## Enumeration \& generation of Young tableaux with walls: the density method

Cyril Banderier (CNRS/Univ. Paris-Nord)

Combinatorics and Arithmetic for Physics, IHÉS
December 2, 2021

| 3 | 10 | 5 | 6 | 12 | 16 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 8 | 9 | 11 | 15 |



Based on articles with Michael Wallner (TU Wien) \& Philippe Marchal (LAGA, Univ. Paris-Nord):

## Uniform random generation of combinatorial structures

## Many approaches:

- ad hoc methods (\& general principles: bijections, rejection, (un)ranking, etc.)
- Markov chain Monte Carlo algorithms, e.g. coupling from the past [Propp Wison 1998]
- recursive method [Njeenhuis Wiff 1975, Flajolet Zimmermann Van Cutsem 1994, Denise Dutour Zimmermann 1998] $\rightsquigarrow$ packages in MuPAD/SageMath/Maple
- generating trees West 1990, Dulucq Gire Guibert 1996, Barcucci Del Lungo Pergola Pirizani 1998, Banderier Bousquet-Mélou Denise Flajolet Gardy Gouyou-Beauchamps 1998...]
- Boltzmann method [Duchon FIjojett Louchard Schaeffer 2002, Fusy Pivoteau Saluy Soria Bodini Ponty Dovzal Bendowsky Dien Papin Bacher Sportiello sutufer...|: the cherry on the cake of Flajolet's symbolic method!
- density method $\rightsquigarrow$ this talk!

| The Art of |
| :--- |
| Computer |
| Programming |
| voume at <br> Combinatorial Algorithms <br> Pant 1 |
| DONALD E. KNUTH |



## Part I:

## Enumerative and bijective results

## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

Nice formulas for some specific tableaux of shape $n \times 2$ :

## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 13 | 14 |
| :---: | :---: |
| 9 | 12 |
| 8 | 11 |
| 7 | 10 |
| 4 | 6 |
| 2 | 5 |
| 1 | 3 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls:


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 13 | 14 |
| :---: | :---: |
| 9 | 12 |
| 8 | 11 |
| 7 | 10 |
| 4 | 6 |
| 2 | 5 |
| 1 | 3 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\left(\begin{array}{c}\binom{n}{n}\end{array}\right.$


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 14 | 12 |
| :---: | :---: |
| 10 | 13 |
| 3 | 11 |
| 8 | 7 |
| 4 | 6 |
| 2 | 5 |
| 9 | 1 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere:


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 14 | 12 |
| :---: | :---: |
| 10 | 13 |
| 3 | 11 |
| 8 | 7 |
| 4 | 6 |
| 2 | 5 |
| 9 | 1 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere: $(2 n)$ !


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 13 | 14 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 7 | 8 |
| 4 | 6 |
| 1 | 2 |
| 3 | 5 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere:


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 13 | 14 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 7 | 8 |
| 4 | 6 |
| 1 | 2 |
| 3 | 5 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere: $\frac{(2 n)!}{2^{n}}$


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 12 | 13 |
| :---: | :---: |
| 10 | 14 |
| 9 | 11 |
| 7 | 8 |
| 4 | 6 |
| 2 | 3 |
| 1 | 5 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\left(\begin{array}{c}\binom{n}{n}\end{array}\right.$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere: $\frac{(2 n)!}{2^{n}}$
- horizontal walls everywhere in $2^{\text {nd }}$ col.:


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 12 | 13 |
| :---: | :---: |
| 10 | 14 |
| 9 | 11 |
| 7 | 8 |
| 4 | 6 |
| 2 | 3 |
| 1 | 5 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\left(\begin{array}{c}\binom{n}{n}\end{array}\right.$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere: $\frac{(2 n)!}{2^{n}}$
- horizontal walls everywhere in $2^{\text {nd }}$ col.: $\frac{(2 n)!}{2^{n} n!}=(2 n-1)!$ !


