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Uniform random generation of combinatorial structures

Many approaches:

ad hoc methods (& general principles: bijections, rejection, (un)ranking, etc.)

Markov chain Monte Carlo algorithms, e.g. coupling from the past [Propp Wilson 1998]

recursive method [Nijenhuis Wilf 1975, Flajolet Zimmermann Van Cutsem 1994, Denise Dutour Zimmermann 1998]

⇝ packages in MuPAD/SageMath/Maple

generating trees [West 1990, Dulucq Gire Guibert 1996, Barcucci Del Lungo Pergola Pinzani 1998,

Banderier Bousquet-Mélou Denise Flajolet Gardy Gouyou-Beauchamps 1998...]

Boltzmann method [Duchon Flajolet Louchard Schaeffer 2002, Fusy Pivoteau Salvy Soria Bodini Ponty Dovgal Bendkowsky

Dien Papin Bacher Sportiello Stufler...]: the cherry on the cake of Flajolet’s symbolic method!

density method ⇝ this talk!
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Part I:

Enumerative and bijective results
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Young tableaux with local decreases

7 18 19 12 21 20 17

2 6 8 9 10 14 16

1 3 4 5 11 13 15

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
allowed to have decreasing labels. Places where a
decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

13 14

9 12

8 11

7 10

4 6

2 5

1 3

Nice formulas for some specific tableaux of shape n × 2:

• no walls:

1
n+1

(
2n
n

)

• walls everywhere:

(2n)!

• horizontal walls everywhere:

(2n)!
2n

• horizontal walls everywhere in 2nd col.:

(2n)!
2nn! = (2n − 1)!!

• vertical walls everywhere:

(
2n
n

)
= (2n)!

(n!)2

• all k vertical walls:

1
n+1

(
n+1
k

)(
2n
n

)
(We give 2 proofs )
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Proof #1: bijection with paths

Theorem
The number of n × 2 Young tableaux Y with k vertical walls is equal to

vn,k =
1

n + 1

(
n + 1

k

)(
2n

n

)
.

14 13

10 12

9 11

8 7

4 6

3 5

2 1

Proof: (part 1) Bijection with Dyck bridges on Z: steps ±1,
length 2n, k marked down steps:

The kth step is an up step iff the entry k appears in the first
column of Y; otherwise it is a down step.

Down steps coming from a row with a wall are colored.

⇒ vn,k counts the number of paths with exactly k colored steps.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Proof #1: bijection with paths and Chung–Feller

Theorem
The number of n × 2 Young tableaux Y with k vertical walls is equal to

vn,k =
1

n + 1

(
n + 1

k

)(
2n

n

)
.

14 13

10 12

9 11

8 7

4 6

3 5

2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Proof (part 2):
A down step below 0 is always colored because a wall has to be involved, a
down step above 0 has a choice.
By [Chung–Feller 49] the number of Dyck bridges of length 2n with i down
steps below 0 is independent of i and equal to Cat(n) = 1

n+1

(
2n
n

)
.

⇒ vn,k =
k∑

i=0

(
n − i

k − i

)
Cat(n) =

(
n + 1

k

)
Cat(n).
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Proof #2: bijection to leaf-marked binary trees

Theorem
The GF for a fixed size n and an arbitrary number of walls is

vn(u) :=
n∑

k=0

vn,ku
k = Cat(n)

(
(1 + u)n+1 − un+1

)
.

2

1

4

3

13

1412

10

11

9

7

8

5

6

Open problem: combinatorial explanation of Cat(k − 1) | vn,k?
Closed form of vn,k also proves

∑
n≥0 vn,kz

n = Cat(k − 1) zk−1

(1−4z)(2k−1)/2 .
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Long walls with small holes: hook-length type formulas

Holes of size 1 on the border

13 14 16 17 19 20 21 25 27

11 2 10 12 15 18 6 23 26

4 1 8 5 7 9 3 22 24

λ1 λ2 λ3 λ4

Theorem
The number of n ×m Young tableaux of size mn with k walls from column 1 to
m − 1 at distance 0 < di :=

∑i
j=1 λi < n, i = 1, . . . , k with hi < hi+1 is equal to

(m − 1)!

