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Abstract

In this thesis, we study the application of machine learning to Lagrangian relaxation.
The latter involves dualizing a subset of constraints that define the feasible region,
incorporating them as a penalization term in the objective function. For each choice
of penalization vector, called the Lagrangian multipliers vector, we obtain a different
bound on the objective value of the original problem. The tightest bound is obtained
by solving the Lagrangian Dual problem, typically addressed using iterative algorithms
such as the Bundle method.

We first explore an amortized optimization method that directly predicts a La-
grangian multipliers vector. A probabilistic Graph Neural Network encoder maps the
instance, represented as a bipartite graph, to a latent space, providing a representation
of dualized constraints. From this representation, a deterministic decoder predicts a
Lagrangian multiplier for each dualized constraint. We train this neural model in an
unsupervised learning way, by directly maximizing the Lagrangian bound obtained by
solving the Lagrangian subproblem using the predicted multipliers. We show that our
prediction may be used to replace or initialize the Bundle method.

While initialization is important, it is not the only factor affecting the performance
of the Bundle method. We present a machine learning—based technique for dynamically
tuning, at each iteration, the Bundle method parameter that serves as both step size and
regularization term. We still train our model to maximize the Lagrangian bound, and
we show how to approximate the gradient of the algorithm’s execution using unrolling
techniques and analyzing the solution structure of the quadratic problem solved at each
iteration. This enables us to train our model using standard back-propagation techniques.
However, the gradient approximation currently lacks sufficient expressiveness, which
limits performance. Finally, we propose replacing the quadratic problem that must be
solved at each iteration to obtain a search direction with a learned surrogate model.
The learning model emulates the behaviors of the quadratic problem using a recurrent
network combined with an attention mechanism to predict a convex combination of
the subgradients stored during the bundle execution. Furthermore, by smoothing the
stabilization point updates, we obtain a fully differentiable framework that can be trained
using automatic differentiation.

The last approach goes beyond the traditional Lagrangian relaxation framework.
Indeed, the final method can be interpreted as a trainable optimizer, opening the way for
applications in meta-learning and other advanced optimization tasks.

Keywords: Lagrangian Relaxation, End-to-End Optimization, Amortization, Un-
rolling, Bundle Method.
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Résumeé

Dans cette these, nous étudions I’application de I’apprentissage automatique a la relax-
ation lagrangienne. Cette technique consiste a dualiser un sous-ensemble de contraintes
définissant la région admissible, en les intégrant sous forme de pénalisation dans la fonc-
tion objective. Pour chaque vecteur de pénalisation, appelé vecteur de multiplicateurs de
Lagrange, on obtient une borne différente de la valeur objective du probleme initial. La
meilleur borne est obtenue en résolvant le dual Lagrangien, généralement résolu avec
un algorithme itératif tel que la méthode des faisceaux (Bundle method).

Nous proposons d’abord une méthode d’optimisation amortie qui prédit un vecteur
de multiplicateurs de Lagrange. Un encodeur probabiliste, basé sur un réseau de
neurones graphiques, projette I’instance, représentée comme un graphe biparti, dans
un espace latent fournissant une représentation des contraintes dualisées. Un décodeur
déterministe prédit ensuite un multiplicateur pour chaque contrainte dualisée. Ce modele
est entrainé de maniere non supervisée, en maximisant directement la borne lagrangienne
obtenue avec les multiplicateurs prédits. Nous montrons que ces prédictions permettent
de remplacer ou d’initialiser la méthode des faisceaux.

Bien que I’initialisation soit un facteur important, elle n’est pas la seule influencant
les performances de la méthode des faisceaux. Nous introduisons un modele d’appren-
tissage automatique permettant d’ajuster dynamiquement, a chaque itération, le parametre
de la méthode des faisceaux qui définit le pas et le poids de la régularisation. Le
modele est toujours entrainé pour maximiser la borne lagrangienne, en approximant
le gradient par une méthode d’unrolling et en analysant la structure de la solution du
probléme quadratique. Cela permet un entrainement par rétropropagation. Cependant,
I’approximation du gradient manque encore d’expressivité. Enfin, nous proposons de
remplacer le probleéme quadratique déterminant la nouvelle direction de recherche par un
modele d’apprentissage automatique. Ce modele imite le comportement de la méthode
des faisceaux: a I’aide d’un réseau récurrent associé a un mécanisme d’attention, il
prédit une combinaison convexe des sous-gradients obtenus pendant I’exécution de la
méthode. En lissant les mises a jour du point de stabilisation, nous obtenons un modele
enticrement différentiable et entrainable par différentiation automatique.

La derniere approche va au-dela du cadre classique de la relaxation lagrangienne. En
particulier, elle peut étre interprétée comme un optimiseur entrainable, ouvrant la voie a
des applications en méta-apprentissage ainsi qu’a d’autres problemes d’optimisation
avancés.

Mots-clés : Relaxation Lagrangienne, Optimisation End-to-End, Optimisation
Amortie, Unrolling, Méthode des Faisceaux.
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Introduction

Solving optimization problems lies at the heart of many real-world applications and is a
major area of research. However, problems like Mixed Integer Linear Programs (MILPs)
are, in general, computationally intractable. To tackle their complexity, relaxation
techniques have been widely adopted. These methods aim to simplify the original
problem to be sufficiently easy to solve. The optimal objective value of such relaxations
provides a bound on the feasible solutions of the original problem, which enables an
estimation of their quality.

Lagrangian relaxation consists of removing a set of constraints from the feasible
region, while still incorporating them into the objective function through a penalty
term. The penalty coefficients are known as Lagrangian multipliers. By dualizing
constraints that connect otherwise independent components, the original problem can be
decomposed into smaller, more manageable subproblems. Each of these subproblems
is solved iteratively with different values for the Lagrangian multipliers. The task of
determining the optimal Lagrangian multipliers is referred to as the Lagrangian Dual
problem.

Despite their effectiveness, traditional methods for solving the Lagrangian Dual
problem, such as the Subgradient method or the Bundle method, may suffer from slow
convergence and sensitivity of parameters. Recently, machine learning has emerged
as a powerful tool, capable of learning heuristics from data to accelerate classical
optimization techniques. This has opened a new direction for developing data-driven
optimization methods, particularly in scenarios where similar problem instances are
solved repeatedly and prior experience can be exploited.

In this work, we investigate how machine learning models can be leveraged to
improve the resolution of the Lagrangian Dual. Our goal is to design learning-based
strategies that either enhance classical solvers or replace some of their components,
thereby accelerating convergence or allowing the rapid computation of high-quality
bounds.

Beyond improving computational efficiency, the proposed approaches contribute to
a broader understanding of how optimization algorithms can be enhanced by learning,
and how learning techniques can be embedded into traditional frameworks.

Overview of the document

In Chapter[I] we provide the necessary background in the field of Lagrangian relaxation.
In particular, we give a detailed presentation of Lagrangian relaxation and ascent

Xiii
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methods used to solve it. We specifically cover the Subgradient method, the Cutting
Plane method, and the Bundle method. Among these, we place greater emphasis on the
Bundle method, as it serves as the core resolution technique in our proposed approaches.

In Chapter 2] we present the foundational concepts of machine learning. We start by
defining the notion of a learning problem and how it can be addressed. Then, we present
the types of models considered in our work.

Chapter [3] offers a review of the literature at the intersection of machine learning
and optimization. We emphasize applications of machine learning to decomposition
techniques, with particular attention to approaches involving Lagrangian relaxation. A
special focus is given to amortized optimization strategies, which aim to replace iterative
resolution processes with learned models. Challenges inherent to this domain are also
highlighted.

The following two chapters present the contributions of this thesis. Chapter []
introduces a method that leverages the Continuous relaxation to obtain tighter bounds
by predicting Lagrangian multipliers. Specifically, we model the optimization instance
using a Bipartite Graph, where each node represents a component of the problem.
We then apply a Graph Neural Network (GNN) encoder to iteratively refine the node
embeddings through message-passing, in order to obtain a hidden representation for
each dualized constraint. This hidden representation of dualized constraints is used
to predict a scalar value for each dualized constraint, corresponding to the predicted
Lagrangian multiplier. This approach is an unsupervised learning approach as the
model is trained to directly maximize the Lagrangian bound based on these predicted
multipliers, without requiring knowledge of the optimal Lagrangian multipliers.

However, this method is limited to cases where an informative Lagrangian multiplier
vector can be identified easily, even if it remains far from the optimal solution of the
Lagrangian Dual. In Chapter @ we obtain such a vector by leveraging the values
associated with the dualized constraints in a dual optimal solution to the Continuous
relaxation. This approach assumes that the Continuous relaxation is easy to solve
but yields weaker bounds than the Lagrangian Dual. Additionally, the bipartite graph
representation used may become intractable as the instance size grows.

To overcome these limitations, we propose alternative methods that incorporate
machine learning inside the Bundle method. In Chapter [5] we start by proposing a
learning—based mechanism for dynamically tuning, at each iteration, the regularization
parameter of the Bundle method. The model is trained to maximize the Lagrangian
bound obtained by considering the Lagrangian multiplier vectors obtained during the
bundle execution. We demonstrate how to approximate the gradient of the Bundle
method using unrolling techniques and a characterization of the solution to the quadratic
problem solved at each iteration of the Bundle method. This enables us to train our
model considering standard back-propagation techniques. However, the current gradient
approximation lacks sufficient expressiveness, which sometimes limits its performance.

We then propose a second method, replacing the quadratic problem that must be
solved at each iteration of the Bundle method to obtain a search direction with a learned
surrogate model. The learning model emulates the behaviors of the quadratic problem
using a recurrent network combined with an attention mechanism to predict a convex
combination of the subgradients stored during the bundle execution. Furthermore, by
smoothing the stabilization point updates, we obtain a fully differentiable framework
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that can be trained using automatic differentiation.
Finally, Chapter [6] concludes the thesis by summarizing our contributions and
outlining promising directions for future research.

Main Contributions

The main contributions of this thesis are developed in Chapter 4] and Chapter[5] These
two chapters explore different ways of using machine learning to assist or replace the
resolution Lagrangian Dual problem. We did not use machine learning as black-box,
but we integrated domain knowledge into the learning process.

Both chapters present approaches that handle instances of varying sizes. While
this property is often neglected in the literature, it is important in real-world optimiza-
tion problems, where the structure and scale of instances may vary considerably. The
majority of the existing approaches predicting Lagrangian multipliers either rely on
fixed-size input models or extract problem-specific features, which limits the gener-
alization capability of the resulting models. In contrast, both contributions in this
thesis emphasize generalizable architectures capable of operating directly on instances,
effectively leveraging their inherent combinatorial structure.

Chapter [ leverages a structured representation of the optimization instance that
can be passed as input to a neural network, while preserving sufficient information
to reconstruct a valid output solution. The instance is encoded as a bipartite graph, a
representation previously used in the literature, though for different purposes. This
structure enables the model to propagate information across related components of the
problem, rather than treating them as independent elements. However, this design choice
introduces a limitation, as discussed in Section4.1.2} Indeed, the size of the graph grows
with the number of variables and constraints, making it less suitable for large-scale
problems due to the computational cost of graph convolutions. Furthermore, we show
that even partial leveraging on classical optimization results, such as the solution of the
Continuous relaxation, can be useful to provide predictions. This insight opens the door
to future generative approaches, where different types of information, obtained through
the resolution of an optimization problem, could guide the learning process. Chapter [4]
makes another novel contribution, as it casts the prediction of a Lagrangian multiplier
vector as an energy-based modeling task, drawing a connection with a well-established
body of work in the machine learning literature.

Chapter [5] follows a different idea. Rather than designing a model to predict a
solution from scratch, it integrates machine learning within the Bundle method, a
resolution algorithm of the Lagrangian Dual. Specifically, the focus is on modifying
the structure of the Bundle method, inserting learned components into its iterative
execution. This results in a machine learning-based framework that is differentiable
end-to-end. This is the first work, to our knowledge, that differentiates through the
execution of the Bundle method to enable direct optimization of the final objective
value. Some previous studies have explored similar ideas using Subgradient methods,
but the Bundle method has a more complex structure that poses further challenges.
We also demonstrate how certain elements of the algorithm can be reinterpreted or
replaced by neural networks models, yielding a hybrid approach fully trainable using
automatic differentiation techniques. By learning the network parameters, we obtain a
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learned optimizer that demonstrates promising generalization capabilities, both when
performing more iterations and when applied to datasets not seen during training. This
approach also addresses a key limitation of the bipartite graph representation introduced
in Chapter[4] as it operates in a lower-dimensional feature space. As a result, it scales
more effectively to larger instances. Furthermore, it represents a meaningful step
toward the development of generative models that compute solutions to optimization
problems by following the structure of the algorithms used to solve them. This opens up
promising avenues for applying similar strategies to other classes of problems, where
algorithm-aware learning can offer both interpretability and efficiency.



Chapter 1

Background on Lagrangian
Relaxation

Mathematical optimization is a branch of mathematics that focuses on solving opti-
mization problems and selecting the best element from a set of alternatives based on
specific criteria. This chapter provides some fundamental concepts about Mathematical
optimization, emphasizing their application in achieving the main results of this thesis.
Specifically, the findings discussed in Chapter ] and partially in Chapter [5] focus on
Lagrangian relaxation.

Lagrangian relaxation is one of the most efficient approaches to solving Mixed
Integer Linear Programs (MILPs) [263]] with complex constraints. Given a penalization
vector for these constraints, which are called Lagrangian multipliers (LMs), it yields a
bound on the optimal value of the MILP. The Lagrangian Dual problem aims to identify
the LMs that offer the tightest bound.

In Section[I.T] we begin by presenting the mathematical formulation of an MILP
and the formulation of the corresponding Lagrangian relaxation. We will then show that
Lagrangian relaxation can be seen as a Partial Convex relaxation of the problem, and
in particular, this enables us to understand better the relationship between Lagrangian
relaxation and Continuous relaxation, which serves as the foundation for the model
discussed in Chapter [}

The challenge of determining the best bound provided by the Lagrangian relaxation
can be modeled as a concave optimization problem with a piece-wise linear objective
function. In Section[I.3] we discuss some algorithms that can be used for concave
maximization (and convex minimization) problems.

MILPs are NP-hard problems [2435]. The complexity sometimes arises from a subset
of constraints that link together otherwise independent subproblems. More formally [54,

1



2 CHAPTER 1. BACKGROUND ON LAGRANGIAN RELAXATION

Chap. 8], let P be a MILP of the form:

(P) min w' (1.1a)
Az >b (1.1b)
Cx>d (1.1¢)
x € R x N2 (1.1d)

The Branch&Bound (B&B) method is a key technique in solving MILPs. B&B,
initially introduced in [149] in 1960, is a general algorithm that solves a problem by
splitting it into several smaller subproblems. This process is repeated recursively on the
generated subproblems until they are simplified enough to be solved. The progression
of the procedure can be effectively visualized and described using a tree structure.

At each iteration, an unsolved subproblem is selected based on a predefined node
selection strategy. Each subproblem corresponds to a leaf node in the current execution-
state tree. Subsequently, both a lower and an upper bound on the optimal objective
function are computed. The lower bound is generally obtained by solving a cheaper
relaxation of the associated problem. Instead, the upper bound is given by the best-
known feasible solution (incumbent), which may be improved using heuristics.

If the lower bound at the current node is greater than the best incumbent, the sub-tree
rooted at that node is pruned, as it cannot lead to an improved solution. When the
difference between the global lower bound and the objective value of the best incumbent
is smaller than a user-defined threshold, the process terminates with an e—optimal
solution, with an approximation quality that depends on the threshold. Otherwise, the
search continues by branching on the feasible region of the selected subproblem. If the
difference between the bounds at the current node exceeds the threshold, the search
continues by branching on the feasible region of the current subproblem. This region is
divided into two or more subsets, typically by imposing additional constraints on one or
more variables, following a variable selection strategy.