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere: $\frac{(2 n)!}{2^{n}}$
- horizontal walls everywhere in $2^{\text {nd }}$ col.: $\frac{(2 n)!}{2^{n} n!}=(2 n-1)!$ !
- vertical walls everywhere:


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere: $\frac{(2 n)!}{2^{n}}$
- horizontal walls everywhere in $2^{\text {nd }}$ col.: $\frac{(2 n)!}{2^{n} n!}=(2 n-1)!$ !
- vertical walls everywhere: $\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere: $\frac{(2 n)!}{2^{n}}$
- horizontal walls everywhere in $2^{\text {nd }}$ col.: $\frac{(2 n)!}{2^{n} n!}=(2 n-1)!$ !
- vertical walls everywhere: $\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$
- all $k$ vertical walls:


## Young tableaux with local decreases

| 7 | 18 | 19 | 12 | 21 | 20 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 9 | 10 | 14 | 16 |
| 1 | 3 | 4 | 5 | 11 | 13 | 15 |

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 |

Nice formulas for some specific tableaux of shape $n \times 2$ :

- no walls: $\frac{1}{n+1}\binom{2 n}{n}$
- walls everywhere: $(2 n)$ !
- horizontal walls everywhere: $\frac{(2 n)!}{2^{n}}$
- horizontal walls everywhere in $2^{\text {nd }}$ col.: $\frac{(2 n)!}{2^{n} n!}=(2 n-1)!$ !
- vertical walls everywhere: $\quad\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$
- all $k$ vertical walls: $\frac{1}{n+1}\binom{n+1}{k}\binom{2 n}{n} \quad$ (We give 2 proofs : $)$


## Proof \#1: bijection with paths

## Theorem

The number of $n \times 2$ Young tableaux $\mathcal{Y}$ with $k$ vertical walls is equal to

$$
v_{n, k}=\frac{1}{n+1}\binom{n+1}{k}\binom{2 n}{n} .
$$

Proof: (part 1) Bijection with Dyck bridges on $\mathbb{Z}$ : steps $\pm 1$,

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 |



## Proof \#1: bijection with paths

## Theorem

The number of $n \times 2$ Young tableaux $\mathcal{Y}$ with $k$ vertical walls is equal to

$$
v_{n, k}=\frac{1}{n+1}\binom{n+1}{k}\binom{2 n}{n} .
$$

Proof: (part 1) Bijection with Dyck bridges on $\mathbb{Z}$ : steps $\pm 1$,

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 |



## Proof \#1: bijection with paths

## Theorem

The number of $n \times 2$ Young tableaux $\mathcal{Y}$ with $k$ vertical walls is equal to

$$
v_{n, k}=\frac{1}{n+1}\binom{n+1}{k}\binom{2 n}{n} .
$$

Proof: (part 1) Bijection with Dyck bridges on $\mathbb{Z}$ : steps $\pm 1$,

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 | length $2 n, k$ marked down steps:

- The $k$ th step is an up step iff the entry $k$ appears in the first column of $\mathcal{Y}$; otherwise it is a down step.
- Down steps coming from a row with a wall are colored.
$\Rightarrow v_{n, k}$ counts the number of paths with exactly $k$ colored steps.



## Proof \#1: bijection with paths and Chung-Feller

## Theorem

The number of $n \times 2$ Young tableaux $\mathcal{Y}$ with $k$ vertical walls is equal to

$$
v_{n, k}=\frac{1}{n+1}\binom{n+1}{k}\binom{2 n}{n} .
$$

| 14 | 13 |
| :---: | :---: |
| 10 | 12 |
| 9 | 11 |
| 8 | 7 |
| 4 | 6 |
| 3 | 5 |
| 2 | 1 |



Proof (part 2):

- A down step below 0 is always colored because a wall has to be involved, a down step above 0 has a choice.
- By [Chung-Feller 49] the number of Dyck bridges of length $2 n$ with $i$ down steps below 0 is independent of $i$ and equal to $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$.

$$
\Rightarrow \quad v_{n, k}=\sum_{i=0}^{k}\binom{n-i}{k-i} \operatorname{Cat}(n)=\binom{n+1}{k} \operatorname{Cat}(n)
$$