(mn +m − 1)m−1

k+1∏
i=1

m−2∏
j=1

(
λi + j

j

)−1
(k+1∏

i=1

(
mdi +m − 1

λi , . . . , λi

))
,

where the multinomial coefficients contain m − 1 λi ’s.

⇝ hook-length formulas to a give a combinatorial explanation of the integrality of
(6n)!n!

(3n)!(2n)!2 or (30n)!n!
(15n)!(10n)!(6n) ? (alternative to the Landau criterion, 1900)
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Larger holes lead to unusual asymptotics

The “simplest case” of holes of size 2 on the border

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

2

1

3

BAADBACFCBEDECDFEF

Theorem
The number fn of such Young tableaux of size n × 3 satisfies

fn = Θ
(
n! 12nea1(3n)

1/3

n−2/3
)
,

where a1 ≈ −2.338 is the largest root of the Airy function of the first kind.

Bijections to phylogenetic networks, special words with n distinct letters, and
related to compacted trees (special DAGs) [Fuchs–Yu–Zhang 21]
General method to prove stretched exponentials in bivariate recurrences
[Elvey Price–Fang–Wallner 21]. Here:

yn,k = yn,k−1 + (2n + k − 1)yn−1,k and fn = yn,n.
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Part II:

The density method

* far origins in poset theory (volume of polytopes, log-concavity) [Stanley 1981]

* avatars in number theory [Zagier, Beukers Kolk Calabi 1993, Elkies 2003]

* applied to square Young tableaux [Barishnikov 2001]

and variants of alternating permutations [Baryshnikov Romik 2010, Stanley 2010]

* generalized to further posets & random generation [Banderier Marchal Wallner 2016–2021]
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Values of the zeta function and geometry

ζ(s) =
∑
k≥1

1

ks
→ S(s) := ζ(s)(1− 1

2s
) =

∑
k≥0

1

(2k + 1)s

S(2) =
∑
k≥0

1

(2k + 1)2
=
∑
k≥0

∫ 1

0

∫ 1

0

(xy)2k =

∫ 1

0

∫ 1

0

dxdy

1− (xy)2

Change of variable x = sin u
cos v and y = sin v

cos u .
The integration domain becomes the triangle T = {u > 0, v > 0, u + v < π/2}.

S(2) =

∫
T

dudv = π2/8

n even: S(n) = vol(polytope of dimension n) = (π/2)n/n!A(n)

A(n) = # alternating permutations of length n.

⇝ Kontsevich–Zagier periods / ”dimension” of a number / Hilbert 3rd problem
(congruence of polytopes)
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Uniform random generation and enumeration

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

This example is “without loss of generality”
(i.e., our method works also
for non-periodic shapes).

How to generate/enumerate such tableaux? Brute-force is hopeless!

Solution = use our density method!

The density method will give thousands of coefficients in a few seconds.

The number of tableaux of size 2n × 3 is fn = (6n + 1)!
∫ 1

0
pn(z)dz , with

pn+1(z) =

∫ z

0

1

24
(z −1)(x − z)(3x3−7x2z − xz2− z3−2x2+4xz +4z2)pn(x) dx .

{fn}n≥0={1, 12, 8550, 39235950, 629738299350, 26095645151941500, 2323497950101372223250,

392833430654718548673344250, 115375222087417545717234273063750,

55038140590519890608190921051205837500, . . . }.
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Uniform random generation and enumeration

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

This example is “without loss of generality”
(i.e., our method works also
for non-periodic shapes).
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Solution = use our density method!