A common relaxation used to obtain a lower bound is the Continuous relaxation (CR),
which removes the integrity constraints, transforming constraints (I.Id) in € R} e
However, this is just one possibility. Another widely used relaxation is the Lagrangian
relaxation, which relaxes selected linear constraints instead of integrality constraints.
The Lagrangian relaxation is described in more detail in Section[I.1}

1.1 Lagrangian Relaxation

The Lagrangian subproblem is obtained by dualizing a family of constraints. Here we
relax the constraints defined by the inequalities (T.Tb)), and penalize their violation with
Lagrangian multipliers (LMs) w € R’

(LR(m)) m:gn w'z+7'(b-— Ax)

Cx>d
x € R}' x N™2
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Figure 1.1: Example of Lagrangian function for a one-dimensional Lagrangian multi-
pliers space. Each black line represents a cut, which can also be seen as the objective
function of the Lagrangian subproblem for a fixed primal solution * as a function of
the Lagrangian multiplier. The green curve represents the Lagrangian function, obtained
by considering the minimum of the former function (in black) for each fixed Lagrangian
multiplier. The orange point marks the optimal solution of the Lagrangian Dual.

Weak Lagrangian duality ensures that LR(7) provides a lower bound for P. The
goal of the Lagrangian Dual problem is to determine the optimal bound.

(LD) I7Irl§%{ LR(w).
Lagrangian relaxation becomes particularly valuable when removing certain inequalities
results in a Lagrangian subproblem L R(7) that can be solved efficiently. It is crucial to
select the set of constraints to dualize carefully. Indeed, this choice involves a trade-off
between the speed and the quality of the resulting bound, as will be discussed later.

In general, there is a No Free Lunch Theorem, as discussed in the paragraph on the
integrality property, saying that to achieve better bounds than the Continuous relaxation,
the Lagrangian subproblem should be “harder” than a Linear problem. We will see
that if the Lagrangian subproblem is equivalent to its Continuous relaxation for all the
Lagrangian multipliers vectors, then the Lagrangian Dual provides the same bound as
that of the Continuous relaxation.

1.1.1 Lagrangian Relaxation as (Partial) Convex Relaxation

It is well established that the Lagrangian Dual(LD) is equivalent to the Convex relax-
ationof (I.Ta)-(T.1d) obtained considering the following convexification of the easy
constraints

(P) min{c'z| Az >b, z € conv(X)} (1.2)
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where X = {x € R}' x N"2 | Cx > d} and conv(X) denotes the convex hull of X

Geoffrion’s theorem [94] ensures that the Lagrangian Dual provides valuable infor-
mation as much as a Continuous relaxation and possibly more. In practice, the bound
provided by the Lagrangian relaxation is strictly better than that of the Continuous
relaxation on various applications.

Theorem 1.1.1. The Lagrangian Dual is equivalent to the linear dual of the Partial

Convex relaxation (P), that is
LD=D

Proof. 1t is a well-known fact that, if all the entries of C' and d are rational, then
conv(X) is a convex polytope. This is because, in this case, all the vertices of the
polytope defined by the linear system C'x > d will be rational, as they can be described
as a solution to a linear system obtained by considering only a subset of rows satisfying
the equality constraints.

Consequently, the points in conv(X') can be expressed as a convex combination of
these rational vertices. This means that we can find a matrix C and a vector d such that
conv(X) = {x e R+ Cx > d}.

Hence, we can rewrite (P) as

min {cTa: | Az > b, Cz > ci, x € Rm“’z} .
™n

Passing to the linear dual, we obtain
max{bTﬂ'erNT;HATﬂ'JrC'Tu:c, 7T >0, ,U,ZO},

that can be equivalently written by separating the maximum on the two variables 7 and
7, as

max{bTTr—}—maux{dT,u|A—'—ﬂ'—i—CN‘TH:c7 w> 0} |7 > 0}.
™ n
By dualizing the inner problem, we obtain:
max {bTw + min {cTac -l Ax | C'z>d ze€ R”1+"2} |7 > 0} .
™ x

This can be equivalently rewritten by replacing the feasible region with the convex hull
as follows:

max {bT'?T +min{c'z — 7' Az|z € conv(X), z € R™"?} |7 > 0} .
™ x

Thus, we conclude that the formulation of the Lagrangian Dual is equivalent to the
Partial Convex relaxation achieved by dualizing the constraints.
O



1.1. LAGRANGIAN RELAXATION 5
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Figure 1.2: Representation of the block decomposition that can be associated with a
Lagrangian relaxation.

One word on Integrality Property Some cases exist in which the Lagrangian re-
laxation coincides with the Continuous relaxation. This equivalence is related to the

integrality property.

Definition 1.1.2. We say that the constraints C'x > d satisfy the integrality property
if, for each vector of Lagrangian multipliers, 7r, the polytope that defines the feasible
region of the associated subproblem has only integer vertices.

This implies that the subproblem objective value is equivalent to that of its Continu-
ous relaxation for each fixed vector of Lagrangian multipliers. It is immediate to see
that if the problem has only continuous variables, then every possible set of constraints
satisfies the integrality property. So, the subproblem can be solved as straightforwardly
as a Linear problem. A consequence is that if all the variables are continuous, the
Lagrangian and Linear Dual coincide.

In general, the Lagrangian relaxation coincides with the convexification (P) of (P),
and so v(LD) > v(P), that is the value of the Lagrangian Dual cannot be worse than
the one of the Continuous relaxation. This follows from the fact that the two relaxations
have the same objective function, but the feasible region of (P) is contained in that of
(P).

This finding emphasizes that the subproblem must be more challenging than a
Linear problem to achieve a better bound than the Continuous relaxation. Understanding
that the integrality property is determined by the constraints explicitly included in the
formulation is essential. Consequently, the same problem can have different Lagrangian
relaxations, some providing the same bound as the Continuous relaxation, while others
providing better bounds. If the problems have only continuous variables, any Lagrangian

relaxation will satisfy the integrality property.

1.1.2 Block Decomposition

A particular case of interest arises when the matrix C' exhibits a block-disjointed
structure, in the sense that there exist sub-matrices C; fori = 1,--- , I of C such that
the constraints Cx > d can be rewritten as

Cix; > d;,

where we divide the variables as z = (z1, - , 1)



6 CHAPTER 1. BACKGROUND ON LAGRANGIAN RELAXATION

This allows us to split the Lagrangian subproblem into independent subproblems of
the form:

(LR;(m)) min w; x; + 7' (b; — A;x;)

xz;
Cix;>d;, i=1,---,1
x, € RV XN =1,
Thus, the Lagrangian Dual can be rewritten as:
I
max » LR;(m).

>0 4
- =1

The main advantage is that we can solve I independent subproblems with a smaller size
(and easier to solve) than the original problem.

1.2 Karush Kuhn Tucker Conditions

Consider an optimization problem of the form:

Iin flx) (1.3a)
s.t.gi(x) <0 t=1,---,m (1.3b)
hj(x) =0 j=1--,p (1.3¢)
(1.3d)

where X is a convex subset of R™, f is a convex function.

The Karush—Kuhn—Tucker (KKT) conditions are first-order necessary conditions
for a solution of an optimization problem to be optimal, provided that certain regularity
conditions hold.

We begin by introducing some preliminary definitions.

Definition 1.2.1. Given a point £ € R™ and € > 0 we define the ball centered at x
with radius € as
Be(x) = {y e R" |[|lz —yl| < €}.

Definition 1.2.2. Letx € R™ and f : X — R be a continuously differentiable function.
We say that x is a saddle point for the function f if it is a stationary point (i.e., the
orthogonal derivatives in the point are zero) but it is not a maximum or minimum of
the function (neither global nor local), i.e. Ve > 0, Jx,,,zpr € Be(x) such that

f(mm) < f(.’I}) < f(mM)
Definition 1.2.3. Let X C R™. We define the affine set generated by X as

aff(X) :={y € R™[3n, Im1, -+ @y € X, 01, 0, ERsLy = Oi;}

i=1
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The Lagrangian Function associated with the optimization problem is defined as:
L(z,p, ) = f(x) +p' glx) + AT h(z)
The Karush—Kuhn-Tucker theorem then states that:

« Sufficient Conditions: If (x*, u*, A*) is a saddle point of £ inx € X and p > 0,
then «* is an optimal vector for Problem (T.3).

¢ Necessary Conditions: Suppose that f and each g; are convex in X for ¢ =
1,--- ,m and that there exists x¢ € relint(X) := {x € X | Je > 0s.t. B(x) N
aff(X) C X} such that g(x) < 0. Given an optimal vector x* for the above
optimization problem there is associated a vector (pu*, A*) satisfying u* > 0
such that (x*, u*, A*) is a saddle point of L.

In particular, supposing that the objective function f and all the constraint functions
gi, h; admit a sub-derivative in the optimal solution =*, the necessary conditions allow
us to rewrite the solution of the optimization problem as a solution of the system

composed of the following conditions:

Stationarity Condition:

m

0€0f(x)+ Y wdgi(x)+ Y _ \;oh;(x)
i=1 j=1

Primal Feasibility Condition:

and

Dual Feasibility Condition:

;MZO Vi=1,~--,m
Complementary Slackness Condition:
wigi(x*) =0 Vi=1,---,m

The system of KKT conditions is typically not directly solved, and many optimiza-
tion algorithms can be seen as methods for numerically solving the KKT system of
conditions [35, page 244].
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1.3 Ascent Type Methods

Definition 1.3.1. Given a convex subset II of a real vector space, we say that the
function ¢ : IT — R is concave if forall 0 <t < 1 and 7y, o € II:

Pty + (1 —t)me) > td(m1) + (1 — t)g(ma).
We focus on algorithms designed to tackle problems of the form:

max ¢ () (1.4)

>0

where ¢ : R™ — R is a concave function taking finite values in R. If Problem (T.4)
corresponds to the Lagrangian Dual obtained by relaxing equality constraints, instead
of inequality constraints, the feasible region becomes w € R™.

While many works focus on convex minimization problems, concave maximization
is fundamentally equivalent, as max,(—f(z)) = —min, f(z), and if f is convex,
then —f is concave. We adopt the concave maximization formulation, as it aligns
with the approaches developed in Chapter ] and Chapter [5] For example, looking
at the Lagrangian relaxation, we can find the Lagrangian Dual formulation by simply
substituting ¢(-) with the Lagrangian subproblem value function LR(-), that is a concave
piecewise linear function.

Many algorithms for convex/concave problems are based on subgradients, which
generalize derivative functions for smooth functions to convex/concave functions.

Definition 1.3.2. We say that g is a subgradient of a concave function ¢ in g if
vr eIl

o(m) — p(mo) < g (m —mp).

To be exact, the previous definition refers to supergradient, which is used in the case
of a concave function. The subgradient is defined similarly, but reversing the inequality.
Henceforth, in the rest of this Thesis, we will refer to subgradient with a slight abuse of
notation to talk about what is generally referred to as the supergradient in the literature.

In the case of the Lagrangian relaxation, we can find a subgradient in 7t by solving
the associated Lagrangian subproblem L R(7r), taking the associated primal solution
x{), and then the subgradient will correspond to the constraint violation for that primal
solution, that is simply

(b— Ax)).

This follows from the fact that

Or < min c'x+7w(b— Aw)) D 0x (c'zh+m' (b— Az)) = (b— Ax}).

xEconv(x)

To solve problems such as (I.4), a well-known approach is to use Subgradient
methods [207, Chap 5.3]. Specifically referred to as Subgradient Ascent methods
for concave maximization, as opposed to the Subgradient Descent methods, typically
employed for convex minimization problems.
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Some Details on Clarke Subgradient To formally clarify some details in Chapter[4]
and Chapter [5] we have to consider a definition that is a bit more general than the
subgradient, that is, the Clarke subgradient. Informally, we need a definition similar
to that of subgradient, acting locally and applicable even when the function is not
mandatory convex/concave. The Clarke subgradient is defined for K-Lipschitz functions
in Banach spaces

Definition 1.3.3. Let X be a Banach space and Y C X. A function ¢ : X — R is said
to be a Lipschitz function on Y if exists i > 0 such that

[9(x) — ¢(y)| < K[|z -yl Vae,yeY

This definition considers a function such that the absolute value of the difference
between the function computed at two points is bounded by the distance of the two
points, in the Banach space, rescaled to some constant K.

Given a direction v with respect to which we want to approximate the derivative, we
start considering a notion of generalized directional derivative through this direction as:

Definition 1.3.4. Given a Banach space X and a Lipschitz function ¢ : X — R we
define the generalized directional derivative of f in x through the direction v as

¢o ($, 'U) = lim sup ¢(y + t’U) — (b(y)
y—ax, t}0 t

where y € X and t € R.

If ¢ is a K —Lipschitz function there exists at least one vector £ such that ¢° (x; v) >
(&, v) [53] Chapter 2]. This justifies considering the following definition for generalized
subgradient.

Definition 1.3.5. If ¢ is a K —Lipschitz function near x € X, we define the Clarke
subgradient of ¢ at x as

9¢(x) ={¢ € X*[¢°(x;v) = (§,v) Vv € X}
where X * is the dual space of X.

We refer the reader to [53]] for more details. Here, we emphasize that the Clarke
subgradient reduces to the gradient of ¢ when the function is differentiable, and coincides
with the subgradient when ¢ is convex (or concave using an analogous definition of
supergradient). Furthermore, this definition enables the derivation of a chain rule
analogue in this setting.

1.3.1 Subgradient Method

In the scenario where II = R™, given a starting point, w9 € R™. The Subgradient
Ascent method involves iterative updates of the current point in the following form:

T4l = T + NSt Vt=0,1,--- (L.5)



10 CHAPTER 1. BACKGROUND ON LAGRANGIAN RELAXATION

LR

Tt41 T ™

Figure 1.3: Starting from the black point, we use the direction provided by a subgradient
at that point (cyan line) to make a step. Computing the value of the true function at that
point (orange point), we can obtain a new subgradient (blue line) for the next iteration.

Here, g; € Or¢(m;) is a subgradient of ¢ at 7r;. So, the approach tries to improve the
current point by taking a step of size 7;, known as the step-size, in the direction provided
by the subgradient of ¢ at the current point.

Choosing an appropriate step size is crucial for converging Subgradient methods,
especially when the objective function is non-differentiable. For more information on
the step size conditions required to ensure convergence, refer to [32].

Subgradient methods can exhibit instability, as there is no guarantee that the next
trial point will yield an improvement over the current one. Therefore, successful
implementations must keep track of the best point found so far, which provides the
maximum value of the function ¢.

When the function to be maximized is also differentiable, the Subgradient method
consists of exactly one element, corresponding to the function’s gradient [238, Theorem
25.1].

Projected Subgradient Descent If additional constraints define I1, as the non-negativity
constraints w > 0, we can employ an extension of the previous algorithm to handle
these constraints. This extension is called Projected Subgradient method, as it involves
projecting the point obtained by the Subgradient method’s update rule into II. Therefore,
one iteration can be expressed as:

41 = Py + mge) (1.6)

where Pry is the projection into II and, as previously, g; € Or () is a subgradient of
¢ in 4.
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ADAM A particular case of the Subgradient method is when the function ¢ that we
want to maximize is smooth. In this case, the subgradient set will contain only one
element: the function gradient.

Gradient-type methods are also commonly employed to solve machine learning
tasks. To mitigate the instability issues associated with standard Gradient method,
many variants incorporate the concept of momentum [218]]. This involves aggregating
the gradients of the points visited during the previous iterations. ADAptive Moment
estimation (ADAM) [134] is one widely used variant of the Subgradient method that is
nowadays standalone in machine learning.

At any given iteration ¢t = 0, 1, - - - | n, this method first computes the momentum as
a convex combination of the previous momentum and the gradient at the current trial
point, 1.e.

My < fime + (1 — 51)g:

where g; € 9r¢(m;) and B, € [0, 1] is a fixed parameter. For the first iteration we
consider my = 0. Similarly, it also computes the second moments of the gradient as

Uy < Pove + (1 — B2) HgtH;

Also in this case, we consider, at the first iteration, vg = 0

These two values represent an aggregation of the first and second-order information
about the function being optimized, which has been collected at all the points so far
visited during the algorithm’s execution.