## Proof \#2: bijection to leaf-marked binary trees

## Theorem

The GF for a fixed size $n$ and an arbitrary number of walls is

$$
v_{n}(u):=\sum_{k=0}^{n} v_{n, k} u^{k}=\operatorname{Cat}(n)\left((1+u)^{n+1}-u^{n+1}\right)
$$

| 12 | 14 |
| :---: | :---: |
| 11 | 13 |
| 10 | 9 |
| 6 | 8 |
| 5 | 7 |
| 4 | 2 |
| 3 | 1 |

## Proof \#2: bijection to leaf-marked binary trees

## Theorem

The GF for a fixed size $n$ and an arbitrary number of walls is

$$
v_{n}(u):=\sum_{k=0}^{n} v_{n, k} u^{k}=\operatorname{Cat}(n)\left((1+u)^{n+1}-u^{n+1}\right)
$$

| 12 | 14 | Marking \& Sorting | 12 | 14 |
| :---: | :---: | :---: | :---: | :---: |
| 11 | 13 |  | 11 | 13 |
| 10 | 9 |  | 9 | 10 |
| 6 | 8 |  | 6 | 8 |
| 5 | 7 |  | 5 | 7 |
| 4 | 2 |  | 2 | 4 |
| 3 | 1 |  | 1 | 3 |

## Proof \#2: bijection to leaf-marked binary trees

## Theorem

The GF for a fixed size $n$ and an arbitrary number of walls is

$$
v_{n}(u):=\sum_{k=0}^{n} v_{n, k} u^{k}=\operatorname{Cat}(n)\left((1+u)^{n+1}-u^{n+1}\right)
$$



## Proof \#2: bijection to leaf-marked binary trees

## Theorem

The GF for a fixed size $n$ and an arbitrary number of walls is

$$
v_{n}(u):=\sum_{k=0}^{n} v_{n, k} u^{k}=\operatorname{Cat}(n)\left((1+u)^{n+1}-u^{n+1}\right)
$$



## Proof \#2: bijection to leaf-marked binary trees

## Theorem

The GF for a fixed size $n$ and an arbitrary number of walls is

$$
v_{n}(u):=\sum_{k=0}^{n} v_{n, k} u^{k}=\operatorname{Cat}(n)\left((1+u)^{n+1}-u^{n+1}\right)
$$



## Proof \#2: bijection to leaf-marked binary trees

## Theorem

The GF for a fixed size $n$ and an arbitrary number of walls is

$$
v_{n}(u):=\sum_{k=0}^{n} v_{n, k} u^{k}=\operatorname{Cat}(n)\left((1+u)^{n+1}-u^{n+1}\right)
$$



## Proof \#2: bijection to leaf-marked binary trees

## Theorem

The GF for a fixed size $n$ and an arbitrary number of walls is

$$
v_{n}(u):=\sum_{k=0}^{n} v_{n, k} u^{k}=\operatorname{Cat}(n)\left((1+u)^{n+1}-u^{n+1}\right)
$$



## Open problem: combinatorial explanation of $\operatorname{Cat}(k-1) \mid v_{n, k}$ ?

Closed form of $v_{n, k}$ also proves $\sum_{n \geq 0} v_{n, k} z^{n}=\operatorname{Cat}(k-1) \frac{z^{k-1}}{(1-4 z)^{(2 k-1) / 2}}$.