The density method will give thousands of coefficients in a few seconds.
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1

24
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From tableaux to tuples of real numbers, and polytopes

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

7 16 17

2 14 15

9 11 19

4 10 13

5 8 18

3 6 12

1

.74 .96 .97

.25 .94 .95

.85 .91 .99

.42 .90 .93

.54 .82 .98

.35 .57 .92

.06

S Z W

R Y V

X

S < Z < W

< < <

R < Y < V

<

X

Left: 2n × 3 Young tableau with walls.
Centre: A related tableau with one more cell (removing this cell + relabel:
bijection with left tableau).
Our algorithm generates real numbers between 0 and 1, with same relative order.
All possible values = a polytope P ∈ [0, 1]6n+1.
Right: The “building block” of 7 cells. Each polyomino is made of the
overlapping of n such building blocks.
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Density method: key ideas

• geometric point of view:
Associate with a poset of size N its order polytope P (it is a subset of [0, 1]N).
Generate a random element of P slice by slice using conditional densities.
In the present example, N = 6n+ 1 and the slices are the building blocks of size 6
(except for the first one).

• sequence of densities:
sequence of polynomials pn(x), defined by the following recurrence (which in fact
encodes the full structure of the problem, building block after building block):
p0 = 1 and by induction,

pn+1(z) =

∫
0<x<z

∫
x<y<z

∫
0<r<y

∫
r<s<z

∫
z<w<1

∫
y<v<w

pn(v) dv dw ds dr dy dx .

S Z W

R Y V

X

S < Z < W
< < <

R < Y < V

<
X
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The density method algorithm
.74 .96 .97

.25 .94 .95

.85 .91 .99

.42 .90 .93

.54 .82 .98

.35 .57 .92

.06

S < Z < W

< < <

R < Y < V

<

X

1 Initialization: Precompute the polynomials p0(z), . . . , pn(z).
Label the building blocks from k = n − 1 to k = 0 (top to bottom).
Start at the top, i.e. k := n − 1.

Put into the top cell Z a random number z with density pn(z)/
∫ 1

0
pn(t) dt.

2 Filling: Now that Z is known, put into the cells X ,Y ,R,S ,V ,W

random numbers x , y , r , s, v ,w with conditional density

gk,z(x , y , r , s, v ,w) :=
1

pk+1(z)
pk(x)1Pk ,

where 1Pk is the indicator function of the k-th building block (with value z
in cell Z ):

1Pk := 1{0≤x≤y≤z,0≤r≤y ,r≤s≤z,z≤w≤1,y≤v≤w}.

3 Iteration: Consider X as the Z of the next building block. Set k := k − 1 and
go to step 2 (until k = 0).
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A very efficient algorithm!

Theorem
The density method algorithm is a uniform random generation algorithm with
quadratic time complexity (including precomputations).

Proof

Our algorithm yields a tuple x := (xi , yi , ri , si , vi ,wi )0<i≤n with density

pn(xn)∫ 1

0
pn(t)dt

n∏
i=1

gn−i,xn−i+1(xn−i , yn−i , rn−i , sn−i , vn−i ,wn−i )

=
pn(xn)∫ 1

0
pn(t)dt

n−1∏
k=0

pk(xk)1P xk

pk+1(xk+1)
=

p0(x0)1P∫ 1

0
pn(t) dt

=
1P∫ 1

0
pn(t) dt

(as p0 = 1),
↑

telescopic product!

where 1P xk is as in the algorithm above the indicator function of the k-th block.∫
(any density) = 1 implies:

vol(P) =

∫
[0,1]6n+1

1P dx =

∫ 1

0

pn(t) dt.

16 / 26 Cyril Banderier Enumeration & generation of Young tableaux with walls: the density method



A very efficient algorithm!

end of proof (uniformity & complexity):

Now if we choose a random uniform element in [0, 1]6n+1, the probability that it
belongs to P is ∫

[0,1]6n+1

1P dx.

This is also the probability that a random uniform filling of our building block is
correct (i.e., respects the order constraints).

This implies that fn = (6n + 1)!
∫ 1

0
pn(t)dt = |P|! vol(P).

Each step = computation and evaluation of the associated polynomial pn(z) (of
degree proportional to n) ⇒ quadratic time complexity and quadratic space.
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Jenga tableaux and the density method

Jenga! = Construct! in Swahili.