Kingma and Ba [[134] note that m; and v, are biased towards zero, especially in the
first iterations and especially when the decay rates are low. For this reason, they are first
unbiased using

m My
t+1 — 1 — /6{
and
_ Vt+1
Vi1 = )
14
2
then, the next trial point is chosen as
Myt

Tl < T + M

Vi1 +€

where € > 0 is a (small) scalar and 7, > 0 is the step size. The step-size rule is originally
presented as n; = i with > 0 fixed.

1.3.2 Cutting Plane Method

The Cutting Plane method [225] is an optimization technique often used to solve Linear
Programming problems in formulations with a large number of constraints as well as to
solve general concave (and convex), possibly non-differentiable, optimization problems.
This technique is combined with branching frameworks to solve MILPs, resulting in the
so-called Branch & Cut [[65,[167].
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Cutting Plane involves refining a feasible set or objective function through the
use of linear inequalities, known as cuts. We will focus here on the application to
convex/concave problems.

The function ¢ is concave, hence, given a subgradient gz of ¢ in 7 and its lineariza-
tion error at zero az = ¢(7) — #(0) — gL (T — 0) = ¢(7) — $(0) — g1 7 we have
that ¢(7) < g} 7 + ax. Let us observe that we can always rescale the function ¢ in
such a way that ¢(0) = 0. In the rest of this section, we will use this observation, and
so we simplify the linearization errors as az = ¢(7) — g .

Let 8* = {(r,Gx) | gr € 09(T), ax = ¢(7) — gL 7} werr. Problem can
be rewritten as:

max v (1.7a)
v,

sto<g' m+a Y(g,a) € 5* (1.7b)

x>0 (1.7¢)

v ER. (1.7d)

The issue with this formulation is that the number of constraints of the type
can be potentially infinite, making it intractable. Let us observe that in the case of the
Lagrangian relaxation (but more generally when the function is piecewise linear), we
can restrict it to a finite set of subgradients. We can consider a function LRy (7) =
c'x+7 " (b— Ax) for each vertex of the polytope defined by the inequalities Cx > d.
For a piecewise linear function, this approach reduces to taking one point in each distinct
linear segment. By doing this, we can reduce the problem to a finite bundle size, even
though it may still be exponentially large, as a function of the number of variables.

Even if, in this case, 5* has a finite dimension, it may still be excessively large to be
solved using the Formulation[I.7]

Instead of considering all the constraints in the formulation, the Cutting Plane
method focuses only on a subset 8 C 3* and iteratively finds the constraint that can be
added to the problem to improve the best incumbent value.

This means that we consider instead a Reduced Master problem:

max v (1.8a)

v,TERXR™
stv<g' w+a VY(g,a)ep (1.8b)
>0 (1.8¢)

Given the current objective value and solution of the Reduced Master problem
v*, 7*, we can update the set 5 by computing the value of the function ¢ in the current
optimal solution 7r*.

If v* is equal to the optimal objective value of the Reduced Master problem, then
7* is the optimal solution of the Problem as it respects all the constraints (T.7D).
Otherwise, we can add the subgradient and the linearization error associated with 7w* to
B and solve the new Reduced Master problem.

Cutting Planes and Column Generation Cutting Planesare an essential feature
of MILP solvers, which must balance strengthened linear relaxation with increased
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LR

Tt41

Figure 1.4: This figure illustrates an example of cuts, depicted in cyan, alongside the
corresponding optimum of the Cutting Plane method for that iteration. At this stage, we
can compute the value for the real function (orange point) and an associated subgradient
(blue line). This subgradient can be used in the next iteration to improve the model.

computations due to added cuts [66]. This method is strictly related to the Column
Generationapproach, as generating cuts (constraints) in the primal problem is equivalent
to generating variables in the dual problem. For simplicity in notation, we assume that
B =1{(g1,01),---,(g)s), @|5)) }.If we consider the dual of the Cutting Plane Reduced
Master problem:

18]

min ;0; (1.9a)
OcRIBI P
18]

s.t. Zai = (1.9b)
=1
18]

> gibi >0 (1.9¢)
=1

we can see that this problem is one variable for each point 7 with the associated
subgradients and linearization errors. If we consider II = R™, that is, we remove the
non-negativity constraints, then Constraint[I.9¢|should be respected with equality.

We present this relationship here for two main reasons. First, it is necessary to
correctly situate the literature of machine learning for Column Generation and machine
learning or Cutting Plane, presented in Chapter [3] These two approaches should not
be seen as completely independent, but related by the duality theory. The other reason
is that, in our implementation of the Bundle method (presented in Section[T.3.3), we
will solve the Dual formulation of a regularized version of the Cutting Plane Master
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problem, which leads to a regularized version of the Problem (T.9).

Application to Lagrangian Relaxation In the context of the Lagrangian relaxation
¢ = LR, so (1.4) becomes the Lagrangian Dual

max (min(cTac + 7' Azx) — Tl'Tb> . (1.10)

well \ zEx

That problem can be rewritten as:

max (U—TI'Tb) (1.11)
stv<cztn! Ax Y € conv(x) (1.12)
mell (1.13)
v ER, (1.14)

and the Reduced Master problem considers a subset of points in conv ().
Then, given v*, 7v*, the current solution of the Master problem, iteratively update
the set /3 by solving the subproblem:

mein c'z+ () Ax (1.15)
zEX

If v* is less than or equal to the optimal objective value of (T.13), then 7* is the
optimal solution of the Problem (I.10)) as it respects all the constraints (1.12)). Otherwise,
denoting by * the optimal solution of we can add the associated subgradient and
linearization error to (3, then solve the new Reduced Master problem.

1.3.3 Bundle Method

The Bundle method (BM) [155,[154] is an iterative method that solves problems of type
(T.4). From a general point of view, Bundle method aims to solve the Problem (T.4) by
iteratively optimizing a model ¢g of the function ¢ plus some regularization, in many
cases, the Euclidean norm of the distance between the best point found so far and the
new trial point. The model ¢ is iteratively updated based on the information from the
trial points. A common choice for the model ¢4 is the Cutting Plane Model presented
so far. In the following, we will use only that model. In [84]], theoretical conditions are
posed on the convergence of the Bundle in a general setting.
Note that the optimal solution 7v* of the problem

ey o)

and the optimal solution d* of the problem

dmrlrgrxzoaﬁ(d + ) — ¢(7)

are related by the relationship 7v* = 7 4 d*, for any given vector 7.
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OLR(Tr;) | Solve DMP o+ Wy

Br-1 U
{gl,‘ az}

\
Update
1 = Stabilization
Point

Figure 1.5: Bundle execution. Schematic representation of one iteration. Starting from
the trial point 7r,_1, the bundle 3;_; and the stabilization point 7r;_; at iteration ¢t — 1
we compute the same values for the next iteration ¢.

i 1

TCt4+1 704

Figure 1.6: Bundle iteration for ¢ = LR, the blue lines correspond to the planes for
which we have the gradient information in the bundle. The coordinate in the x-axis of
the black point represents the current stabilization point. The cyan lines represent the
quadratic approximation at the current iteration obtained considering the Cutting Plane
Model provided by the blue lines and adding a quadratic regularization as the Euclidean
distance the stabilization point. The coordinate in the x-axis of the orange point indicates
the new trial point found as a maximum of the current quadratic approximation.
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The term ¢(7) is added to rescale the function, representing the difference between
the new trial point and the previous stabilization point. We can then use the Cutting
Plane approach to this new problem. The main difference is that in this case, we have
as linearization errors a; = ¢(m;) — ¢(7) — g, (m; — ;) > 0 and the new point is
chosen as w1 = 7y + dj.

Many implementations of the Bundle method consider the function ¢z (d) = (7 +
d) — ¢(r) for a fixed 7 the Problem (T.4) is equivalent to:

deR™ 7 4-d>0 Or(d) (1.16)
in the sense that we can find the solution 7* of (I.4) as #* = &« + d*, where d*
is the optimal solution of (T.16). Note that the optimal values do not coincide as
o= (d*) = ¢(m*) — ¢(7). We adopt this formulation to facilitate a clearer interpretation
of the results presented in Chapter 3]

At a given iteration ¢, BM starts with a trial point 7, and uses a bundle [; (a set
containing a collection of gradients of the objective function ¢z (d)) to estimate the real
objective function. More formally, let 3; = {(g1,01) ... (g5, 3,)} be the set of
subgradients g; of ¢z, (d) in d; = m; — 7, (that is equivalent to the gradient of ¢(7)
in ;) and a; = (é(m;) — ¢(7:)) — g, (m; — ;) be the corresponding linearization
errors, collected up to iteration . Let us observe that, by concavity and by the definition
of subgradient, the linearization errors are always non-negative, that is, ac; > 0. We
select these linearization errors because they allow for a more accurate representation of
the Bundle iteration, aligning better with the results developed in Chapter [5]

BM aims at finding the optimal solution of by using the information contained
in the bundle $; to construct an approximation of ¢z (d) defined as follows:

G, p.(d) = min{gd+aili € {1, [B[}} (1.17)

The idea of BM is that, if the set 5; and the parameter ¢; are chosen appropriately,
the optimal solution of the following problem

1
(MP) max{¢z,g,(d) - o d|[3|deR" : 7 +d >0} (1.18)
t

is sufficiently close to the optimal solution of the original problem (1.16]), see [84]].
Problem (I.18) consists of a concave piecewise linear term and a normalization term
weighted by the parameter 7;.

Other Regularization Terms In the definition of the Master problem (L.I8), we
consider the Euclidean norm as a regularization term. However, this is not the only
possibility. For example, Frangioni [84]] discusses sufficient theoretical properties that
the regularization term should possess to ensure convergence.

Bundle Pseudocode The method begins at iteration ¢ = 0 by taking as input an initial
point 7, the stabilization point equal to the initial point (wy = () and the initial
bundle containing only the information of ¢(mg) (i.e. So = {go,ao}). Figure
represents an iteration of the BM.



1.3. ASCENT TYPE METHODS 17

Algorithm 1 Bundle methodpseudo-code.

1: Choose 7, €,n", 170, m
2: T < T

> At the beginning, the stabilization point coincides with the initial point

3: (go, o) < (9¢(mo),0)
4 By < {(go, o)}
5:t<+ 0

6: while true do

7.

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

(v, 0, X) < Solve DQP (1, f;)

> Solve the Dual Master problem (T.19)
w® Z‘Zi'll giegt) > Compute the new trial direction
i1 < m+ e (w® + X) > Compute the new trial point

(G415 e11) = (00(e11), (70) — (meg1) + g1 (Ter — 7))
> Compute the gradient and the linearization error

ﬂt+1 — ﬁt U (gt+17 at+1) > Update the Bundle
it $(mi1) = $(m) > mnel| Cics, 0190l + e, i6l”) then
Tl & T > Serious Step
Update ov; Vi = 1, -+ ,|B¢]
else
7Tl't+1 — Ty > Null Step
end if
if Stopping Scriteria then > End the Algorithm
break
end if
Bi+1 < Remove outdated components /3,11
t—t+1

23: end while
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In line [7} using the information contained in /3;, we solve the Dual Master prob-

lem (T.18):

2
|8 [B¢l
i 0; + Al + 0+ AT 1.19a
o,xen%léﬂka Zg Zzla 7 (1.19)
2
18
s.t. Za =1 (1.19b)
18|
Tt [ D> gifi+XA] >0 (1.19¢)
=1
A>0 (1.19d)
1>60>0 (1.19%)

obtained by passing through the KKT conditions. We refer to [[153, Chapter 4] for
further details.

Let us observe that, removing the non-negativity constraints, we obtain the following
formulation for the Dual Master problem:

16:| SERNTN 16:|

min Zg“ +Za” Ze =11. (1.20)

ocrSt!

It is important to note that the optimal solution d; of M P; and the optimal solution
0 of (T.19) are linked by the relationship d(*) (Ziﬂ q gﬂ(t) + )\), and so for

the Problem (T.20) multipliers we have d®) = 7, Z‘ﬁ ' gi 9( ). For our purposes, it is

convenient to introduce a vector w; = Zlﬁ i 970( ) as in hne L to represent the trial
direction from iteration ¢ to iteration ¢ 4 1. In the following, we will denote by v; the
optimal objective value of the Problem (I.19). Ad-hoc methods to solve the Dual Master
problem (T.19) exist, see for example [82].

In line @ we consider the trial point 7w, = 7 + mw;. We compute ¢(mi11)
and its subgradient g;11 € 9¢(m+1). Then, in line we add the information
about the gradient and the linearization error of the new trial point to the bundle
Bir1 = B U (Gis1, Qpy1)-

If the condition in line[T2)is satisfied, we update the stabilization point (i.e. 7,41 =
m41), otherwise we keep it unchanged (711 = 7). Here m € [0, 1) is a hyper-
parameter. This condition is not simply ¢(7;41) > ¢(7) as, in some cases, it may
be beneficial to sufficiently improve the information contained in the bundle before
changing the stabilization point. The parameter m is typically chosen to be strictly
positive (even if relatively small) to ensure theoretical convergence properties.

A step in which the stabilization point is updated is called Serious Step (SS). Simi-
larly, a step in which the stabilization point is not changed is referred to as a Null Step
(NS). Making a SS, in a certain iteration, means a significant progress toward improving
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the solution, while a NS means no such progress was made. In a Serious Step, we need
to update the linearization errors «; of the elements ¢ in the bundle 5,1 (line .

In line [18] the stopping criterion is checked to decide whether to quit the loop and
stop the algorithm. A possible stopping criterion is

|Be| |B¢l
71 g+ it < emax(0, ¢(7e41))
=1 =1

At the end of one iteration, line @ the efficient implementations of the Bundle
delete some old component from 3. A common strategy is removing components that
are not used in the optimal solution over the last K iterations (a quite conservative
strategy takes K ~ 20). This is a part of the S—strategy, which determines how we
handle the size of the bundle. Other components can consider multiple trial points at
each iteration or fix a maximum size for the bundle.

Bundle as Compromise between Cutting Planes and Subgradient Interestingly,
the Bundle method can be interpreted as a combination of the Cutting Plane method
and the Subgradient method. For simplicity, we restrict to the case in which IT = R™.
The key observation is that when the step size is zero, the objective function in the Dual
Master problem (T.19) reduces to its linear part lﬁztl‘ a;0;. In this case, the algorithm
selects only the component with the smallest linearization error, which corresponds
to the stabilization point. As a result, the update follows the direction given by the
subgradient of ¢ at the stabilization point. Conversely, when 77 — oo, the quadratic
part provided by the norm in Problem (T.19) dominates, enforcing the constraints

2

szi’ll gib; — /\H = 0. By definition of norm, this implies Z‘fi’ll gif; > 0.These
2

inequalities can then be explicitly incorporated into the formulation, allowing the

removal of the quadratic term from the objective function. This reformulation leads to

the dual representation of the Cutting Plane method, namely the Column Generation
Master problem (1.9), seeing that in the Column Generation case 7; = 0.

Proximality Term 7-Strategy The n parameter controls the weight of the regular-
ization term, balancing between Cutting Plane and Subgradient method steps. The
proper selection of the proximal term 7, which controls the regularization term in the
Dual Master problem, is both non-trivial and essential. As illustrated in Figure (1.7} this
choice depends on the current stabilization point and the information accumulated in
the bundle up to the current iteration. In particular, on the right-hand side of Figure[I.7]
we observe that when all gradients at the optimum are available, solving a Cutting Plane
model is preferable, as it leads to the optimal solution of the problem. Hence, in this
case, a higher value of 1 may be preferred.

In [[84]], theoretical conditions are established for the n-strategy to ensure conver-
gence. Constant strategies can be effective if appropriately fine-tuned. Many state-of-
the-art strategies are self-adjusting rules for choosing 7;.