## Long walls with small holes: hook-length type formulas

Holes of size 1 on the border

| 13 | 14 | 16 | 17 | 19 | 20 | 21 | 25 | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 2 | 10 | 12 | 15 | 18 | 6 | 23 | 26 |
| 4 | 1 | 8 | 5 | 7 | 9 | 3 | 22 | 24 |
| $\lambda$ |  |  |  | $\lambda_{3}$ |  |  | $\lambda_{4}$ |  |

## Theorem

The number of $n \times m$ Young tableaux of size $m n$ with $k$ walls from column 1 to $m-1$ at distance $0<d_{i}:=\sum_{j=1}^{i} \lambda_{i}<n, i=1, \ldots, k$ with $h_{i}<h_{i+1}$ is equal to

$$
\frac{(m-1)!}{(m n+m-1)_{m-1}}\left(\prod_{i=1}^{k+1} \prod_{j=1}^{m-2}\binom{\lambda_{i}+j}{j}^{-1}\right)\left(\prod_{i=1}^{k+1}\binom{m d_{i}+m-1}{\lambda_{i}, \ldots, \lambda_{i}}\right)
$$

where the multinomial coefficients contain $m-1 \lambda_{i}$ 's.
$\rightsquigarrow$ hook-length formulas to a give a combinatorial explanation of the integrality of $\frac{(6 n)!n!}{(3 n)!(2 n)!!^{2}}$ or $\frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)}$ ? (alternative to the Landau criterion, 1900)

## Larger holes lead to unusual asymptotics

The "simplest case" of holes of size 2 on the border

| 6 | 10 | 14 | 15 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | 9 | 12 | 13 | 16 |
| 2 | 1 | 7 | 4 | 11 | 8 |



BAADBACFCBEDECDFEF

## Theorem

The number $f_{n}$ of such Young tableaux of size $n \times 3$ satisfies

$$
f_{n}=\Theta\left(n!12^{n} e^{a_{1}(3 n)^{1 / 3}} n^{-2 / 3}\right),
$$

where $a_{1} \approx-2.338$ is the largest root of the Airy function of the first kind.

- Bijections to phylogenetic networks, special words with $n$ distinct letters, and related to compacted trees (special DAGs) [Fuchs-Yu-Zhang 21]
- General method to prove stretched exponentials in bivariate recurrences [Elvey Price-Fang-Wallner 21]. Here:

$$
y_{n, k}=y_{n, k-1}+(2 n+k-1) y_{n-1, k} \quad \text { and } \quad f_{n}=y_{n, n} .
$$

## Part II:

## The density method

* far origins in poset theory (volume of polytopes, log-concavity) [stanley 1981]
* avatars in number theory [Zagier, Beukers Kolk Calabi 1993, Ekies 2003]
* applied to square Young tableaux [Barishnikoo 2001] and variants of alternating permutations [Barsshnikov Romik 2010, Stanley 2010]
* generalized to further posets \& random generation [Banderier Marchal Wallner 2016-2021]



## Values of the zeta function and geometry

$$
\begin{aligned}
& \zeta(s)=\sum_{k \geq 1} \frac{1}{k^{s}} \rightarrow \quad S(s):=\zeta(s)\left(1-\frac{1}{2^{s}}\right)=\sum_{k \geq 0} \frac{1}{(2 k+1)^{s}} \\
& S(2)=\sum_{k \geq 0} \frac{1}{(2 k+1)^{2}}=\sum_{k \geq 0} \int_{0}^{1} \int_{0}^{1}(x y)^{2 k}=\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-(x y)^{2}}
\end{aligned}
$$

Change of variable $x=\frac{\sin u}{\cos v}$ and $y=\frac{\sin v}{\cos u}$.
The integration domain becomes the triangle $T=\{u>0, v>0, u+v<\pi / 2\}$.

$$
\begin{gathered}
S(2)=\int_{T} d u d v=\pi^{2} / 8 \\
n \text { even: } \quad S(n)=\operatorname{vol}(\text { polytope of dimension } n)=(\pi / 2)^{n} / n!A(n)
\end{gathered}
$$

$$
A(n)=\# \text { alternating permutations of length } n \text {. }
$$

$\rightsquigarrow$ Kontsevich-Zagier periods / "dimension" of a number / Hilbert 3rd problem (congruence of polytopes)

## Uniform random generation and enumeration

| 6 | 15 | 16 |
| :---: | :---: | :---: |
| 1 | 13 | 14 |
| 8 | 10 | 18 |
| 3 | 9 | 12 |
| 4 | 7 | 17 |
| 2 | 5 | 11 |

This example is "without loss of generality" (i.e., our method works also for non-periodic shapes).

