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Uniform random generation of combinatorial structures

Many approaches:
@ ad hoc methods (& general principles: bijections, rejection, (un)ranking, etc.)
@ Markov chain Monte Carlo algorithms, e.g. coupling from the past (prop wison 1005]

@ recursive method [Nijenhuis Wilf 1975, Flajolet Zimmermann Van Cutsem 1994, Denise Dutour Zimmermann 1998]
~~ packages in MuPAD/SageMath/Maple
) generating trees [west 1990, Dulucq Gire Guibert 1996, Barcucci Del Lungo Pergola Pinzani 1998,

Banderier Bousquet-Mélou Denise Flajolet Gardy Gouyou-Beauchamps 1998...]

@ Boltzmann method [Duchon Flajolet Louchard Schaeffer 2002, Fusy Pivoteau Salvy Soria Bodini Ponty Dovgal Bendkowsky

Dien Papin Bacher Sportiello Stufler. 1 The cherry on the cake of Flajolet's symbolic method!
@ density method ~~ this talk!
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Part |:

Enumerative and bijective results
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

18119112 (21|20|17

Nice formulas for some specific tableaux of shape n x 2:
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

18119112 (21|20|17

13|14
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7 110
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1

Nice formulas for some specific tableaux of shape n x 2:

e no walls:
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

18119112 (21|20|17

13|14 .
3 Nice formulas for some specific tableaux of shape n x 2:
12 e no walls: nil (Zn")
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Young tableaux with local decreases

We consider Young tableaux in which some pairs

18]19[12]21]20)17 of (horizontally or vertically) consecutive cells are
819(10]14/16 allowed to have decreasing labels. Places where a
314|5|11]|13]|15 decrease is allowed (but not compulsory) are drawn

by a red edge, which we call a “wall”.

14112 .
Nice formulas for some specific tableaux of shape n x 2:
10113 e no walls: nil (Zn")
11 e walls everywhere:
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Young tableaux with local decreases

We consider Young tableaux in which some pairs

18]19[12]21]20)17 of (horizontally or vertically) consecutive cells are
819(10]14/16 allowed to have decreasing labels. Places where a
314|5|11]|13]|15 decrease is allowed (but not compulsory) are drawn

by a red edge, which we call a “wall”.

14112 .
Nice formulas for some specific tableaux of shape n x 2:
10]13 e no walls: n}rl (zn")
11 o walls everywhere: (2n)!
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

18119112 (21|20|17

13|14 .
3 Nice formulas for some specific tableaux of shape n x 2:

10]12 )

e no walls: -5 (Zn")

o walls everywhere: (2n)!

e horizontal walls everywhere:
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

18119112 (21|20|17

13|14 .
3 Nice formulas for some specific tableaux of shape n x 2:

10]12 )

e no walls: -5 (Zn")

o walls everywhere: (2n)!

: 2n)!
e horizontal walls everywhere: (22)
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

18119112 (21|20|17

12|13 Nice formulas for some specific tableaux of shape n x 2:

10]14 ,

e no walls: 5 (2n")

e walls everywhere: (2n)!

(2n)!
2l'l

e horizontal walls everywhere:

o IS J G RN Ve

8
6 e horizontal walls everywhere in 2" col.:
3
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.

18119112 (21|20|17

12|11 .
3 Nice formulas for some specific tableaux of shape n x 2:

10]14 ,

e no walls: 5 (2n")

e walls everywhere: (2n)!

(2n)!
2l'l

e horizontal walls everywhere:

21l

o IS J G RN Ve

8
6 e horizontal walls everywhere in 2" col.: &7 — (2n—1)11
3
)
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Young tableaux with local decreases

We consider Young tableaux in which some pairs

18]19[12]21]20)17 of (horizontally or vertically) consecutive cells are
819(10]14/16 allowed to have decreasing labels. Places where a
314|5|11]|13]|15 decrease is allowed (but not compulsory) are drawn

by a red edge, which we call a “wall”.

1411 .
3 Nice formulas for some specific tableaux of shape n x 2:
10]12 e no walls: nil (Zn")

11 o walls everywhere: (2n)!