The main state-of-the-art n-strategies are composed of three levels, as the ones
developed in [83]] and also presented in [57]. These levels includes: Long-term, Middle-
term, and Short-term n-strategies.



20 CHAPTER 1. BACKGROUND ON LAGRANGIAN RELAXATION

Figure 1.7: A comparison of different quadratic approximations of the Bundle method’s
Master problem, using varying step sizes and gradient information. The key difference
between the two figures is that the one on the left includes less gradient information
than the one on the right.

The Long-term n-strategies aim to capture the stage of the resolution process. In the
Bundle method, this is important because it represents a balance between the Subgradient
method and the Cutting Plane method. In particular, we want to prioritize Subgradient
method iterations when the solution is still far from optimal, and shift towards Cutting
Plane in the final iterations. This approach helps collect the subgradient information
necessary to establish the optimality of the solution.

We define the value

v =l D0 gl P+ it

i€ By €[

where 8(" is the solution of the Dual Master problem at iteration t. The value v*
represents the maximum improvement estimation of the Dual Master problem. We also

define
* t * t
&= aib (| S 6 gl
1€ By 1€L:

where n* is a hyperparameter. The value €; estimates the maximum improvement
obtained using a variant of the Dual Master problem in which n* acts as a regularization
parameter. The hyperparameter n* is generally chosen to be greater than all the possible
7¢, thereby emulating the expected behavior by following more the decision of the
model. It is different from explicitly considering this parameter in the Dual Master
problem, as this would alter its solution and consequently the new trial direction, as
previously explained. Additionally, we define a hyperparameter m € [0, 1), which is
employed in the n-strategies and is usually fixed to 0.01.
Some examples of Long-term 7)-strategies are:

* no Long-term n-strategy;

* the soft Long-term n-strategy. After a null step, decreases in 7, are inhibited
whenever vy < mej. In other words, we inhibit the decrements are prevented if
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7 is already sufficiently small, such that the maximum improvement is estimated
to be less than 7 times the improvement suggested by a Cutting-Planes model.

e the hard Long-term n-strategy. Increases of 7, are allowed, even after null steps,
whenever v} < mej.

e the balancing Long-term n-strategy. This strategy aims to keep the two terms
n*l|% > ies Qgt)gi ||3 roughly the same size.

Increases of 7, after a serious step, are inhibited if

18|
|| Z 0 ngQ < mZozzG(t)
i€ B¢
In this case, increasing n; causes a reduction of L- || Diep, b (t) gi||3 which is

already small.

On the other hand, decreases in 7); are inhibited if

77

gl 30 gl 2 Zw“)
1€P¢

g(t)

The rational been that decreasing 7; causes an increase in || Y . gi||3 which

. . i€P:
is already big.

The Middle-term n-strategies are multi-step strategies that consider the outcomes
from the last few iterations. These strategies include the following conditions:

* A minimum number of consecutive successful steps (SS) with the same 7; must
be performed before 7, is allowed to increase.

* A minimum number of consecutive null steps (NS) with the same 7, must be
performed before 7, is allowed to decrease.

At the bottom, heuristic Short-term n-strategies only rely on information from the
current iteration to propose an update for 7;. Specifically, these heuristics are only used
to assist in selecting the current value, but both the top and the middle layers would
agree on the update. However, sometimes it can be beneficial to allow the Short-term
heuristics to do small adjustments in 1, regardless of the decisions made by the other
levels.

We present here four different examples of Short-term n-strategies that could be
considered in the same implementation:

* Increase Nt+1 aS NiNiners with Niner > 1.
* Decrease Nt+1 AS Nt—1Mdecr» with 0 < Ndecr < 1.

* When increased, 7,1 should not exceed 1,7, with 5, > 0.
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* When decreased, 7:41 should not go below 7,,,, with 0 < n,,, < nar.

Some more elaborate Short-term n—strategies are possible. The first three are based
on a quadratic interpolation of the function based on known data, while the fourth is the
so-called reversal form of the poor man’s quasi-Newton update.

* The first approach approximating the restriction of ¢(-) along nw*(t) with a
quadratic function ¢(-) satisfying ¢(0) = ¢(7:), q(n:) = ¢(m:) and having
¢’ (0) = v{. This leads to the following updating rule:

*
NtV

2(v; = (¢(me) — d(mi-1)))

Me+1 <

« Another strategy rather fixes ¢’ (t) = 1;(w®) T g; leading to the update rule:

o + () — ¢(7_"t71)).

QOét

M+1 <

This has the property that 7,1 > 7, if and only if (w®))T g, > 0

* The third possibility maximizes the piecewise linear function constructed from
the two linearizations: one at 0 and the other obtained by restricting to 7w ).
This results in:

ay — 0
Me+1 v — 1 (w®)Tg,

» The fourth approach is known as the reversal form of the poor man’s quasi-
Newton update, whose nontrivial rationale is discussed in detail in [156]. Another
variant of this approach is also presented in [213]]. The proposed update in this
case is:

(g, u)

llall3

N1 <

|
where u = (71, — q' z*) — 7, + 1,9 = nw® + g and q = gyy1 — 2%, with
z* being an arbitrary choice. Often z* is supposed to be the best (approximate)
subgradient we have at 7r;. In practice, z* is typically chosen as g;, leading to

q = gt+1 — Gt-

Aggregated and Disaggregated Bundle The Bundle method can be further special-
ized to better handle the case where the function ¢ can be rewritten as the sum of
functions, as

d(m) = ¢;(m),

jeJ

where ¢; : R™ — R are concave functions. An example of this setting is the Lagrangian
relaxation with block decomposition, as discussed in Section[I.1.2]
In this case, the Master problem can be reformulated in a specialized manner as:
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2
Bt Bt
T T
%1’1}1\15 Z , gmﬂjﬂ- + A + Z Z ajviaj,i + Ty A (121)
jeJ i=1 2 jeJ 1=1
| B
sty 05i=1, VjeJ (1.22)
=1
| B¢
Tt | DY giibii+A| >0 (1.23)
jed i=1
1>60;;,>0 (1.24)
A>0 (1.25)

(1.26)

in which we consider separate subgradients and linearization errors for each function
bi.

This variant is known as the Disaggregated Bundle method, in contrast to the Ag-
gregated Bundle method, presented so far, where the explicit decomposition of ¢ is not
considered in the Dual Master problem. A comparison between the Aggregated and Dis-
aggregated Bundle method can be found in [57], in the context of the Multicommodity
Capacitated Fixed Charge Network Design problem.

Trust Region Bundle Another variant of the Bundle method involves incorporating
the quadratic regularization term as an additional constraint:

B¢
1> gib; + AllZ, < 2.

i=1

in the Dual Master problem, rather than including it as regularization in the objective
function.

This approach defines a family of Bundles known as Proximal Bundle method, in
contrast to the variant presented so far, referred to as Proximal Bundle method. In [84]],
Frangioni demonstrates that Proximal and Trust Region Bundles can be unified within
the same framework, differing only in the choice of regularization term.

Comparison of Bundle Methods - for Lagrangian Relaxations The Subgradient
methodhas already been applied to solve the Lagrangian Dual [110] and specialized
variants, as the Volume algorithm [17], has been proposed. In [86], Frangioni et al.
compare different Subgradient methods and Bundle methods, which differ in their
step-size rule, for the Subgradient methods, and the Master problem formulation, for
the Bundle methods. They examine different step-size rules for the Subgradient method
and various structures of the Master problem in the Bundle method. For small-scale
instances, all cuts can be included in an LP formulation, which state-of-the-art LP solvers
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can solve. In such cases, directly using an LP solver like CPLEX is preferable, whereas
decomposition approaches become more competitive as problem size increases. The
Bundle method with a complex Master problem is often the best option, providing high-
quality dual and accurate primal solutions with only a minor increase in computational
effort. However, as the problem size grows, solving the Master problem becomes
increasingly expensive, necessitating the use of more efficient, less costly Master
problem formulations.

In general, for nearly all tested cases, the Subgradient method with the TVColor step-
size rule [86] outperforms the aggregated Master problem with quadratic stabilization
while achieving a similar level of accuracy. Notably, while the Subgradient method
didn’t always achieve the required accuracy, the Aggregated Bundle method consistently
did. This confirms what was already experimentally found in [36], which showed that
aggregated Bundle methods do not necessarily exhibit faster convergence rates than
well-tuned Subgradient methods, despite incorporating substantially more information
and paying the corresponding computational cost in solving the Master problem. In
[36], these approaches are also compared with classic Column Generation approaches.

In [87]], Frangioni et al. propose a simple rule for dynamically adjusting the crucial
smoothness parameter in the fast gradient approach. This rule leverages information
about the optimal dynamic smoothness parameter to enhance the practical convergence
properties of the method.



Chapter 2

Background on Machine
Learning

Machine learning (ML) is a domain of computer science that develops and studies
statistical algorithms capable of learning to approximate underlying properties of data
and generalizing to unseen data. Neural networks [105] (NN) have gained increasing
relevance in recent years due to the universal approximation theorems [59, [116]], which
state that, for each continuous function and each given accuracy, it is possible to
construct a neural network that approximates the considered function up to the desired
accuracy.

This chapter introduces the ML paradigms and models that will be used throughout
this thesis. We focus exclusively on machine learning techniques here. Hence, readers
already familiar with these concepts may choose to skip this chapter. For a broader
literature review of machine learning methods as applied to the field of Optimization,
we refer the reader to Chapter |3} which provides the necessary context for the main
contributions of this work within this large research domain.

2.1 Learning Tasks

The theoretical foundations for constructing prediction functions with strong gener-
alization properties for supervised learning tasks are rooted in the area of statistical
learning [246]]. In this chapter, we will use the following definitions and notations.

We consider a certain input set X', generally we have a limited amount of samples
{x;}5_, C X drawn independently from a certain unknown probability P. We assume
that we can associate at each point * € X one point in the output space y € ).
The points in the output space can be seen as outputs of a certain unknown function
f X — ), butin some cases, it is better to say that they are drawn from an unknown
conditional probability, given the input, i.e., y ~ P(-|x). Hence we dispose of a limited
amount of pairs {(z;,y;)}7_, € X x Y, called a dataset.

25
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2.1.1 Supervised Learning

Supervised learning is an ML paradigm where, given a dataset {(x;, y;)}7_,, the aim

is to determine the parameters W € W of a model fw such that the model’s output
Ui = fw (x;) will be similar to the true output y;. The parameters W of the model are
typically the solution of a particular optimization problem, called the training problem.

The similarity is in general described using a loss function £ :' Y x )Y — R that
measures the difference of the prediction §; = fw (x;) to the true output y; = f(x;).
For an introduction to probabilistic machine learning, we refer to [188,[171]].

Many supervised learning tasks can be formulated as the problem of finding the
parameters W that minimize the expected loss value:

W* e argvéninIE(m,y)Np[E(fW(a:Ly)]. 2.1)

In practice, since the underlying distribution P is unknown, we instead optimize the
empirical expectation over a dataset composed of independent and identically distributed
(i.i.d.) samples:

5
W* e argvgnn g ; L(fw(x:),y:) (2.2)

Once we have found the model’s optimal parameters W*, another fundamental
problem in ML is the inference problem. That is the problem of computing the value
y = fw~ () for some previously unseen data .

Stochastic Gradient Descent

The problem introduced in Equation (2.2) is a peculiar optimization problem, as it
involves minimizing a non-convex objective function in a high-dimensional space.

Approximating optimal parameters W* is typically achieved with Gradient-based
method, similar to those presented in Section[I.3|of Chapter[I] Among these, Adam [134]
is an established standard in ML.

A key challenge in solving non-convex problems with Gradient-based methods is
the risk of getting trapped in a local minimum that is far from the global minimum.
Adam addresses this issue by computing a new trial direction as a convex combination
of the current gradient and the previous trial direction.

Furthermore, problems of the form have a distinctive objective function struc-
ture, composed of the mean of S evaluations of the loss function at different points
of the training dataset. This characteristic implies that executing a single step of the
classic Gradient method requires computing S different function evaluations with their
corresponding subgradients. Specifically, one iteration can be expressed as:

S
Wiss = W, + % ;awafwt(wi),yi),

where 7, is the step size at iteration ¢, see Section [I.3|for more details.
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The stochastic Gradient method offers faster iterations by considering each sample
individually in the training set. This variant suggests performing S steps for i =
1,---,.5 as follows:

Wit =W+ %3W£(fwf, (x4),yi)

This variant allows faster iterations, but this comes at the cost of slower convergence, as
it is more unstable.

It is also possible to strike a balance between the two approaches by considering
the batched version, which involves fixing a batch size Bg and partitioning the set
{1,2,---,S} into subsets of size Bg (with eventually one smaller set if Bg does not
divide the size of S). In all the cases where we aim to solve the Problem (2.1)), using a
Gradient method to compute a step, we need the gradient Ow E (5, )~ [L(fw, (), y)].
However, this is impossible to compute directly since the probability distribution P
is unknown. Therefore, we want to approximate it using the estimator provided by
some samples (x;,y;) ~ P obtained using that probability. Rather than considering all
the samples in the dataset, we can use only a subset {(x;, y;) }:cB4. This gives us the
following approximation of the true gradient:

|Bs|
1
@ Z ow L(fw,(x:),y:)
i=1

and so we can use this direction to perform a step. When Bg = S, this corresponds to
the classic Gradient method, while taking Bg = 1, we see the stochastic version of the
Gradient method as previously discussed in this subsection.

The bias of our estimator is defined as the difference between the frue quantity and
the estimation:

|Bs|
1
E:y~P | E@y~p [OwL(fw, (%), y)] — Bs| Z Ow L(fw, (%), yi)
=1

An estimator is said to be unbiased if its bias is zero. In our case, obtaining an
unbiased estimation may require an infinitely large number of samples. However, in
practice, we typically only have access to a finite dataset, which limits our ability to
generate additional samples. Consequently, even when using all available samples in the
dataset at each iteration, we may still encounter a biased estimator, as new, previously
unseen samples could appear.

Backpropagation The gradient Ow L( fw, (x;), y;) is typically computed using Au-
tomatic Differentiation (AD) techniques [20]. Backpropagation is an efficient way
to compute the gradient of the loss with respect to the model parameters, and it is
the most used AD technique for training neural networks. Backpropagation has been
independently reinvented several times [102], but it essentially consists of applying the
Leibniz chain rule [48]] to NN. The Leibniz chain rule states that, given f : X — Y



28 CHAPTER 2. BACKGROUND ON MACHINE LEARNING

and g : Y — Z differentiable functions, we can compute the gradient of the composed
function h = go f forallx € X as

h(x) = (g"o f)(=) - f'(z).

In machine learning, this rule is used for differentiating the loss with respect to the
model’s predictions and the neural network with respect to its parameters. Applying that
rule, we can compute the gradient of the loss with respect to the model parameters as:

Ow L(fw, (xi), yi) = O L(fw, (i), yi) - Ow fw, (i),

where 0y L denotes the gradient of the loss with respect to the prediction of the model.
Similarly, to differentiate through the layers of a neural network (i.e., computing
Ow fw,), we still apply this rule, seeing the network as the composition of the functions
that define each layer, which are sequentially applied. For more details on backpropaga-
tion and automatic differentiation, we refer to [98]].

2.1.2 Empirical risk optimization

Energy-Based Models (EBMs) [151] capture dependencies between input/output vari-
ables by assigning scalar energy to each configuration of the variables. The EBM
approach offers a unified theoretical framework for various learning models, including
traditional discriminative [259] and generative approaches [183], graph-transformer net-
works [279]], conditional random fields [235]], maximum margin Markov networks [242],
and manifold learning methods [[122} [168]]. In contrast to probabilistic models, which
require proper normalization (often involving computationally challenging integrals
over all possible configurations of variables), EBMs do not face this constraint.