How to generate/enumerate such tableaux? Brute-force is hopeless!

## Uniform random generation and enumeration

| 6 | 15 | 16 |
| :---: | :---: | :---: |
| 1 | 13 | 14 |
| 8 | 10 | 18 |
| 3 | 9 | 12 |
| 4 | 7 | 17 |
| 2 | 5 | 11 |

This example is "without loss of generality" (i.e., our method works also for non-periodic shapes).

How to generate/enumerate such tableaux? Brute-force is hopeless! Solution = use our density method!

The density method will give thousands of coefficients in a few seconds. The number of tableaux of size $2 n \times 3$ is $f_{n}=(6 n+1)!\int_{0}^{1} p_{n}(z) d z$, with $p_{n+1}(z)=\int_{0}^{z} \frac{1}{24}(z-1)(x-z)\left(3 x^{3}-7 x^{2} z-x z^{2}-z^{3}-2 x^{2}+4 x z+4 z^{2}\right) p_{n}(x) d x$. $\left\{f_{n}\right\}_{n \geq 0}=\{1,12,8550,39235950,629738299350,26095645151941500,2323497950101372223250$, 392833430654718548673344250, 115375222087417545717234273063750,
$55038140590519890608190921051205837500, \ldots\}$.

## From tableaux to tuples of real numbers, and polytopes

| 6 | 15 | 16 |
| :---: | :---: | :---: |
| 1 | 13 | 14 |
| 8 | 10 | 18 |
| 3 | 9 | 12 |
| 4 | 7 | 17 |
| 2 | 5 | 11 |


| 7 | 16 | 17 |
| :---: | :---: | :---: |
| 2 | 14 | 15 |
| 9 | 11 | 19 |
| 4 | 10 | 13 |
| 5 | 8 | 18 |
| 3 | 6 | 12 |
| 1 |  |  |
|  |  |  |
|  |  |  |


| . 74 | . 96 | . 97 |
| :---: | :---: | :---: |
| . 25 | . 94 | . 95 |
| . 85 | . 91 | . 99 |
| . 42 | . 90 | . 93 |
| . 54 | . 82 | . 98 |
| . 35 | . 57 | . 92 |
|  | . 06 |  |



Left: $2 n \times 3$ Young tableau with walls.
Centre: A related tableau with one more cell (removing this cell + relabel: bijection with left tableau).
Our algorithm generates real numbers between 0 and 1 , with same relative order. All possible values $=$ a polytope $\mathcal{P} \in[0,1]^{6 n+1}$.
Right: The "building block" of 7 cells. Each polyomino is made of the overlapping of $n$ such building blocks.

## Density method: key ideas

- geometric point of view:

Associate with a poset of size $N$ its order polytope $\mathcal{P}$ (it is a subset of $[0,1]^{N}$ ). Generate a random element of $\mathcal{P}$ slice by slice using conditional densities. In the present example, $N=6 n+1$ and the slices are the building blocks of size 6 (except for the first one).

## - sequence of densities:

sequence of polynomials $p_{n}(x)$, defined by the following recurrence (which in fact encodes the full structure of the problem, building block after building block): $p_{0}=1$ and by induction,
$p_{n+1}(z)=\int_{0<x<z} \int_{x<y<z} \int_{0<r<y} \int_{r<s<z} \int_{z<w<1} \int_{y<v<w} p_{n}(v) d v d w d s d r d y d x$.

| $S$ | $Z$ | $W$ |
| :--- | :--- | :--- |
| $R$ | $Y$ | $V$ |
| $X$ |  |  |
|  |  |  |



## The density method algorithm

| . 74 | . 96 | . 97 |
| :---: | :---: | :---: |
| . 25 | . 94 | . 95 |
| . 85 | . 91 | . 99 |
| . 42 | . 90 | . 93 |
| . 54 | . 82 | . 98 |
| . 35 | . 57 | . 92 |
|  | . 06 |  |