: 2n)!
e horizontal walls everywhere: (22)

9

8|7

416 e horizontal walls everywhere in 2" col.: (22n';,)![ =2n-1)N
3195

211

e vertical walls everywhere:
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Young tableaux with local decreases

We consider Young tableaux in which some pairs

18|19]12]21]20]17 of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.
14113 : .
Nice formulas for some specific tableaux of shape n x 2:
10]12
e no walls: nil (Zn")
9111 o walls everywhere: (2n)!
817 e horizontal walls everywhere: (222)!
416 e horizontal walls everywhere in 2" col.: (22n';,)![ =2n-1)N
315 e vertical walls everywhere: (2n") = Eif));
211
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Young tableaux with local decreases

We consider Young tableaux in which some pairs

18|19]12]21]20]17 of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.
14113 . e
Nice formulas for some specific tableaux of shape n x 2:
10112
0 e no walls: nil (Zn")
911 o walls everywhere: (2n)!
817 e horizontal walls everywhere: (22'1)!
416 e horizontal walls everywhere in 2" col.: (2251)![ =2n-1)N
315 e vertical walls everywhere: (2n") = Eif));
211 e all k vertical walls:
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Young tableaux with local decreases

We consider Young tableaux in which some pairs

18|19]12]21]20]17 of (horizontally or vertically) consecutive cells are
81910/14/16 allowed to have decreasing labels. Places where a
3141|5(11]13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.
14113 . e
Nice formulas for some specific tableaux of shape n x 2:
10]12
0 e no walls: nil (Zn")
911 o walls everywhere: (2n)!
817 e horizontal walls everywhere: (22'1)!
416 e horizontal walls everywhere in 2" col.: (2251)![ =2n-1)N
315 e vertical walls everywhere: (2n") = Eif));
211 e all k vertical walls: ﬁ(ntl) (2n") (We give 2 proofs ‘&)
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Proof #1: bijection with paths

The number of n x 2 Young tableaux ) with k vertical walls is equal to

1 n—+1\ /2n
Vpk = —— .
mk n+1 k n

Proof: (part 1) Bijection with Dyck bridges on Z: steps =1,
14113 length 2n, k marked down steps:
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Proof #1: bijection with paths

The number of n x 2 Young tableaux ) with k vertical walls is equal to

1 n+1\ (2n
Vnk = —— .
kTl k n
Proof: (part 1) Bijection with Dyck bridges on Z: steps =1,
14113 length 2n, k marked down steps:

10112 @ The kth step is an up step iff the entry k appears in the first
column of ); otherwise it is a down step.

@ Down steps coming from a row with a wall are colored.
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Proof #1: bijection with paths

The number of n x 2 Young tableaux ) with k vertical walls is equal to

1 n—+1\ /2n
Vpk = —— .
mk n+1 k n

Proof: (part 1) Bijection with Dyck bridges on Z: steps =1,
length 2n, k marked down steps:

@ The kth step is an up step iff the entry k appears in the first
column of ); otherwise it is a down step.

@ Down steps coming from a row with a wall are colored.

= Vpk counts the number of paths with exactly k colored steps.
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Proof #1: bijection with paths and Chung—Feller

The number of n x 2 Young tableaux ) with k vertical walls is equal to

_ 1 n+1\ /2n
Vn’k_n—i—l k nj)

Proof (part 2):
@ A down step below 0 is always colored because a wall has to be involved, a
down step above 0 has a choice.
@ By [Chung—Feller 49] the number of Dyck bridges of length 2n with i down
1

steps below 0 is independent of i and equal to Cat(n) = 35 n.