We are interested in energy models such as those presented in [[71]. In this model
type, the optimal prediction can be expressed as the minimum of a convex function
given the dataset’s sample. More precisely, given an input x € X and the associated
label y € ), the model is expressed as:

y*(x; W) = argmin E(y, z; W).
Yy

Domke [71] also presents a method for differentiating a generic loss that depends
on both the prediction y*(x; W) and the true label y. In this setting, different types
of losses are considered. The differentiation becomes simpler in particular cases. For
a dataset {(x;,y;)}: the easier and more straightforward possibility is the energy loss
defined as:

E(y;,zi; W).

However, this loss function is not ideal for training most architectures. Although it
effectively reduces the energy of the correct output, it does not increase the energy for
other possible outputs. This can lead to a collapsed solution where the energy becomes
uniformly zero. The energy loss is effective only for architectures specifically designed
so that lowering E(y;, ;; W) inherently raises the energies of alternative outputs.
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=00

Figure 2.1: Perceptron. It receives as input k inputs 1, 2, - - - , T, it computes a linear
combination of those considering the weights {w; },]7?:1 (plus the bias contribution), and
finally provides an output y = o (Z?Zl w;T; + b) that consists of the application of
an activation function o to that linear combination.

Another, well-known, loss function in this domain is the perceptron loss defined as:

E(y;,x;; W) —min E(y, z; W).
yey

Further loss functions for solving energy-based learning problems are discussed in
[L51].

2.2 Learning Models

This section aims to provide formal definitions of the machine learning models employed
in this Thesis. These models are widely recognized in the machine learning community,
and for a more comprehensive overview, the reader is referred to [10S]].

2.2.1 Feed-Forward Neural Networks

Perceptron The key component of this architecture is the perceptron, illustrated in
Figure[2.1] It consists of the composition of a linear function and a (non-linear) function
o : R — I CR, called activation function [[16]. Commonly used activation functions
include: the rectified linear unit (ReLU) [107]], the softplus [282], the hyperbolic tangent,
and the sigmoid function. Figure 2.2 provides a visual comparison of these functions.
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ReLU(x) softplus(x)

I/ x

tanh(z) sigmoid(x)

——/ z

x

Figure 2.2: Four activation functions: ReLU (top-left), softplus (top-right), tanh (bottom-
left), and the sigmoid (bottom-right).

Given an input x € X C R", the output of a single perceptron is given by:

h
Y= U(Z w;T; + b)a
j=1

where w; for j = 1,--- , h and b are the parameters of the network. The parameters w
are called the weights, while b is called the bias. The bias is a special weight associated
with the constant entry 1.

Multi-Layer Perceptron The Multi-Layer Perceptron (MLP), also known as a Feed-
Forward Neural Network (FFNN), is the fundamental architecture in ML, often consid-
ered the simplest and one of the earliest models. The defining characteristic of the MLP
is the one-way flow of information between its layers. Specifically, information in the
model flows in a single direction: from the input nodes, through the hidden layers, to
the output nodes, without any cycles or loops. This is in contrast to Recurrent Neural
Networks, which feature a bidirectional flow of information, allowing data to cycle back
through the network.

The Multi-Layer Perceptron, as used today, has a long history. The formal descrip-
tion of a layered network of perceptrons was first introduced in a psychology journal
[215]. At that time, it was not yet explicitly thought to be trained, but rather it was
presented just as a random probabilistic model to describe some cerebral functions.
Some years later, the perceptron is combined into a more elaborate architecture to
create a FFNN. In 1965, Ivakhnenko and Lapa [121]] published the first deep-learning
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feedforward network. However, this network had not yet employed stochastic gradient
descent for training. In 1967, Amari [6] presented the first FFNN that was trained,
demonstrating its ability to classify non-linearly separable classes.

One of the reasons for the increasing interest in neural networks lies in the Universal
approximation theorems [58, [I16]. These theorems state that, for any function f
in a specific function space and a specific family of neural networks, there exists a
sequence of neural networks from that family that converges to f according to a certain
criterion. This means that the family of neural networks is dense in the function
space. One of the most well-known versions states that feedforward networks with non-
polynomial activation functions are dense in the space of continuous functions between
two Euclidean spaces, under the compact convergence topology. Therefore, a sufficiently
large MLP can approximate every continuous function between two Euclidean spaces,
with a desired degree of accuracy.

These results are existence results, meaning they guarantee the existence of such a
sequence but do not provide a method for finding it, nor do they assure that gradient
descent with backpropagation will converge to the same limit. More recently, various
studies have explored the convergence of gradient descent used to train neural networks,
leveraging tools from probability and physics, such as mean-field theory [179].

In general terms, an MLP consists of L hidden layers, each composed of n; percep-
trons. Considering fully connected layers, i.e., connections between all the nodes of a
certain layer (including the bias node) with its next layer, it is iteratively defined by:

RO — 4
hrY = Ul(VVl_lh(l_l) +b) forl=1,---,L
y=or41(Wrh® +by)

where, for [ = 0,1,--- L, W; € R™*™-1 and b; € R™ are the parameters of the
network and o; are activation functions applied in parallel all along the components of
the input vector. Each fully connected layer of a Multi-Layer Perceptron is also referred
to as a Dense layer.

Figure [2.3|illustrates an example of a Multi-Layer Perceptron that receives an input
vector x of size 2, sequentially elaborates it in two hidden layers, respectively composed
of 4 perceptrons and 2 perceptrons, and provides an output of size 1.

2.2.2 Encoder-Decoder Models

Encoder-decoder models are employed when the architecture needs to handle inputs
and outputs that may have different lengths. A first architecture g4, with parameters ¢,
learns a hidden representation z from the input data x. This hidden representation is
designed to describe the input data in such a way that it can be directly provided to the
decoder to generate outputs of the correct size. Then the decoder architecture fy, with
parameters 6, computes the output y from the hidden representation z. The structure is
schematically represented in Figure[2.4]

A special case of the encoder-decoder model is the auto-encoder [145] [144] [16]].
Auto-encoders are neural networks designed to encode input into a compressed and
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Figure 2.3: Example of Multi-Layer Perceptron. It receives as input a vector x of size
2, elaborating it in two hidden layers respectively composed of 4 perceptrons and 2
perceptrons, to provide an output of size 1. The output layer and each hidden layer have
a constant input, also called bias.
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Figure 2.4: Encoder-decoder architecture.

¢b

o8 -®

fo

—O)—=—G

Figure 2.5: Variational encoder-decoder architecture, with probabilistic encoder. We
denote by ~ the operation of sampling one element z from the probability distribution
p-

meaningful representation and then decode it back to resemble the original input as
closely as possible. This architecture is first trained to reconstruct the representation.
Subsequently, the encoder acts as an automatic feature extractor, with its parameters
fixed, as it can then be used for other tasks by replacing the decoder with a new learnable
architecture. The advantage of the automatic feature extraction of the encoder is that the
encoder is sufficiently expressive to reconstruct the original data from it.

A particular type of auto-encoder is the variational auto-encoder, in which the
encoder learns a probability distribution to sample the hidden representation rather
than directly learning the hidden representation [[136] 204]. Figure [2.5] schematically
illustrates probabilistic encoder-decoders. This framework leads to variational auto-
encoders when the output y is equal to the input x.

In encoder-decoder architectures, the structure of the encoder can vary depending
on the type of data being processed. For example, it can be an LSTM for sequence-
structured data [[L61]], Convolutional networks for images [[182]], or GNN for graphs [283]
129].

2.2.3 Graph Neural Networks

Graph Neural Networks are ML architectures designed to handle datasets naturally
represented by an inherent graph structure. These networks are useful for datasets where
each sample is represented by a different graph, as well as for datasets sharing a common
graph structure, such as inferring predictions on the nodes of a graph. For example,
this could involve predicting outcomes for users in a social network, where users are
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represented as nodes, or making predictions about molecules, represented as graphs
where atoms are nodes and bonds are edges [125]. Bronstein et al. [37] provide a first
review of Graph Neural Networks and, more generally, the models for non-Euclidean
domains, mainly focusing on Graph Convolutional Neural Networks. Today, a wide
range of different Graph Neural Networks exists. In this section we focus on Graph
Convolutional Neural Networks. The reader is referred to Wu et al. [265]] for GNNs not
based on convolution.

Graph Convolutional Neural Networks can be seen as a generalization of Convo-
lutional Neural Networks in which we substitute the grid with a general graph. Let
G = (V, E) be a graph defined by its vertices V' = {v1,--- ,v}y|} and edges £. We
consider G an undirected graph, but Graph Neural Networks can also be used in directed
graphs with minor adjustments. In the rest of this section, we will suppose that £ also
contains the self-loops, that is arcs that connect each vertex to itself. Although not
mandatory, adding self-loops is a common practice in GNNs as it helps avoid losing the
local information associated with the vertex during message passing.

Definition 2.2.1. We denote by A € R!VI*IVI the adjacency matrix of the graph, that
is the matrix with components

A — 1 if(’Ui,Uj)EE
710 otherwhise

This matrix represents the connectivity between the nodes in the graph.

Definition 2.2.2. We denote by D € R!V!*IVI the degree matrix of the graph, that s,
the diagonal matrix with diagonal entries

D;; = deg(v;) = Z 1 -4y,
(j1,j2)€E

Let be Hy € RIVI*% the input features matrix, where each row corresponds to
the feature vector of a node. We denote by {di}iL:Ol the dimensions of the nodes
representation at each layer, where d is the dimension of input nodes representations
and dy, the one of the output representation. Similarly, H; € RIVI*% is the matrix of
node representation at the end of the layer /. The Graph Convolutional Layers can be
expressed as:

Hyw=o0 (D_%AD_%HIVVI) Vi=0,---,L

where W; € R%* 41 is a matrix of trainable parameters and o is a non-linear activation
function applied element-wise to the matrix. The multiplication with the adjacency
matrix allows sharing the information of the neighborhood, while the two matrices
multiplication, with the squared inverse of the degree matrix, are used to normalize the
received information related to the number of neighbors, preventing nodes with many
neighbors from dominating the message passing.

In the case of a directed graph, the degree matrices are substituted with the input and
output degree matrices, which are defined similarly but for the incoming and outgoing
edges.



2.2. LEARNING MODELS 35

© 9 ¢
Loy -G

5L

Figure 2.6: RNN general architecture (on the left) and unfolded representation (on the
right).

A more general formulation for Graph Neural Networks uses the Message Passing

Layer [96], where the feature hq(f ) associated with the node u at layer [ is still updated
based on messages from its neighbors:

h(l+1 ( w @ w h(l )

VEN,

where €P is a permutation invariant aggregation operator (such as the sum, the mean, or
the max) and N, is the set of neighbors of the node u, i.e., all the other nodes for which
exists an edge from the former and u. The functions ¢ and ¢ are two differentiable
functions, which may include activation functions or more advanced neural networks
with their trainable parameters.

2.2.4 Recurrent Models

Recurrent Neural Networks [278]] (RNN5s) are a class of learning architectures commonly
used for processing data with a sequential structure, such as time series, text, audio, and
video.

At each time step ¢, given an input x; and the previous hidden state h;_1, the output
y, of a Sigma Recurrent cell can be written as

ht = J(Whht,1 + wat + b)
Yt = U/(ht)7

where W), and W, denote the weights of the network, b its bias, and o and ¢’ are activa-
tion functions, which may differ. A major limitation of such simple RNN architectures
is their inability to capture long-term dependencies, due to vanishing and exploding
gradients. Gradient Clipping techniques [28,|100] can be considered to avoid gradients
blowing up. While vanishing gradients are avoided by introducing gates.

Gates in RNNs control how information flows through the cells. They act as filters.
They act as filters, deciding which parts of the information from the past are relevant
and should be retained for future steps, which to discard, and which new information to
incorporate.
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Figure 2.7: LSTM without forget gate.

In the next paragraph, we will focus on one type of RNNs addressing this problem
and used in Chapter[5} the Long Short Term Memory (LSTM) [230. [114]]. We emphasize
the fact that Gated Recurrent Units [52,150,[51]] (GRU) provide an efficient alternative
to LSTMs, as they generally reduce complexity while maintaining performance.

Long Short Term Memory LSTM networks were introduced to address the limita-
tions of standard RNNs, particularly their inability to capture long-term dependencies
due to the vanishing gradient problem. A common LSTM unit consists of a cell state,
an input gate, an output gate, and an optional forget gate. An LSTM without forget gate
is represented in Figure The input gate receives as input the data x; at time ¢, the
current hidden state h;_1, and the current context c;_;. It updates the cell state as

Ct = Cci_1 + 144Gy (2.3)
where

iy =0 (Winhi—1 + Wiz, + b;)
ét = tanh (W/ihht—l =+ mef + b7)
are computed considering two separate dense layers with different activation functions.

The output gate processes the input x;, the current hidden state h;_;, and the context
¢, provided by the input gate to determine the next hidden state as:

h; = o;tanh(cy)

where
Oy =0 (Wohht—l + Wozwt + bo) .
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Figure 2.8: LSTM with forget gate.

LSTM with forget gate Forget gates [95] improve the original LSTM by allowing it
to discard outdated information. It receives as input the data x; at time ¢ and the current
hidden state h;_; and it computes a forget rate f; as

fi=0Wpnhi—1 + Wiy + by).
This factor is then used to compute the new cell state, instead of (2.3) as
¢t = fr-cio1+ 1

Hence, when the value of a certain component of f; is equal to 1, we keep the informa-
tion, and when it is 0, we forget it.

2.3 Other Layers

This section provides technical details on other layers we use to define our architecture in
Chapter [d These layers help mitigate technical challenges such as vanishing gradients,
exploding gradients, and overfitting when training large deep neural networks.

2.3.1 Residual Connections

Residual Connections [[L08]] are a deep learning layer used in multi-layer neural network
models to avoid vanishing gradient problems. Let H : R” — R”" be a function encoding
a set of layers in the network with input = € R”. Applying the residual connections to
this sub-network means considering as output:

x+ H(x)
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Note that « and H (x) should have the same dimension.

This operation can be interpreted not only as a connection within the network, but
also as a layer that applies both the identity and the function H in parallel to the input
x, summing the two outputs. The sum is a common approach, but other operations,
such as the mean, maximum, and minimum, can also be considered.

2.3.2 DropOut Layers

DropOut Layers [252] are a regularization technique in neural networks used to prevent
overfitting [233]]. Overfitting occurs when a network becomes overspecialized to fit the
data in the training set, leadingto poor generalization to unseen data. Dropout layers
mitigate this issue by randomly setting a fraction of the input components to zero with a
probability determined as a hyperparameter.

2.3.3 Layer Normalization

Training state-of-the-art deep neural networks is computationally expensive. One way to
decrease training time is to normalize neuron activities, which significantly accelerates
the convergence during the training process in FFNNs [11]. Layer normalization
computes the mean and variance for normalization from all summed inputs to the
neurons in a layer for a single training case. This technique is highly effective at
stabilizing the hidden state dynamics.

Given an input x € R", we compute the statistics as:

All hidden units in the same layer share the computed normalization terms p and o,
but different training cases have distinct normalization values. The normalized output
y € R", of the same dimension as the input, is given by:

1
Yi = ;(%‘ — -
Many variants introduce a learnable weight g; and a bias b; for each input to apply after
the normalization, leading to the output:

i
yj = (w; — ) + b

2.3.4 Softmax

In certain cases, by leveraging the Karush-Kuhn-Tucker (KKT) conditions, discussed in
Chapter[I] we can derive an explicit formulation of the solution as a function of problem
parameters, allowing for direct differentiation with respect to these parameters. One
well-known example is the softmax function [98| pp. 180-184]. Other examples will be
presented in Chapter
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Let A, = {6 € R |(1,6) = 1} denote the unit simplex in R”. Consider the
optimization problem:

ax (v, 0). 2.4

To obtain a differentiable approximation of the solution to (2.4), we introduce a
log-entropy regularization term H(6) = —(0,log(0)), modifying the objective function
as follows:

max (o, 0) + BH(0). (2.5)

6cA,
The corresponding Lagrangian function is:

L(0,\ p) = (,0) + SH(0) + M((1,0) — 1) — (1, 0)

Since the Slater condition is satisfied, the KKT conditions are both necessary and
sufficient for optimality. Let (6*, \*, u*) be the optimal solution of the problem with
the associated Lagrangian multipliers for the simplex constraints and the slack variable
for the non-negative solution. The KKT conditions for the Problem yield:

a—flog(6) —p” — (6+A")1 =0
A((1,60%) —1)=0
0 p; =0 Vi=1,---,n
From the first condition, we derive:
a =N =B —p
B
Since 0* is strictly positive, we obtain p; = 0 for all the components due to the
slackness conditions.