1 Initialization: Precompute the polynomials $p_{0}(z), \ldots, p_{n}(z)$.
Label the building blocks from $k=n-1$ to $k=0$ (top to bottom).
Start at the top, i.e. $k:=n-1$.
Put into the top cell $Z$ a random number $z$ with density $p_{n}(z) / \int_{0}^{1} p_{n}(t) d t$.
2 Filling: Now that $Z$ is known, put into the cells $X, Y, R, S, V, W$ random numbers $x, y, r, s, v, w$ with conditional density

$$
g_{k, z}(x, y, r, s, v, w):=\frac{1}{p_{k+1}(z)} p_{k}(x) \mathbf{1}_{\mathcal{P} k}
$$

where $\mathbf{1}_{\mathcal{P} k}$ is the indicator function of the $k$-th building block (with value $z$ in cell $Z$ ):

$$
\mathbf{1}_{\mathcal{P}_{k}}:=\mathbf{1}_{\{0 \leq x \leq y \leq z, 0 \leq r \leq y, r \leq s \leq z, z \leq w \leq 1, y \leq v \leq w\}} .
$$

3 Iteration: Consider $X$ as the $Z$ of the next building block. Set $k:=k-1$ and go to step 2 (until $k=0$ ).

## A very efficient algorithm!

## Theorem

The density method algorithm is a uniform random generation algorithm with quadratic time complexity (including precomputations).

## Proof

Our algorithm yields a tuple $\mathbf{x}:=\left(x_{i}, y_{i}, r_{i}, s_{i}, v_{i}, w_{i}\right)_{0<i \leq n}$ with density

$$
\begin{gathered}
\frac{p_{n}\left(x_{n}\right)}{\int_{0}^{1} p_{n}(t) d t} \prod_{i=1}^{n} g_{n-i, x_{n-i+1}}\left(x_{n-i}, y_{n-i}, r_{n-i}, s_{n-i}, v_{n-i}, w_{n-i}\right) \\
=\frac{p_{n}\left(x_{n}\right)}{\int_{0}^{1} p_{n}(t) d t} \prod_{k=0}^{n-1} \frac{p_{k}\left(x_{k}\right) \mathbf{1}_{\mathcal{P}_{x_{k}}}}{p_{k+1}\left(x_{k+1}\right)}=\frac{p_{0}\left(x_{0}\right) \mathbf{1}_{\mathcal{P}}}{\uparrow}=\frac{\mathbf{1}_{\mathcal{P}}}{\int_{0}^{1} p_{n}(t) d t} \quad \quad\left(\text { as } p_{0}=1\right),
\end{gathered}
$$

telescopic product!
where $\mathbf{1}_{\mathcal{P}_{x_{k}}}$ is as in the algorithm above the indicator function of the $k$-th block. $\int$ (any density) = 1 implies:

$$
\operatorname{vol}(\mathcal{P})=\int_{[0,1]^{6 n+1}} \mathbf{1}_{\mathcal{P}} d \mathbf{x}=\int_{0}^{1} p_{n}(t) d t
$$

## A very efficient algorithm!

## end of proof (uniformity \& complexity):

Now if we choose a random uniform element in $[0,1]^{6 n+1}$, the probability that it belongs to $\mathcal{P}$ is

$$
\int_{[0,1]^{6 n+1}} \mathbf{1}_{\mathcal{P}} d \mathbf{x}
$$

This is also the probability that a random uniform filling of our building block is correct (i.e., respects the order constraints).

This implies that $f_{n}=(6 n+1)!\int_{0}^{1} p_{n}(t) d t=|\mathcal{P}|!\operatorname{vol}(\mathcal{P})$.
Each step $=$ computation and evaluation of the associated polynomial $p_{n}(z)$ (of degree proportional to $n) \Rightarrow$ quadratic time complexity and quadratic space.

