
Canonical conj_intpart p := IntPart (is_part_conj (intpartP p)).
Lemma conj_intpartk : involutive conj_intpart.
Lemma intpart_sum_inj (s t : intpart) :
$(\forall \mathrm{k}$, part_sum $\bar{s} \mathrm{k}=$ part_sum $\mathrm{t} k) \rightarrow \mathrm{s}=\mathrm{t}$.
Fixpoint enum_partnsk sm sz mx : (seq (seq nat)) :=
if sz is sz.+1 then
flatten [seq [seq i : : p | p <- enum_partnsk (sm - i) sz i] | i <- iota 1 (minn sm mx)] else if sm is sm.+1 then [::] else [:: [::]].
Definition enum_partns sm sz := enum_partnsk sm sz sm.
Definition enum_partn $s m:=$ flatten [seq enum_partns sm sz | sz <- iota 0 sm.+1].

Major usability concerns (?)

- Difficult and work-intensive to install/compile from source on some systems
- As both a proof assistant and a programming language, understanding the theory behind Coq and acquiring a working knowledge of the semantics/technical peculiarities of the Coq system is quite work-intensive
- Finding and analyzing proofs is mostly a manual (if assisted) process - standardization and searchability?
- Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging
- "Burden of interdisciplinarity" - documenting a given piece of mathematical knowledge in a wiki system requires substantial amounts of human-readable and potentially highly technical text, potentially with very involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form of programming which has to be aided by some form of Coq API documentation and ideally a library of code examples

Major usability concerns (?)

- Difficult and work-intensive to install/compile from source on some systems
- As both a proof assistant and a programming language, understanding the theory behind Coq and acquiring a working knowledge of the semantics/technical peculiarities of the Coq system is quite work-intensive
- Finding and analyzing proofs is mostly a manual (if assisted) process - standardization and searchability?
- Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging
- "Burden of interdisciplinarity" - documenting a given piece of mathematical knowledge in a wiki system requires substantial amounts of human-readable and potentially highly technical text, potentially with very involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form of programming which has to be aided by some form of Coq API documentation and ideally a library of code examples

https://youtu.be/4084o1hk1Qs
jsCoq

Actions:
Button

* Butoon Kev binding Action
* Butoon Kev binding Action

- ${ }^{\mathrm{Fe}}$
Toggles the goal panel.
Creating your oun proot scripts

A First Example: The Infinitude of Primes

Ready to do Proots!
Once the basico envion

https://github.com/jscoq

ρ Core developer team

- Emilio Jesús Gallego Arias , Inria, Université de Paris, IRIF
- Shachar Itzhaky, Technion
e Past Contributors

$3 v$

- Benoît Pin, CRI, MINES ParisTech

Welcome to the jsCoq Interactive Online System!

Welcome to the jsCoq technology demo! jsCoq is an interactive, web-based environment for the Coq Theorem prover, and is a collaborative development effort. See the list of contributors below.
jsCoq is open source. If you find any problem or want to make any contribution, you are extremely welcome! We await your feedback at GitHub and Zulip.

Instructions:
The following document contains embedded Coq code. All the code is editable and can be run directly on the page. Once jsCoq finishes loading, you are free to experiment by stepping through the proof and viewing intermediate proof states on the right panel.
Actions:

Button	Key binding	Action
$\downarrow 4$	$\begin{aligned} & A l t+\perp / T \text { or } \\ & A l t+N / P \end{aligned}$	Move through the proof.
+1/	$\begin{aligned} & \text { Alt }+ \text { Enter or } \\ & \text { Alt }+\rightarrow \end{aligned}$	Run (or go back) to the current point.
(1)	F8	Toggles the goal panel.

Creating your own proof scripts.
The scratchpad offers simple, local storage functionality. It also allows you to share your development with other users in a manner that is similar to Pastebin.

A First Example: The Infinitude of Primes
If you are new to Coq, check out this introductory tutorial by Mike Nahas. As a more advanced showcase, we display a proof of the infinitude of primes in Coq. The proof relies on the Mathematical Components library from the MSR/Inria team led by Georges Gonthier, so our first step will be to load it:

1 From Coq Require Import ssreflect ssrfun ssrbool.
2 From mathcomp Require Import eqtype ssrnat div prime.
Ready to do Proofs!
Once the basic environment has been set up, we can proceed to the proof
Past Con
3 (* A nice proof of the infinitude of primes, by Georges Gonthier *) Lemma prime_above m: $\{\mathrm{p} \mid \mathrm{m}<\mathrm{p} \& \mathrm{prime} \mathrm{p}\}$.
5 Proof.