= Vi = zk: (: - i) Cat(n) = (” : 1> Cat(n). O
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Proof #2: bijection to leaf-marked binary trees

The GF for a fixed size n and an arbitrary number of walls is

vo(u) = Z Vot = Cat(n) (1 + u)™* — u™1).

k=0

14

=N~ 00| ©

Cyril Banderier
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Proof #2: bijection to leaf-marked binary trees

The GF for a fixed size n and an arbitrary number of walls is

vo(u) = Z Vot = Cat(n) (1 + u)™* — u™1).

k=0
12|14
1113 11 i8]
Marking &
10 9] s [0
6[8] «— [ |E
517
412
301
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bijection to leaf-marked binary trees

The GF for a fixed size n and an arbitrary number of walls is

vo(u) = Z Vot = Cat(n) (1 + u)™* — u™1).

k=0
12114
11113 DFS
Marking & Left: internal
1079 | sorimg r%ghff]iff?d 3 O
618 -— -—
ST
412
301
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bijection to leaf-marked binary trees

The GF for a fixed size n and an arbitrary number of walls is

vo(u) = Z Vot = Cat(n) (1 + u)™* — u™1).

k=0
12114
11113 DFS
101 9 Marking & Left: internal Pushing &
Sorting Right: leaf @ 9 Swapping
618 -— -— -—
ST
412
301
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bijection to leaf-marked binary trees

The GF for a fixed size n and an arbitrary number of walls is

vo(u) = Z Vot = Cat(n) (1 + u)™* — u™1).

k=0
12114
11113 DFS
101 9 Marking & Left: internal Pushing &
Sorting Right: leaf @ 9 Swapping
618 -— -— -—
ST
412
301
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Proof #2: bijection to leaf-marked binary trees

The GF for a fixed size n and an arbitrary number of walls is

vo(u) = Z Vot = Cat(n) (1 + u)™* — u™1).
k=0

DFS
Marking & N 10 Left: internal Pushing &
Sorting Right: leaf @ 9 Swapping
-— -— -—

Cyril Banderier Enumeration & generation of Young tableaux

with walls: the density method



bijection to leaf-marked binary trees

The GF for a fixed size n and an arbitrary number of walls is

vo(u) = Z Vot = Cat(n) (1 + u)™* — u™1).

k=0
12114
11113 DFS
101 9 Marking & Left: internal Pushing &
: Sorting Right: leaf @ 9 Swapping
618 -— S -— -—
ST
412
301

Open problem: combinatorial explanation of Cat(k — 1) | v, «?

k—1
Closed form of v, x also proves ) -, vp 2" = Cat(k — 1)m
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Long walls with small holes: hook-length type formulas

Holes of size 1 on the border

13(14(16(17|19|20|21|25|27
112 [10)12(15|18] 6 |23|26
411857932224

—
)\1 )\2 )\3 /\4

The number of n x m Young tableaux of size mn with k walls from column 1 to

m — 1 at distance 0 < d; := ZJ’:=1 Ai<n, i=1,... kwith h; < hj41 is equal to

() ) (T (2 ms)

i=1 j=1 i=1

where the multinomial coefficients contain m — 1 \;'s.
v

~~ hook-length formulas to a give a combinatorial explanation of the integrality of

(3516;'!’()2!;!)!2 or (15,,()3?1"3,',')7'(6”) (alternative to the Landau criterion, 1900)
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Larger holes lead to unusual asymptotics

The “simplest case” of holes of size 2 on the border :
o\
6 |10|14|15(17|18 .’O
Q
315|9|12|13|16 YNy
211 |7|4]11]8 &
BAADBACFCBEDECDFEF

The number f, of such Young tableaux of size n x 3 satisfies
fr= 0 (nl 1206200 2/3)
where a; ~ —2.338 is the largest root of the Airy function of the first kind.

@ Bijections to phylogenetic networks, special words with n distinct letters, and
related to compacted trees (special DAGs) [Fuchs—Yu—Zhang 21]

@ General method to prove stretched exponentials in bivariate recurrences
[Elvey Price-Fang—Wallner 21]. Here:

Ynk = Ynk—1 + (2” +k — l)ynfl,k and fn = Yn,n-
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Part Il:

The density method

*

far origins in poset theory (volume of polytopes, log-concavity) (stnie, 101]
avatars in number theory [Zagier, Beukers Kolk Calabi 1993, Elkies 2003]

applied to square Young tableaux (sarishniko 2001]
and variants of alternating permutations [Barshnikov Romik 2010, Stanley 2010]

generalized to further posets & random generation (sanderier Marchal Waliner 2016-2021]
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Values of the zeta function and geometry

5(2)72 2k+1 Z// < // 15X‘>j<yy

k>0 k>0

Change of variable x = 2% and y = 2=,
The integration domain becomes the tnangle T={u>0,v>0,u+v<m/2}.