16 17 19 21

1 5 15 20 22

11 14

10 18

8

3 6 7 9 13

2 4 12

`1 r1

`7 r7

U1 · · · U` Z V1 · · · Vr

X` r

Given a shape encoded by (ℓi , ri )i∈N, what is the number of tableaux with n lines?

fn =
( n∑

i=1

(ℓi + ri + 1)
)
!

∫ 1

0

pn(x) dx .

pn(z) =

∫
z<v1<1

. . .

∫
vr−1<vr<1

∫
0<uℓ<z

. . .

∫
0<u1<u2

∫
0<x<z

pn−1(x) dx du1 . . . duℓ dvr . . . dv1

=
zℓn(1− z)rn

ℓn! rn!

∫ z

0

pn−1(x) dx with p1(z)
zℓ1(1− z)r1

ℓ1! r1!
.
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Special Jenga shapes

Theorem (1-periodic Jenga tableaux are D-finite)

The bivariate GF P(t, z) =
∑
n≥1

pn(z)t
n is D-finite in t and z.

Proposition

For ri = 0, ∀i ≥ 1, the number fn of Jenga tableaux is

fn =
(
∑n

i=1(ℓi + 1))!∏n
i=1 ℓi ! (

∑i
j=1(ℓj + 1))

.

16 17 19 21

1 5 15 20 22

11 14

10 18

8

3 6 7 9 13

2 4 12

`1 r1

`7 r7

Proposition

For Jenga tableaux with period p, L :=
∑p

i=1 ℓi , and (ri )
p
i=0 = (0, . . . , 0), one has:

fkp+m = fm

(
(L+ p)L∏p

i=1 ℓi !

)k L+p∏
j=1

j ̸=ℓ1+···+ℓi+i

Γ
(
k + j+m

L+p

)
Γ
(

j+m
L+p

) .

Accordingly, the GF of such tableaux is the sum of p hypergeometric functions.
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Skew tableaux with walls

Building block Skew shape Jenga shape

Proposition

The number of above skew tableaux with n columns of height h is

fn =

(
hh−2

(h − 2)!

)n h−2∏
j=1

Γ
(
n + j

h

)
Γ
(

j
h

) .

Proof: Use a bijection between this class and periodic Jenga tableaux of period
p = 2, ℓ1 = h − 2, ℓ2 = 0, and ri = 0.
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A classification of 2× 2 periodic shapes

A periodic shape is the concatenation of n copies of a building block B of ¡cells:

Y = Bn.

A tableau Y with periodic walls is a periodic shape filled with all integers from
{1, . . . , |B|n} respecting the induced order constraints.

B = A filling of B4:
3 10 5 6 12 16 13 14

1 2 4 7 8 9 11 15

There are a priori 26 = 64 shapes, but some are in bijection (e.g., turn by 180
degrees and reverse labels). It turns out that it leads to 32 different sequences.

We now characterize all 2× 2 shapes according to the nature of the counting
sequence/generating function, which is either

“simple” hypergeometric
hypergeometric,
algebraic,
D-algebraic and beyond.
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“Simple” hypergeometric cases

= cases where walls split tableaux into independent regions ⇒ product formulas

Class Shape Formula

P1 , 4
(4n)!

24n

P2
(4n)!

12n

P3 3
(4n)!

12n

P4

, ,

,

(4n)!

8n

P5

, ,

,

4
(4n)!

8n

Class Shape Formula

P6 ,
(4n)!

6n

P7 , 3
(4n)!

6n

P8 ,
8

5
(4n)!

5n

24n

P9 ,
(4n)!

4n

P10 , 2
(4n)!

4n

P11 4
(4n)!

4n

P12 ,
(4n)!

3n

Class Shape Formula

P13 ,
3

2

(4n)!

3n

P14

, ,

,

(4n)!

2n

P15 , 2
(4n)!

2n

P16 ,
(4n)!

(2n)! 2n

P17 , 2
(4n)!