## Jenga tableaux and the density method



Jenga! = Construct! in Swahili.
Given a shape encoded by $\left(\ell_{i}, r_{i}\right)_{i \in \mathbb{N}}$, what is the number of tableaux with $n$ lines?

$$
f_{n}=\left(\sum_{i=1}^{n}\left(\ell_{i}+r_{i}+1\right)\right)!\int_{0}^{1} p_{n}(x) d x
$$

$p_{n}(z)=\int_{z<v_{1}<1} \ldots \int_{v_{r-1}<v_{r}<1} \int_{0<u_{\ell}<z} \ldots \int_{0<u_{1}<u_{2}} \int_{0<x<z} p_{n-1}(x) d x d u_{1} \ldots d u_{\ell} d v_{r} \ldots d v_{1}$

$$
=\frac{z^{\ell_{n}}(1-z)^{r_{n}}}{\ell_{n}!r_{n}!} \int_{0}^{z} p_{n-1}(x) d x \quad \text { with } \quad p_{1}(z) \frac{z^{\ell_{1}}(1-z)^{r_{1}}}{\ell_{1}!r_{1}!} .
$$

## Special Jenga shapes

## Theorem (1-periodic Jenga tableaux are D-finite)

The bivariate $G F P(t, z)=\sum_{n \geq 1} p_{n}(z) t^{n}$ is $D$-finite in $t$ and $z$.

## Proposition

For $r_{i}=0, \forall i \geq 1$, the number $f_{n}$ of Jenga tableaux is

$$
f_{n}=\frac{\left(\sum_{i=1}^{n}\left(\ell_{i}+1\right)\right)!}{\prod_{i=1}^{n} \ell_{i}!\left(\sum_{j=1}^{i}\left(\ell_{j}+1\right)\right)}
$$



## Proposition

For Jenga tableaux with period $p, L:=\sum_{i=1}^{p} \ell_{i}$, and $\left(r_{i}\right)_{i=0}^{p}=(0, \ldots, 0)$, one has:

$$
f_{k p+m}=f_{m}\left(\frac{(L+p)^{L}}{\prod_{i=1}^{p} \ell_{i}!}\right)^{k} \prod_{\substack{j=1 \\ j \neq \ell_{1}+\cdots+\ell_{i}+i}}^{L+p} \frac{\Gamma\left(k+\frac{j+m}{L+p}\right)}{\Gamma\left(\frac{j+m}{L+p}\right)}
$$

Accordingly, the GF of such tableaux is the sum of $p$ hypergeometric functions.

## Skew tableaux with walls



Building block


Skew shape


Jenga shape

## Proposition

The number of above skew tableaux with $n$ columns of height $h$ is

$$
f_{n}=\left(\frac{h^{h-2}}{(h-2)!}\right)^{n} \prod_{j=1}^{h-2} \frac{\Gamma\left(n+\frac{j}{h}\right)}{\Gamma\left(\frac{j}{h}\right)}
$$

Proof: Use a bijection between this class and periodic Jenga tableaux of period $p=2, \ell_{1}=h-2, \ell_{2}=0$, and $r_{i}=0$.

## A classification of $2 \times 2$ periodic shapes

A periodic shape is the concatenation of $n$ copies of a building block $\mathcal{B}$ of $;$ cells:

$$
\mathcal{Y}=\mathcal{B}^{n}
$$

A tableau $\mathcal{Y}$ with periodic walls is a periodic shape filled with all integers from $\{1, \ldots,|\mathcal{B}| n\}$ respecting the induced order constraints.


A filling of $\mathcal{B}^{4}$ :

| 3 | 10 | 5 | 6 | 12 | 16 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 8 | 9 | 11 | 15 |

There are a priori $2^{6}=64$ shapes, but some are in bijection (e.g., turn by 180 degrees and reverse labels). It turns out that it leads to 32 different sequences.

We now characterize all $2 \times 2$ shapes according to the nature of the counting sequence/generating function, which is either

- "simple" hypergeometric
- hypergeometric,
- algebraic,
- D-algebraic and beyond.


## "Simple" hypergeometric cases

$=$ cases where walls split tableaux into independent regions $\Rightarrow$ product formulas

| Class | Shape | Formula |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Proofs: Choose and distribute elements according to constraints.