Goals
jsCoq (0.13.3), Coq 8.13.2/81300 (September 2021),
compiled on Sep 212021 15:32:50
OCaml 4.12.0, Js of ocaml 3.9.0

Coq worker is ready.
===> Loaded packages [init]

Messages into o
 (i) Coq.Init.Logic Type loaded.

(i) Coq.Init.Specif loaded.
(1) Coq.Init.Decimal loaded
(i) Coq.Init.Hexadecimal loaded.
(i) Coq.Init.Number loaded.

Coq.Init.Nat loaded.
(i) Coq.Init.Byte loaded.
(1) Coq.Init.Numeral loaded.
(i) Coq.Init.Peano loaded.
jsCoq
 eorem prover, and is a collaborative developp Soqis open suure. If you find any probem
 Page. Once icooq finishes laadin, you are
 Alt+ $\frac{\text { Att Eter or }}{\text { Alter }}$ Run (or go back)
\qquad

 From coos inllia team led by gimeortas
Ftom nath Requile Requineore tester

\qquad

Core dev

- Emilio
- Shach

Q Past Con

- Benôt

```
9 Lemma gf_ensembles ( }\textrm{n}:\mathbb{N}\mathrm{ ) : gf ensembles n = gcard (BAut (Fin n)).
```

9 Lemma gf_ensembles (}\textrm{n}:\mathbb{N}\mathrm{) : gf ensembles n = gcard (BAut (Fin n)).
10 Proof.
10 Proof.
unfold gf. path_via (gcard (BAut (Fin n)) * 1)
unfold gf. path_via (gcard (BAut (Fin n)) * 1)
unfold gf. path_via (gcard (BAut (Fin n)) * 1).
unfold gf. path_via (gcard (BAut (Fin n)) * 1).
+ apply gcard_equiv'. apply equiv_contr_unit.
+ apply gcard_equiv'. apply equiv_contr_unit.
apply gcard unit.
apply gcard unit.
- apply mult_1_\overline{r}.
- apply mult_1_\overline{r}.
efined.
efined.
|
|
lemma contr stuff spec (P : FinSet -> Type) (HP : \forall A, Contr (P A))
lemma contr stuff spec (P : FinSet -> Type) (HP : \forall A, Contr (P A))
: spec from stuff P = ensembles.
: spec from stuff P = ensembles.
Proof.
Proof.
path via (spec from stuff (}\lambda\quad=>\mathrm{ Unit)).
path via (spec from stuff (}\lambda\quad=>\mathrm{ Unit)).
- apply path stuff spec. intro A.
- apply path stuff spec. intro A.
apply equiv contr unit.
apply equiv contr unit.
apply path sigma uncurried. refine (; _)
apply path sigma uncurried. refine (; _)
+ apply path universe uncurried.
+ apply path universe uncurried.
refine (equiv_adjointify _ _ _)
refine (equiv_adjointify _ _ _)
apply pr. (\lambda, adjointify
apply pr. (\lambda, adjointify
* apply (\lambda A = (A; tt)).
* apply (\lambda A = (A; tt)).
intro A. reflexivity.
intro A. reflexivity.
* intro A. apply path_sigma_hprop. reflexivity.
* intro A. apply path_sigma_hprop. reflexivity.
+ simpl. apply path arrow. intro A.
+ simpl. apply path arrow. intro A.
refine ((transport_arrow _ _-_) @ @).
refine ((transport_arrow _ _-_) @ @).
path_via (transport idmap
path_via (transport idmap
path_universe_uncurried
path_universe_uncurried
(equiv_inverse
(equiv_inverse
(equiv_adjointify pr 1 (}\lambda\mp@subsup{A}{0}{
(equiv_adjointify pr 1 (}\lambda\mp@subsup{A}{0}{
(\lambda (A : FinSet }=>1
(\lambda (A : FinSet }=>1
(\lambda A A : {- : FinSet \& Unit} =
(\lambda A A : {- : FinSet \& Unit} =
path_sigma_hprop (let (proj1_sig, _) := A0 in proj1_sig; tt) A A
path_sigma_hprop (let (proj1_sig, _) := A0 in proj1_sig; tt) A A
1)\)) A).1.
1)\)) A).1.
f_ap. f_ap. simpl. symmetry. apply path_universe_v_uncurried. simpl.
f_ap. f_ap. simpl. symmetry. apply path_universe_v_uncurried. simpl.
path_via ((equiv_inverse
path_via ((equiv_inverse
(equiv_adjointify pr ((}\lambda\mp@subsup{A}{0}{}: FinSet = (A0; tt))
(equiv_adjointify pr ((}\lambda\mp@subsup{A}{0}{}: FinSet = (A0; tt))
(}\lambda\mp@subsup{\overline{A}}{0}{
(}\lambda\mp@subsup{\overline{A}}{0}{
A0 : {_ : FinSet \& Unit}
A0 : {_ : FinSet \& Unit}
path_sigma_hprop (let (proj1_sig, _) := A0 in proj1_sig; tt)
path_sigma_hprop (let (proj1_sig, _) := A0 in proj1_sig; tt)
A0
A0
f_ap. apply transport_path_universe_uncurried.
f_ap. apply transport_path_universe_uncurried.
Defined.a
Defined.a
Lemma gf contr stuff spec (P : FinSet -> Type) (HP : \forall A, Contr (P A)) (n : N
Lemma gf contr stuff spec (P : FinSet -> Type) (HP : \forall A, Contr (P A)) (n : N
: gf (\overline{spec from stuff P) n = gcard (BAut (Fin n)).}
: gf (\overline{spec from stuff P) n = gcard (BAut (Fin n)).}
Proof.
Proof.
refine (_ @ (gf_ensembles _)). f_ap.
refine (_ @ (gf_ensembles _)). f_ap.
apply contr stuff spec. apply HP_ap
apply contr stuff spec. apply HP_ap
Defined.
Defined.
58

```
58
```