5(2) :/ dudv = 7% /8
T
n even: S(n) = vol(polytope of dimension n) = (7/2)"/n! A(n)
A(n) = # alternating permutations of length n.

~ Kontsevich—Zagier periods / "dimension” of a number / Hilbert 3rd problem
(congruence of polytopes)
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Uniform random generation and enumeration

6 (15|16

1(13|14

8 110/|18 This example is “without loss of generality”
SRR for som-perodc shapes) &
41717

21511

How to generate/enumerate such tableaux? Brute-force is hopeless!
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Uniform random generation and enumeration

6 (15|16

1(13|14

8 110/|18 This example is “without loss of generality”
SRR for som-perodc shapes) &
41717

21511

How to generate/enumerate such tableaux? Brute-force is hopeless!
Solution = use our density method!

The density method will give thousands of coefficients in a few seconds.
The number of tableaux of size 2n x 3 is f, = (6n + 1)! fol pn(z)dz, with

“1
pPnt1(z) = / (z—1)(x—2)(3x3 = 7x°z — x2° — 2 — 2x* + 4xz + 42°) po(x) dx.
0

{fa}n>0={1, 12, 8550, 39235950, 629738299350, 26095645151941500, 2323497950101372223250,
392833430654718548673344250, 115375222087417545717234273063750,
55038140590519890608190921051205837500, ... }.
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From tableaux to tuples of real numbers, and polytopes

7 [16]17] [.74].96].97
61516

2 [14]15] [.25].94].95 slzw
1[13]14

9 [11]19] [.85].91].99 R|Y |V
8 [10]18

1]10]13] [.42].90[.93 X
3] 912

5] 8 (18] [.54].82[.98 R
4717 N

3|6 [12] [35.57].92 /
2[5 11 x

1 06

Left: 2n x 3 Young tableau with walls.

Centre: A related tableau with one more cell (removing this cell + relabel:
bijection with left tableau).

Our algorithm generates real numbers between 0 and 1, with same relative order.
All possible values = a polytope P € [0,1]6*1,

Right: The “building block” of 7 cells. Each polyomino is made of the
overlapping of n such building blocks.
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Density method: key ideas

e geometric point of view:

Associate with a poset of size N its order polytope P (it is a subset of [0, 1]V).
Generate a random element of P slice by slice using conditional densities.

In the present example, N = 6n+ 1 and the slices are the building blocks of size 6
(except for the first one).

e sequence of densities:

sequence of polynomials p,(x), defined by the following recurrence (which in fact
encodes the full structure of the problem, building block after building block):

po = 1 and by induction,

Pni1(2) = / / / / / / pn(v) dv dw ds dr dy dx.
0<x<z Jx<y<z JO<ry <s<z <w<1 <v<w

Z\W
%

<

o<

R

<

M <N
A

Y
X
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The density method algorithm

74].96].07
25/.94/.05

85/.91].99 5=
12].90[.93 R -
54].82[ 08
35/.57].92
06

IR IEaN

1 Initialization: Precompute the polynomials py(z), ..., pa(2).

Label the building blocks from k = n—1 to k = 0 (top to bottom).

Start at the top, i.e. k:=n—1.

Put into the top cell Z a random number z with density p,,(z)/fo1 pn(t) dt.
2 Filling: Now that Z is known, put into the cells X, Y,R,S,V, W

random numbers x, y, r, s, v, w with conditional density

1
x vy, r s, v,w) = ———pe(x)1py,
8re(x,y ) pk+1(Z)Pk( RED
where 1p, is the indicator function of the k-th building block (with value z

in cell Z):
3 lteration: Consider X as the Z of the next building block. Set k := k — 1 and
go to step 2 (until k = 0).
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A very efficient algorithm!