(2n)! 2n

P18 ,
(4n)!

(2n)!

P19 (4n)!

Proofs: Choose and distribute elements according to constraints.
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Hypergeometric cases

= cases with uniquely determined minimum or maximum

Class Shape Sequence OEIS

H1 ,
n∏

i=1

(4i − 1)(4i − 3) A101485

H2 ,
n∏

i=1

(2i − 1)(4i − 1) A159605

H3 , 2n+1n!
n∏

i=1

(4i − 3) 2n+1·A084943

H4 ,

(
4n

n

) n∏
i=1

(3i − 1)
(
4n
n

)
·A008544

H5 ,

(
4n

n

) n∏
i=1

(3i − 2)
(
4n
n

)
·A007559

H6 , 2nn!
n∏

i=1

(4i − 3) n! ·A084948

H7 ,
n∏

i=1

(2i − 1)(4i − 1) A159605

Proofs:
Models H1–H5: variants of Jenga tableaux with ri = 0 for all i
Models H6–H7: recursively decompose with respect to the location of the
unique minimum or maximum.
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Algebraic cases

= cases with no vertical walls

Class Shape Sequence OEIS

A1 Cat(2n) =
1

2n + 1

(
4n

2n

)
A048990

A2

(
4n

2n

)
A001448

A3 , 22n+1 Cat(n)− Cat(2n + 1) A079489

Proofs:
Models A1 and A2: Use bijections to Dyck bridges.
Model A3: Decomposing at the first wall that cannot be removed gives

fn = Cat(2n) +
n∑

i=1

Cat(2i − 1)fn−i ,

which we then solve with generating functions.
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D-algebraic cases?

≈ cases with a zig-zag-like pattern

Class Shape GF OEIS Example

Z1 ,

D-algebraic, and not D-finite:

cos(t/
√
2)2 + cosh(t/

√
2)2

2 cos(t/
√
2) cosh(t/

√
2)

related to A211212
12 16 6 15 13 14 7 10

8 3 5 9 11 2 4 1

Z2 , open problem! —
3 5 8 9 11 13 14 15

2 10 4 7 1 16 6 12

Z3 , open problem! —
2 4 5 8 11 12 14 15

13 3 16 7 9 6 10 1

Proof for Z1: A permutation (a1, . . . , an) is an
alternating permutation of type (k1, . . . , km) if
a1 < · · · < ak1 > ak1+1 < · · · < ak1+k2 > ak1+k2+1 < · · · < an.
Then, ki = 1 gives classical alternating permutations;
while k1 = 3, k2 = · · · = kn = 4, and kn+1 = 1 gives Z1.
A generalization of [Carlitz 73] then leads to

Leonard Carlitz
(1907-1999)
771 articles!

F (t) =
E4,3(t)E4,1(t)

E4,0(t)
+ E4,0(t) where Ek,r (t) =

∑
n≥0

(−1)n
tnk+r

(nk + r)!
.

25 / 26 Cyril Banderier Enumeration & generation of Young tableaux with walls: the density method

https://oeis.org/A211212
https://oeis.org/search?q=3%2C119%2C13761%2C3178785%2C1226341035%2C711310157271%2C578808021857625%2C+629094292867153665%2C880420061542046903955%2C1542142783860061524297975%2C3305066423033878298552132145%2C8507914454392557998456492959905&sort=&language=english&go=Search
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Conclusion

3 ways to enumerate and generate Young tableaux with walls:
hook-length type formulas, bijections, density method.

Approach different from [Greene Nijenhuis Wilf 84].
They used the existence of a simple product formula (hook-length formula).

Brute-force generation → exponential cost.
Generation via our density method → O(n2) cost.

A field to explore: examine more families of posets (e.g., permutations, Young
tableaux, increasing trees, urn models in [Banderier Marchal Wallner 20]).

Asymptotics? D-finite? D-algebraic? Links with other objects?

3 5 8 9 11 13 14 15

2 10 4 7 1 16 6 12
Θ
(
n!C nea1n

σ

nα
)
?
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