Furthermore, A* should be non-zero. Otherwise, the simplex constraints are not
respected. Substituting 8* in the second condition, we obtain:

e )y
j=1 b

07 = exp( ). (2.6)

leading to:
A = Slog Zexp(—J) - 8.
Jj=1 2
Using this equality in Equation2.6| we obtain:
b exp( )
Y en(%)

Thus, we derive an analytical formulation of the optimal solution 6* as a function

of the problem parameters o, enabling the differentiation:

0o, 07 = 05(0i 5 — 67).
where d; ; is the Kronecker delta that is equal to one if ¢ = j and zero otherwise. This

formulation facilitates integration within machine learning frameworks that employ
automatic differentiation techniques.
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Chapter 3

Machine Learning for
Optimization

In Chapter|[T] we discussed the fundamentals of Optimization, while Chapter [2| provided
an overview of machine learning techniques and architectures used in this thesis. In
this chapter, we present a literature review focused on the intersection of these two
fields, specifically exploring the applications of machine learning in Optimization.
This analysis provides context and facilitates a better understanding of the results
presented in Chapter ] and Chapter[5] The reverse perspective, namely the application
of Optimization techniques in machine learning, is beyond the scope of this thesis. For
readers interested in this topic, we refer to [232].

Many recent studies have leveraged machine learning to tackle Combinatorial
Optimization problems. Various machine learning techniques, including supervised, un-
supervised, and reinforcement learning, have been successfully applied to optimization
tasks. In their survey, Lodi et al. [27] classify the applications of ML in optimization
into three main approaches.

The first involves employing automated methods to search for the most appropri-
ate parameter configuration for a parametrized algorithm (or to select an algorithm
from a specific algorithmic family) to enhance performance. This application falls
outside the scope of this survey. For readers interested in this topic, we refer to the sur-
veys [223,[120]. Some other surveys exist on particular sub-domains of the Algorithm
Configuration problem (ACP), such as Algorithm Selection [143,(130], Hyperparameter
Optimization problem [T7], specifically applied to machine learning hyper-parameter
selection 270, 277 or jointly algorithm selection and hyper-parameters optimization
for machine learning [[169, 227|119} 284]].

A second family of approaches consists of directly predicting a solution to an
optimization problem. This approach, referred to as End-to-End Learning, aims to
replace traditional solvers with machine learning models. However, this approach
typically generates heuristic solutions, as even predicting feasible solutions remains
challenging, especially with complex constraints.

Finally, machine learning can be used alongside optimization algorithms to improve

41
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performance. For example, ML can choose the variable to branch on or the node to
process inside a Branch and Bound (B&B) algorithm. ML alongside optimization may,
in some cases, overlap with ACP, when decision-making is reduced to hyperparam-
eter tuning. However, a key distinction regards the timing of these decisions. Most
Algorithm Configuration approaches lead to choosing the parameters before solving
the optimization problem, and they choose configurations as preprocessing, before
running an algorithm. Instead, machine learning alongside optimization also works
in an iterative context in which an optimization problem should be repeatedly solved
during the resolution process. When configuration is performed online, i.e., during the
algorithm’s execution, the machine learning component is typically simple and more
aligned with Reactive Search [19] or Bayesian Networks [201].

The next sections are structured as follows. Following the categorization intro-
duced above, Section [3.1]|discusses machine learning techniques alongside Optimization
solvers, while Section [3.2] discusses End-to-End Learning. In particular, Section [3.1]
focuses on machine learning for decomposition techniques, emphasizing Lagrangian
relaxation, which is a key topic in this thesis and a case of application of all the contri-
butions of this thesis. Thus, this section offers a valuable tool for contextualizing the
approaches presented in Chapter 4] and Chapter [5] within the broader research that aims
to use machine learning alongside Optimization Techniques, with a particular focus on
decomposition techniques. At the same time, the approach presented in Chapters @ and
[5] aims to directly predict vectors of Lagrangian multipliers in an end-to-end fashion,
aligning it more closely with the methodologies discussed in Section in terms of
framework structure. Therefore, this section serves as a valuable reference point for un-
derstanding and positioning our methods within the broader spectrum of learning-based
solution strategies.

3.1 Machine Learning Alongside Optimization Solvers

Optimization solvers play a critical role in solving complex combinatorial problems, and
machine learning (ML) has emerged as a powerful tool to enhance their efficiency. Tra-
ditional optimization methods rely on predefined heuristics and rule-based approaches,
which often require significant expert tuning and may not generalize well across dif-
ferent problem instances. ML techniques can address these limitations by learning
patterns from data, automating key decision-making steps, and improving overall solver
performance.

In the next sections, we provide further details on how ML can be integrated with
optimization techniques. Section [3.1.1]focuses on machine learning inside Branch &
Bound (B&B), a fundamental algorithm for the exact solution of MILPs. Section
then examines decomposition techniques, which are closely related to the contributions
of this thesis. Finally, Section [3.1.3| provides further details on Lagrangian relaxation,
as it is the setting of the approach presented in Chapter 4] and represents a potential
application for the approaches presented in Chapter 3}
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3.1.1 Machine Learning for Branch and Bound

B&B is a widely used method for solving combinatorial optimization problems, particu-
larly MILPs. Since this algorithm is not central to the main results of this thesis, we do
not describe this algorithm in detail, and we refer the reader to [262]. At a high level,
B&B explores a tree of potential solutions by systematically branching on decision
variables and pruning unpromising subproblems.

ML has been successfully applied to various components of optimization solvers,
with notable contributions in Branch and Bound (B&B) and Cutting Plane method. In
this area, ML has been used to enhance variable selection, node exploration, use of
heuristics during the execution, and cut generation. These applications have received
significant attention in the literature due to their fundamental role in Mixed-Integer
Linear Programming (MILP) and other combinatorial optimization problems.

Variable selection determines which variable to branch on when splitting a node. A
key heuristic for this task is Strong Branching, which evaluates multiple variable choices
and selects the one leading to the best-bound improvement. Node selection determines
which node to explore next in the search tree. Cut selection refers to the process of
choosing which cutting planes (or cuts) to add to the current relaxation of an Integer
Linear Program. Cutting planes are additional constraints respected by all the feasible
integer solutions of the node and help eliminate fractional solutions from the relaxation.

Variable Selection, Node Selection and Heuristics in B&B ML techniques have
been developed to improve each of these aspects. For Variable Selection, strong branch-
ing is computationally expensive. ML models, including supervised learning and
reinforcement learning, have been used to predict strong branching scores, significantly
reducing computational costs [4,[131} 90, 280]]. In particular, Gasse et al. [90] present a
bipartite graph representation of an optimization instance, which is also largely used to
provide it as input to a neural network, and it will be presented in detail in Section[4.1.2]
of Chapter[d] Similarly, node selection has a crucial impact on solver efficiency. ML
models, such as Graph Neural Networks (GNNs), have been used to learn node selection
policies that minimize tree size and solve problems faster [148|[212]. ML has also been
applied to decide when and how to perform heuristics [132}49]] to improve performance
without increasing computational costs and to predict partial solutions early in the
search, allowing solvers to focus on promising regions of the search space [189}275]].
These advances demonstrate that ML can make B&B solvers significantly more efficient,
leading to faster solutions for large-scale combinatorial optimization problems.

ML for Cutting Planes Cutting Plane methods, presented in Chapter[I] are essential
for tightening relaxations in MILPs and improving MILP solvers’ convergence. The
effectiveness depends largely on which cuts to generate and which to keep. ML has been
leveraged in several ways: to predict the impact of a given cut on solver performance
to select the most effective cuts [[15, 167, [118]], to learn policies for selecting Gomory
cuts [240] improving solver efficiency compared to traditional heuristics, to order
candidate cuts based on their expected contribution to improve the bound [258]], and to
adjust cutting plane strategies dynamically based on problem characteristics [30].
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Further Applications Beyond B&B and cutting planes, ML has been applied to
several aspects of optimization solvers, including: Algorithm Configuration and Tuning,
where the goal is to automate the selection of solver parameters for MILPs and heuristics
[L19}1270]], Constraint Propagation in Constraint Programming solvers [93, 208, (142}
164].

In the next sections, we delve deeper into ML for decomposition techniques and La-
grangian relaxation, which are crucial for large-scale optimization and directly relevant
to the contributions of this thesis.

3.1.2 Machine Learning in Decomposition Techniques

Mathematical programming formulations for solving MILPs often involve many con-
straints or variables, making direct solution approaches impractical. When the number of
constraints and variables exceeds what standard methods like the Simplex algorithm can
efficiently handle, decomposition techniques become necessary. However, selecting an
appropriate decomposition strategy is itself a challenging task, as different formulations
can lead to widely varying computational performance.

Reformulation and Automated Decomposition Kruber et al. [147] propose a su-
pervised learning approach to determine when reformulation is beneficial and which
decomposition technique is most suitable among multiple options.

Machine learning has been explored to guide and automate decomposition strategies.
Basso et al. [18]] use data-driven techniques to develop automatic decomposition
methods by analyzing static properties of MIP instances and their connection to effective
decomposition structures. Their results indicate that supervised learning can reveal
valuable patterns that assist in selecting decomposition strategies.

Benders’ Decomposition Benders’ Decomposition [24] is an optimization technique
for large-scale mathematical programming problems with a block structure. Compli-
cating variables are isolated in a Master problem, while subproblems, often defined
per scenario, are solved independently. The algorithm proceeds iteratively, generating
feasibility or optimality cuts from subproblem duals to iteratively refine the Master
problem until convergence. In the context of Benders Decomposition, the integration
of machine learning has received relatively limited attention, with most contributions
focusing on specific application domains. Machine learning has been used in a classifi-
cation task to select the Benders cut to add in the Master problem formulation for the
Multi-Stage Stochastic Transmission Expansion Planning problem [34], for Wireless
Resource Allocation [152], and in a branch-cut-and-Benders for the dock assignment
and truck scheduling problem in cross-docks [192]. In [[152], machine learning is also
used for regression tasks to predict the continuous performance indicators for each cut.
However, this information is still leveraged to guide the selection of Benders cuts to add
to the formulation. Another usage involves generating an initial set of feasible points
for which Bender cuts are derived and incorporated into the Master problem as a warm
start strategy [[183]. While these contributions highlight interesting use cases, they are
not directly related to the contributions developed in this thesis. For these reasons, we
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chose not to introduce a dedicated subsection on Benders Decomposition, and instead
briefly summarize these works here to acknowledge their relevance.

Machine Learning for Column Generation

Column Generation is a fundamental decomposition technique, particularly useful in
solving MILPs with formulations composed of a large number of variables. However,
it often suffers from slow convergence due to the need for many iterations. At each
iteration, the pricing subproblem identifies one or more columns with negative reduced
costs that can be added to the Master problem to improve the objective value. While
selecting multiple columns per iteration can accelerate the process, adding too many
columns increases the problem size, potentially slowing down overall computation.
Efficiently selecting the most promising subset of columns remains a key challenge.

Choosing Columns To address this issue, Morabit et al. [187] propose an ML-based
approach that formulates column selection as a classification problem. Their model
predicts whether a column should be added to the solution pool, thereby reducing com-
putational overhead. Other researchers have explored reinforcement learning techniques
for this task. Chi et al. [47] use a learning-by-experience framework, where the reward
decreases as the total number of Column Generation iterations increases.

Using Dual Information In some cases, dual information can be useful for learning.
Babaki and Jena [13] employ an expert-guided reinforcement learning approach in
which an expert rule selects columns whose dual solution values in the Reduced Master
problem are closest to the optimal dual solution in the Reduced Master problem. During
the Column Generation process, the number of variables grows while the number
of constraints remains the same, at least for standard approaches. Furthermore, as
highlighted in Chapter [I] Lagrangian relaxation is strictly related to Column Generation
through duality theory. For this reason, we put in Section also, all the approaches
that learn dual variables to warm-start.

3.1.3 Machine Learning for Lagrangian Relaxation

Lagrangian relaxation is a fundamental technique in mathematical programming, partic-
ularly for decomposing large-scale optimization problems. Machine learning has been
explored as a tool to enhance Lagrangian-based approaches by predicting dual multipli-
ers, improving convergence, and reducing computational costs. In Table 3.1 we present
an overview of the literature related to the interaction of ML and Lagrangian relaxation.
The acronyms for the target problems are: Graph Coloring problem (GCP), Unit Com-
mitment (UC), Cutting Stock problem (CSP), Markov Random Fields (MRF), Graph
Matching (GM), Independent Set (IS), Knapsack problem (KP), Multi-Dimensional
Knapsack problem (MDKP), nonlinear Resource-Constrained Production and Inven-
tory Planning problem (RCPIPP), Multi-Commodity Network Design (MCND), and
Generalized Assignment (GA). QAPIib [38] is the benchmark dataset for the quadratic
assignment problems used in the combinatorial optimization community.
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Links to Stabilized Column Generation Lagrangian relaxation and Column Genera-
tion are closely related, as discussed in Chapter[I] Generating variables in the primal can
be viewed as generating constraints in the dual. Consequently, predicting dual variables
for the Reduced Master problem in a Column Generation approach corresponds to
predicting a Lagrangian multipliers vector.

Several approaches presented here [229, 146} 234] focus on predicting a dual stabi-
lization point for a stabilized version of the Column Generation. All three approaches
use the predicted vector as initialization for a Column Generation approach, which is
known to suffer from severe oscillations in the dual variables of the Reduced Master
problem. Two of these approaches [229, |146] employ supervised learning techniques,
minimizing the mean squared error between the prediction and the optimal multipliers,
interpreted here as dual variables of the Reduced Master problem in the final iteration.
In contrast, the other one [234] directly optimizes the Lagrangian bound associated with
the prediction.

The strategy of directly optimizing the Lagrangian bound is largely used [2} [1} 234}
2411164, [197] as it enables training without requiring an optimal solution. Moreover,
the subgradient of the Lagrangian bound, with respect to the Lagrangian multipliers
vector, can be computed once the subproblem with the predicted Lagrangian multipliers
is solved, making training feasible.

The main differences among the approaches directly optimizing the Lagrangian
bound in the learning problem lie in the choice of model, feature representation, and
the specific optimization problem addressed. Shen et al. [229] apply their approach to
the Graph Coloring problem, using two different neural network architectures. The first
is a parallel feed-forward neural network that extracts statistical features representing
interactions of dual variables. The second is a Graph Neural Network based on a fully
connected graph, where each node corresponds to a dual variable, allowing the model
to learn structural relationships among them. Kraul et al. [146]] focus on the Cutting
Stock problem and compare two different ML models. The first is a feed-forward neural
network that takes a fixed-size vector encoding the information of the entire instance as
input and uses it to predict the Lagrangian multipliers vector. The second model takes
as inputs a feature vector corresponding to a single component of the multipliers and
predicts its associated value. This model, applied independently to each component, can
generalize to instances of different sizes, but it lacks contextual information related to
the other components. Their results suggest that models using full instance information
achieve higher accuracy, whereas those with sparse feature representations generalize

Paper

Authors
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Target Problem
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Shen et al.
Sugishita et al.
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FFNN-RF

FFNN
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FFNN
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MREF, GM, CT, QAPIlib
CT,GMLIS, QAPIib
KP and FL
MDKP, RCPIPP
MCND, GA
TSP

Table 3.1: Table summarizing the approaches presented in this section for Lagrangian
relaxation.
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better across problem sizes. Sugishita et al. [234] apply ML to predict initial dual values
for Column Generation procedures in large-scale Unit Commitment problems. In this
setting, similar instances should be solved repeatedly with small variations in the data.
Their model takes as input only the vector parameterizing the unknown components in
the right-hand side of a family of constraints, requiring no specialized feature extraction.
However, this simplicity limits model generalization to instances of different sizes.
They experiment using a random forest and a feed-forward neural network with skip
connections.