Towards automated theorem-proving and tactics-learning

https://coqhammer.github.io

SMTCoq

Communication between Coq and SAT/SMT solvers

SMTCoq

Presentation
SMTCoq is a coo plugin that checks proof witnesses coming from external SAT and SMT
solvers. It provides

- a cerififed checker for proof witnesses coming from the SAT solver ZChaff and the SMT
solvers veriT and CVC4 This checker increases the confidence in these tools hy
solvers verit and $\mathrm{CVC4} 4$. This checker increases the confidence in these tools by
checking their answers a posteriori and allows to import new theroems proved by these
decision proced
- deecision procecures throgh new ta
verit, CVCC4, and their combination.
https://smtcoq.github.io

https://coq-tactician.github.io

https://github.com/math-comp/hierarchy-builder

Coq-community

 Sosin Senup
coq-community
proiect for a collisatict
ampaz/learemmunty

https://github.com/coq-community
"A project for a collaborative, community-driven effort for the long-term maintenance and advertisement of Coq packages."

- 58 repositories

80. Mathematical Components

Abel Pu
A proof of Abel-Ruffini theorem.
algebra-tactics

Ring and field tactics for Mathematical Components
coq proof-automation (ssreflect) mathoomp elpi

analysis Public
Mathematical Components compliant Analysis Library
analysis coq ssreflect mathcomp

apery Public
apery Public
A formal proof of the irrationality of zeta(3), the Apéry constant
coq mathcomp

bigenough
Asymptotic reasoning with bigenough

| coq | ssreflect mathcomp |
| :---: | :---: | :---: |

cad Public
Formalizing Cylindrical Algebraic Decomposition related theories in mathcomp
coa ssreflect mathoomp

Coq-Combi

The coreact.wiki proposal

knowledge graphs

Maintenance: collaborate with/ adopt standards of Coq-community

seouj

(graph-) database

PDF \& HTML textbook
wiki entry (e.g., a Lemma)
\#hash (auto-generated)
tags
list of cross-references bibliographic references code origin references

Human-readable text

LaTeX-based, with annotations permitting generation of cross-references via NNexus

Machine-readable Coq-formalization

Including compatible Coq version and possibly different variants for (1) different Coq versions and/or (2) different implementation strategies/frameworks/theories.