The density method algorithm is a uniform random generation algorithm with
quadratic time complexity (including precomputations).

Our algorithm yields a tuple x := (x;, yi, i, Si, Vi, Wi )o<i<n With density

X
{Dn(in) Hgn—i,xn_;+1 (Xn—iayn—ia 'n—iySn—iy Vn—i, Wn—i)
fo Pn(t)dt i=1
—1
po(xa) T Pc(x)lpy,  po(x)lp  1p

= = = as pp =1
Jo Pa(t)dt i Peii(r1) 4 [ pa(t)dt [ pa(t) dt S
telescopic product!
where 1p, is as in the algorithm above the indicator function of the k-th block.
| (any density) = 1 implies:

1
vol(P) = / 1pdx = / pa(t) dt.
[0,1]6m+1 0

\
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A very efficient algorithm!

end of proof (uniformity & complexity):

Now if we choose a random uniform element in [0, 1]®"*1, the probability that it

belongs to P is
/ 17) dx.
[0,1]6m+1

This is also the probability that a random uniform filling of our building block is
correct (i.e., respects the order constraints).

This implies that f, = (60 + 1)! [ pa(t)dt = [P|l vol(P).

Each step = computation and evaluation of the associated polynomial p,(z) (of
degree proportional to n) = quadratic time complexity and quadratic space. ]

v
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Jenga tableaux and the density method

16|17(19|21

1114
10[18]

L |

)
~
—
S

Jenga! = Construct! in Swahili. b "

Given a shape encoded by (¢;, r;)ien, what is the number of tableaux with n lines?
n

fo= (Z(f; +r+ 1)) ! /01 pn(x) dx.

i=1
p@= [ [ [ [ [ madxdn.dudn..dn

z<ni<l v,_1<v, <l O<w<z O0<wi<up 0<x<z

Zin(1 —2)™ [ . (1 — A\
_z-an / pn-1(x)dx  with Pl(Z)g
0

£l ! lil !
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Special Jenga shapes

Theorem (1-periodic Jenga tableaux are D-finite) t rr

The bivariate GF P(t,z) = ngl pn(2)t" is D-finite in t and z. BE 1? ;; ;Z 21]
o 11]14
Proposition 180 13|
For r; =0, Vi > 1, the number f, of Jenga tableaux is \3 6|79 13\
(S0, (4 + 1)! BiE
T 6 (S 1) o

For Jenga tableaux with period p, L := "%, ¢;, and (r;)?_, = (0,...,0), one has:

j+m
L k L+p I'(k + AGE )
fk+m*f ( +P) ‘L+P )
- a7 i
Jj=1 r L+p
JAb At
Accordingly, the GF of such tableaux is the sum of p hypergeometric functions.
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Skew tableaux with walls

L L]

Building block Skew shape Jenga shape

Proposition

The number of above skew tableaux with n columns of height h is

Proof: Use a bijection between this class and periodic Jenga tableaux of period
p=2401=h—2,0,=0,and r, =0. O
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A classification of 2 x 2 periodic shapes

A periodic shape is the concatenation of n copies of a building block B of jcells:

y=5B5".
A tableau ) with periodic walls is a periodic shape filled with all integers from
{1,...,|B|n} respecting the induced order constraints.
B o . 311015 |6 |12(16|13|14
= A filling of B*: 227 s 9115

There are a priori 2° = 64 shapes, but some are in bijection (e.g., turn by 180
degrees and reverse labels). It turns out that it leads to 32 different sequences.

We now characterize all 2 x 2 shapes according to the nature of the counting
sequence/generating function, which is either

@ “simple” hypergeometric

@ hypergeometric,

@ algebraic,

@ D-algebraic and beyond.
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“Simple” hypergeometric cases

= cases where walls split tableaux into independent regions = product formulas

Class  Shape Formula Class  Shape Formula Class  Shape Formula
I @ < B 2 o I
240 6" 2 3"

w e H e HH

12n 6n
" P14 (42’?'
4n)! 5n

SRR 2 - HiEHws:  HH
@ w B
HH . - B e - Bf o«
h & (4n)! (4n)!
n n)!
- H o b W e HH A
1 h 2w BB