Two-Stage Stochastic MILPs Other approaches focus more directly on Lagrangian
relaxation. One application is in two-stage stochastic MILPs, where decomposition
is often necessary for tractability. Nair et al. [190] introduce a reinforcement learn-
ing approach to predict Lagrangian multipliers that yield tight bounds across different
second-stage scenarios. Their framework also incorporates a learnable local search
solver that jointly optimizes two policies: one for generating an initial feasible solution
and another for iteratively refining it. By leveraging contextual features, their method
generalizes across problem instances and improves the effectiveness of dual decomposi-
tion techniques. Also, the already presented paper [234] focuses on Stabilized Column
Generation in this two-stage setting.

Other Approaches Parjadis et al. [197]] apply ML to predict Lagrangian multipli-
ers for the Traveling Salesman problem (TSP), focusing on the one-tree Lagrangian
relaxation [[I11]. Their approach uses a GNN trained on the graph representing the TSP,
incorporating node features. While their study is specific to TSP, the authors suggest
their framework could be extended to other problems. More recently, Tanneau and Van
Hentenryck [241] propose a general framework to learn Lagrangian multipliers for conic
programming. Their method predicts one set of dual variables given input data defining
a conic problem using a neural network. A conic projection layer then computes a
conic-feasible partial-dual solution, which is completed into a full dual-feasible solution.
The authors emphasize that their approach, while not yet tested with GNNs, could be
extended to variable-size instances using techniques presented in Section[#.1.2}

Lagrangian decomposition and Binary Decision Diagrams Another promising ML-
driven approach applies Lagrangian decomposition in conjunction with binary decision
diagrams. Abbas et al. [2] develop a parallel Lagrange decomposition method for solv-
ing 0-1 integer linear programs, where they represent subproblems as binary decision
diagrams. Their approach minimizes synchronization overhead and takes full advantage
of GPU parallelism. Abbas et al. [1] further improve this method by integrating Graph
Neural Networks (GNNs), using the instance representation presented in Section[d.1.2]
They modify a Lagrange decomposition-based algorithm to be (partially) differentiable,
enabling end-to-end training. While the solver remains partially non-differentiable,
learning is performed by running the algorithm over a limited number of iterations, with
the gradient computed only for the final updates. This strategy effectively refines the
last adjustment, enhancing performance through training, while preserving the algo-
rithm’s theoretical properties, such as dual feasibility and non-decreasing lower bound
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Figure 3.1: Example of a framework where an ML prediction is followed by solving an
optimization problem, which can be seen as a layer.

guarantees.

3.2 End-to-End Learning

Machine learning can also be used to directly generate a potentially near-optimal solution
to a given problem; these approaches are referred to as End-to-End approaches. Often,
End-to-End techniques are more likely to succeed when tailored to specific problems,
where domain knowledge can be exploited to guide the learning process toward feasible
solutions. Our review focuses on general-purpose methods; therefore, we omit End-to-
End learning methods specifically designed for particular optimization problems. The
interested reader may refer to [209,[256] for a survey on the usage of machine learning
to solve the Traveling Salesman problem, to [256] for the Vehicle Routing problem, and
to [272]] for the Hydro Unit Commitment problem. The survey [178] explores the use
of reinforcement learning for combinatorial optimization and examines its application
to specific problems: the Traveling Salesman, Maximum Cut, Bin Packing, Minimum
Vertex Cover, and Maximum Independent Set.

Developing an End-to-End framework, particularly for general-purpose applications,
presents several challenges. First, many optimization problems have structured solutions
that must satisfy many constraints. Ensuring the feasibility of the solutions when they
are generated by a learning model presents a significant challenge. In addition, these
methods typically do not guarantee optimality, which complicates efforts to provide
theoretical guarantees. A well-designed model architecture can help mitigate some of
these issues by improving prediction quality and incorporating constraints. However,
it does not completely resolve the problem, as ensuring constraint satisfaction and
proving optimality often requires additional techniques, such as hybrid approaches or
post-processing corrections. Finally, encoding problem instances as input for a learning
model remains a complex task, requiring thoughtful representation choices.

Differentiating through the Resolution of an Optimization Problem Differentiation
is a fundamental component of training neural networks, as it is crucial in the back-
propagation algorithm used to update model parameters.Automatic differentiation [21,
103]] plays a crucial role in enabling end-to-end training by allowing gradients to be
computed through the optimization layer.

The machine learning community has shown increasing interest in enabling back-
propagation through otherwise non-differentiable operations. For example, quantization
in neural networks [269]] reduces the precision of the model weights and activation
functions, typically using a lower bit-width format for floating-point representations. The
Straight-Through Estimator [274] allows gradients to flow through quantized activations
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Figure 3.2: Changes in the optimal solution of an optimization problem as the objective
function varies. The blue arrows indicate the direction of the objective function, while
the red dots and lines represent the optimal solution(s). In the left and right figures, we
observe that the optimal solution remains unchanged despite variations in the objective
function’s direction. However, in the center figure, when the objective function becomes
perpendicular to a constraint boundary, the problem admits multiple optimal solutions,
as illustrated by the red line segment.

by treating the quantization function as an identity during back-propagation. The Spigot
Estimator [202] introduces an incremental greedy optimization approach for structured
argmax problems, enabling differentiable training through structured prediction by
approximating gradients via a sampling-based technique. The Gumbel-Softmax [123]]
distribution is a Continuous relaxation of the categorical distribution, enabling gradient
propagation through the sampling step.

One of the main challenges in using machine learning to solve optimization problems
is ensuring that predictions satisfy feasibility constraints and exhibit the required combi-
natorial structure. Standard machine learning models struggle to enforce all constraints
of an optimization problem. In connection with Section[3.1.3] some approaches leverage
Lagrange duality to improve constraint satisfaction [79}248]]. This approach does not
guarantee feasibility. Hence, another strategy is to integrate an optimization problem
within the framework, allowing constraints to be explicitly considered. In this case, a key
difficulty is enabling differentiation through architectures that alternate neural network
layers with optimization problem resolution. Typically, this type of framework predicts
some parameters, such as the coefficients in the objective function, of an optimization
problem, which is then solved using some external solver, as illustrated in Figure
The solution is then used in the loss function. The challenge in this approach is the
computation of the solution gradient with respect to the parameters defining the problem
structure.

A core challenge arises from the fact that small changes in the problem data can
cause a discontinuous shift of the solution. In particular, the solution may remain
unchanged while certain conditions hold, but once those conditions are violated, it can
abruptly jump to a different point. This phenomenon is illustrated for a Linear Program
in Figure where the solution initially coincides with a single vertex and remains
stable under small variations in the objective function. However, when the objective
function is perpendicular to the constraint, the solution is no longer unique, as any point
satisfying the constraints with equality is an optimal solution. In this scenario, every
slight change in the objective function can shift the solution to a different vertex.
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Connections to thesis Contributions and Broader Context In the rest of this section,
we focus on approaches more closely related to the contributions presented in Chaptersf]
and[5] Section discusses a specific subclass of Energy-Based Models, which
simplifies differentiation by imposing a particular structure on the loss function. Another
line of research involves differentiating through the solution process of an optimization
algorithm itself. More precisely, Section [3.2.2] explores techniques that derive an
analytical formulation of the gradient passing through the KKT conditions. This is
not the only possibility to differentiate through an optimization layer. Section
introduces additional relevant techniques for differentiating through an optimization
layer that are not directly used in this thesis, but are important for contextualization.
These include Learning Stochastic Smoothing, Differentiable Relaxation, and Finite
Differences.

Finally, some methods modify the resolution process of the iterative algorithm to
integrate machine learning components. This will be discussed in detail in Section
with a particular focus on the Gradient Descent, aligning with the approaches presented
in Chapter 3}

3.2.1 Energy Based Models

A particular example where a model’s prediction is obtained as the solution to an
optimization problem is provided by Energy-based Models [[151]], already introduced
in Section[2.1.2] These models capture dependencies between input/output variables
by assigning scalar energy to each configuration of the variables. The prediction is
then found by minimizing the energy associated with the corresponding input. The
parameters of the learning task influence the shape of the energy and, consequently, the
prediction too. While EBMs were originally introduced in the neural network literature,
recent work has extended them to optimization-oriented settings, which we explore in
this subsection.

Energy Models for Structured Outputs Some works focus on producing outputs
with a certain combinatorial structure [22]. However, enabling deep learning techniques
to solve tasks requiring nontrivial reasoning, such as algorithmic computation, remains
challenging. Du et al. [74] follow the idea that humans solve such tasks with iterative rea-
soning. They present a framework for iterative reasoning based on an energy landscape
over all possible outputs, where each step of the reasoning process is implemented as an
energy minimization step to find a minimal energy solution. They test their approach
on graphs and continuous domains, as well as on optimization problems such as the
Shortest Path problem. Building on this idea, Du et al. [[75] introduce a novel framework
that combines Diffusion models [113] with energy-based optimization. They propose
to learn energy functions to represent the constraints between input conditions and
desired outputs. After training, thanks to the diffusion mechanism, the framework can
dynamically adapt the number of optimization steps during inference based on problem
difficulty, enabling it to solve problems outside its training distribution.
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Energy Models for Stochastic Optimization In a different line of research, Kong et
al. [140] propose a machine learning method for stochastic optimization problems using
energy-based models. It explicitly parameterized the original optimization problem
using a differentiable optimization layer based on energy functions. To better approxi-
mate the optimization landscape, they propose a coupled training objective that uses
a maximum likelihood loss to capture the optimum location and a distribution-based
regularizer to capture the overall energy landscape. For stochastic optimization problems
involving unknown parameters, this approach demonstrates superior performance to the
standard two-stage predict-then-optimize pipeline.

Links with Lagrangian Relaxation This subdomain is of particular interest as it
is closely related to Lagrangian relaxation, discussed in Section[I.1] In this case, the
learning problem can be viewed as a mean approximation of the Lagrangian Dual, where
the energy bound corresponds to the objective value of the Lagrangian subproblem. This
perspective represents a novel contribution of this thesis, offering a new interpretation
of dual learning as an instance of energy-based modeling. We will show in Chapter 4]
how the problem of learning Lagrangian multipliers can be cast within this family of
approaches.

3.2.2 Differentiating the KKT system resolution

An approach to enable differentiation through optimization problems is to exploit the
structure of the Karush-Kuhn-Tucker (KKT) conditions, presented in Chapter [T} which
characterize the optimality of constrained problems. When applicable, these conditions
allow for implicit or explicit gradient computation with respect to problem parameters.

Explicit Formulation of the Solution In certain cases, the KKT conditions allow the
explicit reformulation of an optimization problem’s solution, making its dependence
on the problem parameters more direct. A simple example is the softmax function,
discussed in Section[2.3.4]of Chapter[2] More recently, Martins and Astudillo introduced
an alternative approach called sparsemax [176]. The key difference lies in the type of
regularization: while softmax relies on log-entropy regularization, sparsemax employs
quadratic regularization. Both softmax and sparsemax offer a relatively simple case of
study, as they allow the solution to be explicitly expressed as a function of the parameters
in an analytical form.

Quadratic Programming and Iterative Resolution of KKT Conditions In other
settings, the resolution of the KKT system can require an iterative process. These
approaches are closely related to the ones presented in Section For instance,
Sambharya et al. [222] tune the initialization of a quadratic problem, by reformulating
the KKT conditions and solving them using an iterative algorithm that only relies
on linear operations and projections into a cone, Douglas-Rachford (DR) splitting
[73]. This approach allows the use of machine learning to predict a good initialization,
knowing that the resolutive algorithm will be used to obtain the final solution. Another
work [8]] still focuses on quadratic programs, and it passes through the KKT conditions
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to integrate quadratic programs as individual layers in larger end-to-end trainable deep
networks.

Beyond Quadratic Programming and Regularization Tricks KKT conditions are
not limited to quadratic problems. Donti et al. [72] use them to differentiate the solution
of general stochastic programming problems. In the case of linear programming (LP),
the optimal solution can be expressed as a solution to a linear system defined by the
active constraints. This demonstrates the connection between the constraint matrix and
the optimal solution, and that this connection is differentiable. In general, the solution
can be non-unique or vary in discontinuous ways while changing the objective function.
To address this issue, Wilder et al. [261]] propose to add a quadratic regularization term
to an LP and then use the framework proposed by Amos and Kolter [[8] for differentiation.
Moreover, they further extend the use of KKT multipliers for approximations of discrete
problems by leveraging Lagrangian duality. Similarly to [261]], Mandi and Guns [[173]
differentiate through the solution of an LP using the logarithmic barrier regularization.

Homogeneous Self-Dual Instead of differentiating through the resolution of the KKT
conditions, it is possible to consider the homogeneous self-dual formulation [267]
of the LP, and to show that the relation between the interior point step direction and
the corresponding gradients required for learning. In the forward pass, Mandi and
Guns [173] use the existing homogeneous interior point algorithm [9]] to solve the LP,
while the backward pass reduces to the resolution of a linear system.

3.2.3 Additional Approaches to Differentiate through an Optimiza-
tion Layer

Considering energy-based models can simplify differentiation through optimization
components. In some cases, the Karush-Kuhn-Tucker (KKT) conditions also enable
differentiation through the solution of an optimization problem. Beyond the use of KKT
conditions, several alternative approaches have been developed to enable differentiation
through optimization layers.

Stochastic Smooting Some approaches [29.,60] use Stochastic Smoothing to differen-
tiate through discrete optimization. This technique involves perturbing the problem’s
data and considering the mean value of the associated solutions. By using averages
over multiple samples, the function becomes smoother, making it more amenable to
gradient-based optimization. The goal then became to learn a probability distribution
that maximizes the likelihood [80]] of the observed solutions. At inference time, this
probability can then be used to choose the most likely solution.

Differentiable Relaxations Another possibility is to consider Differentiable Relax-
ations. Some examples are provided by: using the Semi-definite relaxation of the
Maximum Satisfiability problem [255]], using submodular function approximations [69]]
to derive differentiable surrogates, adding a regularization to the objective function
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[173L1261] to enforce smoothness or writing the descent direction for an ILP as a linear
combination of integer points on a selected basis [[199]].

Finite Differences It is possible to approximate the loss gradient using finite differ-
ences. Vlastelica et al. [174] approximate gradients using the loss difference between
the solution of a problem in the forward pass and a slightly perturbed version of the
former. Paulus et al. [198] develop a flexible framework, called Lagrangian Proxi-
mal Gradient Descent (LPGD), based on the assumption that strong duality holds and
rewriting the problem using the Lagrangian formulation. LPGD unifies and generalizes
various state-of-the-art contemporary optimization methods, including: Direct Loss
Minimization [[106], Blackbox Back-propagation [174], Implicit Differentiation by Per-
turbation [70], Identity with Projection [221]], Smart Predict then Optimize [99] and
different frameworks based on Fenchel-Young losses [33]]. These works [[198 [174] use
both a temperature parameter that determines a trade-off between smoothness (and so
more informative gradients) and tightness of the approximation.

3.2.4 Iterative Amortization - Learning the Gradient Descent

In amortization techniques [7]], the goal is to reduce the computational cost of iterative
optimization methods by learning a direct mapping from inputs, in our case problem
instances, to approximate solutions. This often involves training an inference network
to quickly produce a high-quality approximate solution that would otherwise require
costly iterative optimization. The definitions of amortization techniques and end-to-end
learning often overlap but originate from different purposes. Amortization techniques
can be iterative or not, but their core purpose is always to replace an iterative process
where similar problems are solved repeatedly. End-to-end also aims to provide a
solution directly, but it encompasses further frameworks that do not necessarily fall
under amortization. The optimization algorithm being replaced is not always iterative,
and the underlying frameworks can vary. An example is the predict-then-optimize
framework, in which a neural network predicts some of the parameters of the original
instance, and the resulting optimization problem is then solved during both training and
inference.