## Hypergeometric cases

$=$ cases with uniquely determined minimum or maximum

| Class | Shape |  |  | Sequence | OEIS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H1 |  | , | T | $\prod_{i=1}^{n}(4 i-1)(4 i-3)$ | A101485 |
| H2 |  | , |  | $\prod_{i=1}^{n}(2 i-1)(4 i-1)$ | A159605 |
| H3 |  | , |  | $2^{n+1} n!\prod_{i=1}^{n}(4 i-3)$ | $2^{n+1} \cdot \mathrm{~A} 084943$ |
| H4 |  | , |  | $\binom{4 n}{n} \prod_{i=1}^{n}(3 i-1)$ | $\binom{4 n}{n} \cdot \mathrm{~A} 008544$ |
| H5 |  | , |  | $\binom{4 n}{n} \prod_{i=1}^{n}(3 i-2)$ | $\binom{4 n}{n} \cdot A 007559$ |
| H6 |  | , |  | $2^{n} n!\prod_{i=1}^{n}(4 i-3)$ | $n!\cdot 4084948$ |
| H7 |  | , | $\square$ | $\prod_{i=1}^{n}(2 i-1)(4 i-1)$ | A159605 |

Proofs:

- Models H1-H5: variants of Jenga tableaux with $r_{i}=0$ for all $i$
- Models H6-H7: recursively decompose with respect to the location of the unique minimum or maximum.


## Algebraic cases

$=$ cases with no vertical walls

| Class | Shape |  | Sequence | OEIS |
| :--- | :--- | :--- | :--- | :--- |
| A1 | $\boxed{ }$ |  |  | $\operatorname{Cat}(2 n)=\frac{1}{2 n+1}\binom{4 n}{2 n}$ | | A048990 |
| :---: |
|  |

## Proofs:

- Models A1 and A2: Use bijections to Dyck bridges.
- Model A3: Decomposing at the first wall that cannot be removed gives

$$
f_{n}=\operatorname{Cat}(2 n)+\sum_{i=1}^{n} \operatorname{Cat}(2 i-1) f_{n-i}
$$

which we then solve with generating functions.

## D-algebraic cases?

$\approx$ cases with a zig-zag-like pattern


Proof for Z1: A permutation $\left(a_{1}, \ldots, a_{n}\right)$ is an alternating permutation of type $\left(k_{1}, \ldots, k_{m}\right)$ if $a_{1}<\cdots<a_{k_{1}}>a_{k_{1}+1}<\cdots<a_{k_{1}+k_{2}}>a_{k_{1}+k_{2}+1}<\cdots<a_{n}$.
Then, $k_{i}=1$ gives classical alternating permutations; while $k_{1}=3, k_{2}=\cdots=k_{n}=4$, and $k_{n+1}=1$ gives Z 1 .


Leonard Carlitz (1907-1999) 771 articles!

A generalization of [Carlitz 73] then leads to
$F(t)=\frac{E_{4,3}(t) E_{4,1}(t)}{E_{4,0}(t)}+E_{4,0}(t) \quad$ where $\quad E_{k, r}(t)=\sum_{n \geq 0}(-1)^{n} \frac{t^{n k+r}}{(n k+r)!}$.

## Conclusion

- 3 ways to enumerate and generate Young tableaux with walls: hook-length type formulas, bijections, density method.
- Approach different from [Greene Nijenhuis Wilf 84].

They used the existence of a simple product formula (hook-length formula).

- Brute-force generation $\rightarrow$ exponential cost.

Generation via our density method $\rightarrow O\left(n^{2}\right)$ cost.

- A field to explore: examine more families of posets (e.g., permutations, Young tableaux, increasing trees, urn models in [Banderier Marchal Wallner 20]).
- Asymptotics? D-finite? D-algebraic? Links with other objects?

| 3 | 5 | 8 | 9 | 11 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 4 | 7 | 1 | 16 | 6 | 12 |

$$
\Theta\left(n!C^{n} e^{a_{1} n^{\sigma}} n^{\alpha}\right) ?
$$