. , P11 H} 4 P17 s 2

" 2n)1 27
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Proofs: Choose and distribute elements according to constraints.
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Hypergeometric cases

= cases with uniquely determined minimum or maximum

Class Shape Sequence OEIS

HE‘ , BEI f[(zli— 1)(4i —3) A101485

i=1

H2 H} . HEI T2 -1)@i-1)  as9605
i=1
H3 B} , EH 2 ni[](4i —3)  2"1.n0gasa3
i=1

H4 4n ﬁ(3i—1) (“")-a008544
' n i=1 !

H5 Elz‘ EH 4n f[(3i—2) (%")-a007559
' n i=1 5

H6 HE‘ BEI 2"n! H (4i —3) n!-A084948

H7 H} B} H (2i —1)(4i —1)  A159605

Proofs:
@ Models H1-H5: variants of Jenga tableaux with r; = 0 for all j
@ Models H6—H7: recursively decompose with respect to the location of the
unigque minimum or maximum.
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https://oeis.org/A101485
https://oeis.org/A159605
https://oeis.org/A084943
https://oeis.org/A008544
https://oeis.org/A007559
https://oeis.org/A084948
https://oeis.org/A159605

Algebraic cases

= cases with no vertical walls

Class Shape Sequence OEIS
1 4
Al Cat(2n) = il (2:> 4048990
A2 (4") A001448
2n
A3 . 22n+1 Cat(n) — Cat(2n +1)  A079489

Proofs:
@ Models A1 and A2: Use bijections to Dyck bridges.
@ Model A3: Decomposing at the first wall that cannot be removed gives

fo = Cat(2n) + Y _ Cat(2i — 1)fy_;,
i=1
which we then solve with generating functions.
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https://oeis.org/A048990
https://oeis.org/A001448
https://oeis.org/A079489

D-algebraic cases?

~ cases with a zig-zag-like pattern

Class Shape GF OEIS Example

D-algebraic, and not D-finite: o 0
B} B} cos( t/\f + cosh(t/v/2)? related to 4211212 E=. =
" 2cos(t/v/2) cosh(t/v2)

315 9 |11(13|14 |15
EH . H} open problem! — -
H} ) EE open problem! _

Proof for z1: A permutation (ay,...,a,) is an

alternating permutation of type (ki, ..., kn) if

ap < <A > Al < < Atk D Akgthotl < v < ap.
Then, k; = 1 gives classical alternating permutations;

while ky =3, kp = -+ = k, = 4, and ko1 = 1 gives Z1. Leonard Carlt
A generalization of [Carlitz 73] then leads to o i
Es 3(t)E4 1(t) grktr
F(t) = ———~2 + E40(t h Ei . (t) = 1)
( ) E4’0(t) + 4,0( ) where k, ( ) ;( ) (nk+r)'
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https://oeis.org/A211212
https://oeis.org/search?q=3%2C119%2C13761%2C3178785%2C1226341035%2C711310157271%2C578808021857625%2C+629094292867153665%2C880420061542046903955%2C1542142783860061524297975%2C3305066423033878298552132145%2C8507914454392557998456492959905&sort=&language=english&go=Search
https://oeis.org/search?q=8%2C416%2C56136%2C14433600%2C6042488040%2C3743684613216%2C3219214017819240%2C3668912290108229760%2C5352687624294728270280%2C9729190960995966590426400%2C21557816749990824984425855880%2C57201801255727138416863255878080&sort=&language=english&go=Search

Conclusion

@ 3 ways to enumerate and generate Young tableaux with walls:
hook-length type formulas, bijections, density method.

@ Approach different from [Greene Nijenhuis Wilf 84].
They used the existence of a simple product formula (hook-length formula).

@ Brute-force generation — exponential cost.
Generation via our density method — O(n?) cost.

o A field to explore: examine more families of posets (e.g., permutations, Young
tableaux, increasing trees, urn models in [Banderier Marchal Wallner 20]).

@ Asymptotics? D-finite? D-algebraic? Links with other objects?
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