Examples (both maths \& Coq)

Curated in jsCoq, directly executable from within the wiki entry in the form of a literate web document and/or as a bundle of a Coq file with instructions for a particular Docker image for Coq.

Proof tactics and performance data

Machine-learned tactics data, cross-evaluation of performance of different variants of implementations, user annotations on different Coq versions/libraries used

A proposal for a wiki-topic case study: HoTT Species

COMBINATORIAL SPECIES AND LABELLED STRUCTURES

Brent Abraham Yorgey
A DISSERTATION
in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in
Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2014

https://repository.upenn.edu/edissertations/1512/

Combinatorial species were developed by Joyal (1981) as an abstract treatment of enumerative combinatorics, especially problems of counting the number of ways of putting some structure on a finite set. Many of the results of species theory are special cases of more general properties of homotopy types, mak
ing homotopy type theory (HoTT) a useful tool for dealing with species. These tools become even more ing homotopy type theory (HoTT) a useful tool for dealing with species. These tools become even more
apposite when one generalizes species to higher groupoids, as Baez and Dolan (2001) do. What follows are notes I wrote while learning about species. They're mainly summary of the notes Derek Wise took during John Baez's "Quantization and Categorification" seminar in AY2004 (Baez and Wise, 2003, 2004b,a), with
some reference to Bergeron et al. (2013), Baez and Dolan (2001), and Aguiar and Mahajan (2010).
https://github.com/jdoughertyii/hott-species

A proposal for a wiki-topic case study: HoTT Species

Defining species	1
Computing cardinalities	2
\checkmark Speciation	5
Coproduct	5
Hadamard product	5
Cauchy product	6
Composition	7
Differentiation	8
Pointing	9
Inhabiting	9
\checkmark Examples	10
(-2)-stuff	10
(-1)-stuff	10
0-stuff	11
Fock space	13
Cayley's Formula	13
References	13

A proposal for a wiki-topic case study: HoTT Species

Defining species	1
Computing cardinalities	2
\checkmark Speciation	5
Coproduct	5
Hadamard product	5
Cauchy product	6
Composition	7
Differentiation	8
Pointing	9
Inhabiting	9
\checkmark Examples	10
(-2)-stuff	10
(-1)-stuff	10
0-stuff	11
Fock space	13
Cayley's Formula	13
References	13

If F is $a \ldots$	then $\|F\|(z)=\sum \frac{a_{n}}{n!} z^{n}$ where:	since these numbers are cardinalities of:
stuff type	$a_{n} \in \mathbb{R}^{+}=[0, \infty)$	(tame) groupoids $=1$-grapoids
structure type	$a_{n} \in \mathbb{N}$	(finile) sets $=0$-groupids
property type	$a_{n} \in\{0,1\} \cong\{F, T\}$	truth values $=-1$-groupoids
vacuous property type	$a_{n} \in\{1\} \cong\{T\}$	$\text { true } \quad=\frac{\text { the only }}{-2 \text {-grapeid }}$

John Baez, Quantum Gravity Seminar - Spring 2004: Quantization and Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)
https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

A proposal for a wiki-topic case study: HoTT Species

Defining species	1
Computing cardinalities	2
\checkmark Speciation	5
Coproduct	5
Hadamard product	5
Cauchy product	6
Composition	7
Differentiation	8
Pointing	9
Inhabiting	9
\checkmark Examples	10
(-2)-stuff	10
$(-1)-$ stuff	10
0 -stuff	11
Fock space	13
Cayley's Formula	13
References	13

If F is $a \ldots$	then $\|F\|(z)=\sum \frac{a_{n}}{n!} z^{n}$ where:	since these numbers are cardinalities of:
stuff type	$a_{n} \in \mathbb{R}^{+}=[0, \infty)$	(tame) groupoids $=1$-grapoids
structure type	$a_{n} \in \mathbb{N}$	(finile) sets $=0$-groupids
property type	$a_{n} \in\{0,1\} \cong\{F, T\}$	truth values $=-1$-groupoids
vacuous property type	$a_{n} \in\{1\} \cong\{T\}$	$\text { true } \quad=\frac{\text { the only }}{-2 \text {-grapeid }}$

John Baez, Quantum Gravity Seminar - Spring 2004: Quantization and Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise) https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

coreact.wiki

Merci beaucoup !