Learning an Optimizer The research domain of amortized optimization is somehow
referred to as Learning-to-Optimize (43,1157, 44|, and the associated methods are called
amortized optimization methods. The term Learning-to-Optimize is closely linked to
meta-learning, where the goal is to learn an optimizer, often parameterized as a neural
network, capable of efficiently updating another model’s parameters. For this reason,
this area is called Learning-to-Learn [244].

Unrolling Techniques Many amortized frameworks using an iterative structure for
predictions often require some unrolling technique for back-propagation. Unrolling,
also known as deep unfolding, involves reformulating the algorithm execution to enable
the gradient computation in the backward pass. The distinction between amortization
and unrolling is sometimes unclear in the literature. Some works use the term unrolling
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in a broader sense, including hybrid models where parts of an optimization algorithm are
replaced by learnable components. In this thesis, we use the term unrolling to describe
the process of reformulating an algorithm’s execution to enable the construction of a
computation graph, which is essential for the backward pass. For a comprehensive
survey on unrolling techniques, we refer to [[186].

Unrolling becomes particularly interesting for Learning-to-Optimize approaches
that do not have access to the optimal solution. In such cases, learning is framed as
an objective-based problem, which requires the ability to differentiate the objective
function with respect to the model’s output.

Amortization and Unrolling Applications While unrolling and related Learning-to-
Optimize methods are also widely applied in broader contexts such as Meta-Learning [224]],
a comprehensive review of those areas lies beyond the scope of this thesis. Therefore,
we briefly mention here a few additional applications where unrolling plays a central
role, even though they are not the primary focus of our work.

Relevant areas that are worth mentioning are Variational Inference [127]] and Varia-
tional Autoencoders [[135]], Sparse Coding [[193]], Multitask Learning [40], fixed point
computations for convex optimization [214]], Optimal Transport [250], and Policy learn-
ing [237].

Unrolling has also been applied to a variety of algorithms beyond classical first-
order methods. For example, it has been extended to second-order optimization tech-
niques, including Newton and quasi-Newton methods [[158}266], Differential Equations
[166, 1165, 281]] and Interior Point method [31}55] (specifically for image reconstruc-
tion), and Frank-Wolfe algorithm [200} [162] (respectively for financial index tracking
and sparse coding). We briefly note that some research focuses on unrolling iterative
methods for Structured Prediction for Energy Networks (SPENs) [23], making a con-
nection to Section This work introduces an end-to-end learning framework where
the energy function is trained discriminatively by back-propagating through gradient-
based prediction. However, the approach is applied to image denoising rather than
optimization-related problems.

Gradient Descent

Gradient Descent and its variants are widely used in machine learning to optimize
neural network parameters. Early research of meta-learning in this domain focused on
learning updates for a neural network (trained using Gradient Descent), considering
simple evolutionary rules [26} 25] and then more elaborate neural networks [219]. Some
works [276}[115]] jointly train with Gradient Descent both the networks for the learning
problem and the one for the meta-learning task. However, these approaches still struggle
to scale to modern architectures with tens of thousands of parameters. To address this
limitation, Andrychowicz et al. [[10] introduce an LSTM-based optimizer that operates
coordinate-wise on the network parameters. This design allows different behavior on
each coordinate by using separate activation functions for each parameter, but making
the optimizer invariant to parameter order, as the same update rule is independently
applied to each coordinate.
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Theoretical foundations More recently, research has emerged to provide stronger
theoretical foundations for Learning to Optimize. In [239]], Takabe et Wadayama provide
a theoretical interpretation of the learned step size of deep-unfolded Gradient Descent.
Liu et al. [163]] analyze the Learning to Optimize framework from a more theoretical
perspective. Drawing inspiration from theoretical convergence proof of Gradient-
Descent-type resolution methods, they construct a mathematics-inspired framework that
is broadly applicable and generalized well to out-of-distribution problems. Their work
addresses separately the smooth case and the extension to convex non-smooth objective
functions. In the latter case, they highlight the importance of a proximality operator.
Hence, their approach is somehow related to the Proximal Bundle method, presented in
Chapter I}

Problematic of the domain One major challenge in this area is the meta-gradient
instability: the gradient associated with tuning unrolling parameters can often explode
or vanish. Wang et al. [257] address this by providing theoretical guarantees for the
problem of tuning the step size for quadratic loss.

Another key challenge is that the learned optimizer may fail to generalize well to
unseen tasks. This problem is solved using different techniques: optimizing the param-
eters of a distribution over the optimizer parameters [[181], using a novel hierarchical
RNN architecture with minimal per-parameter overhead [260] or training an architecture
inspired both by [[10] and [[L81]] on thousands of tasks [180].

This trade-off between generalization and stability often stems from a fundamental
tension: using short unrolls introduces truncation bias, which can harm generalization,
while using long unrolls increases the risk of gradient explosion, which compromises
training stability. Wu et al. [264] analyze this problem mathematically and show that
while a greedy scheduler tends to decay the learning rate drastically to reduce the loss
along high curvature directions, the optimal schedule maintains a high learning rate to
ensure steady progress along low curvature directions, ultimately achieving lower final
loss. Lv et al. [170] demonstrate that a random scaling over the optimizer parameters
and the addition of a convex regularization allow the optimizer to remain effective
on more epochs than those considered in the meta-training. This also generalizes to
tasks involving training different neural networks. Another effective technique for this
problem is a curriculum-based training [45]], where the optimizer gradually increases
the length of unrolled iterations.

Similarities with Bundle Method All of the above approaches fundamentally adopt
the structure of Gradient Descent as the base for their learning framework. In the
second approach presented in Chapter 5| we developed a similar amortized optimization
method inspired by the Bundle structure. The benefits of using a proximal operator
when optimizing a convex non-smooth function have already been demonstrated [163]].
A further connection with the Bundle method can be found in [[124]], where Ji et al.
propose a meta-learning approach to coordinate learning in master-slave distributed
systems. Their method aggregates the gradients for Gradient Descent, improving the
scalability of distributed learning.

It is worth noting, in connection with the approaches discussed in Section
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that some unrolled algorithms follow primal-dual schemes, particularly variations of
primal-dual hybrid gradient (PDHG) and the alternating direction method of multipliers
(ADMM). For instance, Shen et al. [228]] apply a similar approach to min-max problems,
where Lagrangian relaxation itself represents a special case. Their method employs
iterative updates inspired by gradient-based techniques, using two parallel LSTMs to
update the variables associated with the min and max components separately. The
loss is computed based on the differences in the min-max function across iterations,
considering updates for only one set of variables while keeping the other fixed.

3.3 Conclusions

Both approaches presented in this thesis fall within the domain of the learning method
applied to Lagrangian relaxation, presented in Section [3.1.3] In this chapter, we con-
textualize that family of approaches in the domain of machine learning alongside
Optimization approaches, in Section [3.1} with a particular focus on decomposition
techniques, presented in Section[3.1.2] and Column Generation.

Nevertheless, the approaches presented in Chapter [5can be applied more generally
to learning for convex optimization. In particular, the second approach discussed in
Chapter[5|could be extended to non-convex problems. Although this extension is beyond
the scope of this thesis, it presents interesting possibilities for meta-learning, aligning
with the methods described in Section[3.2.4] Specifically, it could enable predictions
over the bundle space rather than directly over the model parameters, facilitating the
adaptation of learning approaches to larger neural networks.

All the approaches presented in Chapter ] and Chapter [5] directly minimize the
Lagrangian bound of the predicted Lagrangian multipliers vector. As a result, they
can be framed as Energy-based Models, presented in Section[3.2.1] Section [3.2]shows
that this provides a structured way to differentiate through Optimization Layers. This
method simplifies the process by introducing a specific structure on the loss function.
However, this approach is not mandatory, and we dedicate further details to the possi-
bilities provided to the analytical formulation due to the KKT conditions, discussed in
Section[3.2.2] as these conditions play a crucial role in the first approach presented in
Chapter[5} Alternative solutions to this issue are discussed in Section [3.2.3]

The next two chapters are dedicated to the main contributions of this thesis.



Chapter 4

Learning Lagrangian
Multipliers

Lagrangian relaxation is a widely used technique for solving combinatorial optimization
problems, as discussed in Chapter I} The function 7w — LR(7r) that associates a
Lagrangian multiplier vector 7r to the value of the subproblem L R(7r) is piecewise linear
and concave. Typically, this function is optimized using subgradient-based algorithms,
as discussed in Chapterm However, as the dimension of 7t increases, the number of
iterations required to obtain high-quality dual solutions tends to grow substantially,
rendering the Subgradient method computationally expensive. This motivates the use of
more sophisticated approaches, such as the Bundle method.
To fix notations, we consider instances ¢ as Formulation[I.T} that is:

(P) min w'x

Ax > Db
Cx>d
x € R x NP

Lagrangian subproblemis obtained by dualizing difficult constraints (T.1b) Az > b and
penalizing their violation with Lagrangian multipliers (LMs) = > 0:

(LR(m)) m:gn w'z+ 7' (b— Ax)

Cx>d
x € R x NP

In the remainder of the chapter, we focus on the case where inequalities are dualized.
However, the same approach can be applied, with minor modifications, to dualize
equalities. Indeed, dualizing equalities is simpler, and the necessary adjustments to the
framework will be explicitly discussed in the corresponding section on page [62}

57
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In this chapter we introduce a state-of-the-art encoder-decoder neural network
designed to efficiently compute good duals 7 from the Continuous relaxation (CR)
solution. Our method leverages a probabilistic encoder built on a Graph Neural Network
(GNN). This encoder takes as input a given Mixed-Integer Linear Problem (MILP) in-
stance ¢, along with its primal and dual of the CR solutions, and produces an embedded
representation of the instance. Each dualized constraint is mapped to a high-dimensional
dense vector. A deterministic decoder then reconstructs scalar duals from these embed-
dings.

A crucial property of our approach is that it is unsupervised, as the Lagrangian
Dual function LR(7) provides a natural loss function that eliminates the need for
manually labeled training data. We will see that our loss function is closely related to
Energy-Based Models and Energy Losses, as discussed in Chapters[2]and 3]

It is important to note that our approach applies to compact MILPs where the bound
provided by the Lagrangian relaxation is tighter than that of the CR. This advantage
stems from the fact that both primal and dual of the CR solutions are incorporated into
the GNN input, enhancing the quality of the learned duals. Note that this approach does
not apply to non-compact formulations. Moreover, the problem in this setting involves
more than just solving the CR. Indeed, the graph convolution associated with the
bipartite graph representation, discussed in Section[d.1.2] also becomes computationally
intractable due to the large number of variables and constraints.

4.1 Overall Architecture

Iterative algorithms for optimizing Lagrangian multipliers (LMs), such as the Subgradi-
ent method (SM) [207, Chap 5.3] or the Bundle method (BM) [112},[150] presented in
detail in Chapter[T] can benefit from initializing LMs. While a common choice is to set
them to zero, a more effective approach, widely adopted by the Optimization community,
leverages the bound provided by the CR and its dual solution. This bound, and its dual
solution, is often computationally inexpensive for compact MILPs. Specifically, optimal
values of the CR dual variables identified with the constraints dualized in the Lagrangian
relaxation can be understood as LMs. In many problems of interest, these LMs are not
optimal and can be improved by SM or BM. We leverage this observation by trying to
predict a deviation from the LMs corresponding to the CR dual solution.

The architecture is depicted in Figure We start from an input instance ¢ of
MILP P with a set of constraints for which the Lagrangian subproblem is easy to
compute, then solve the CR and obtain the corresponding primal and dual solutions.
In the following A = (Ap, Ayp) denotes the dual solution of the CR, where Ap is
the subvector associated with the dualized constraints in the Lagrangian relaxation and
AN p with the non-dualized constraints.

The input enriched with the CR solutions is then passed through a probabilistic
encoder, composed of three parts: (i) the input is encoded as a bipartite graph in a
similar way to [90], also known as a factor graph in probabilistic modeling, and initial
graph node feature extraction is performed, (i) this graph is fed to a GNN in charge of

ICode in JULIA available at https://github.com/FDemelas/Learning_Lagrangian_|
Multipliers.Jjl,


https://github.com/FDemelas/Learning_Lagrangian_Multipliers.jl
https://github.com/FDemelas/Learning_Lagrangian_Multipliers.jl
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Figure 4.1: Overall Architecture. The model computes a Lagrangian Dual solution
from the bipartite graph representation of an MILP and its CR solution. First, the
MILP is encoded by a GNN, from which we parameterize a sampler for constraint
representations. These representations are then passed through a decoder to compute
Lagrangian multipliers.

refining the node features by taking into account the structure of the MILP, (iii) the last
layer of the GNN is used to parameterize a distribution from which vectors z. can be
sampled, providing a latent representation for each dualized constraint c.

The decoder then translates each z, to a positive LM 7, = A, + d. by predicting a
deviation d, from the CR dual solution variable ). associated to the dualized constraint
c. Finally, the predicted LMs can be used in several ways, in particular to compute a
Lagrangian bound or to warm-start an iterative solver.

4.1.1 Objective

As seen in Section [3.1.3] numerous works [234} [2, [T, 190, 2411 [197] directly optimize
the Lagrangian subproblem value associated with the predicted multipliers, following
an approach similar to our work [64], presented in this chapter.

The approaches that directly optimize the Lagrangian subproblem value associated
with the predicted multipliers can be cast as an Energy-Based Model [151], discussed in
Section [3.2.T] of Chapter 3]

The Energy-Based Models aims to construct an energy E, parametrized by a vector
7, such that, given a context ¢, a good prediction is provided by

min E(x, ;). 4.1)

In the Lagrangian relaxation setting, the context can be seen as determined by an
instance ¢, and the energy F is the objective value of the Lagrangian subproblem,
given a Lagrangian multiplier vector 7t and a feasible solution x of the Lagrangian
subproblem.

We observe that all Energy-Based Models require solving an optimization problem
to produce an output. This aligns perfectly with the framework of Lagrangian relaxation,
where, for each choice of Lagrangian multipliers, we must solve the corresponding
Lagrangian subproblem to obtain both the associated solution and the corresponding
bound. Hence, the final prediction of our model, casting it as an Energy-Based Model,
is the solution « of the Lagrangian subproblem and not the Lagrangian multipliers
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vector 7. However, the latter provides a parametrization of the Energy associated with
the Lagrangian subproblem (4.T)) bound, and the learning task consists of finding a
good Lagrangian multipliers vector 7r for each instance ¢. More precisely, the learning
problem consists of choosing the parameters of a learning model that predicts a vector
of Lagrangian multipliers for each given instance.

A classic loss function is the energy loss:

E(x*, 1),

where * represents the optimal labels associated with ¢. In our case, * is the primal
solution of the subproblem obtained using the optimal Lagrangian multipliers 7*.
However, in our setting, applying this formulation may be less precise, as the subgradient
used for training depends on the solution . Using a fixed solution «* could result in
missing information crucial for updating the problem.

Another widely used loss function is the perceptron loss:

E(x*,um) — mminE(a:, L;r).
This loss is designed such that the first term provides an upper bound for the second.

In the Lagrangian setting, the first term can be replaced with E(x*,¢; w*), as the
optimal configuration 7v*, is theoretically known. Meanwhile, in the generic Energy-
Based Models, finding 7w* is not trivial. This substitution simplifies the optimization
process, leading to directly maximizing the bound provided by the solution of the
Problem @.1).

The reason why we do not use classical loss functions as in other Energy-Based
Models lies in the concavity of the Lagrangian function with respect to the multipliers.
Specifically, for a generic Energy-Based model, as we have no convexity/concavity
guarantees for E as a function of 7, the same choice made for Lagrangian relaxation
can lead to an energy that increments all the possible predictions x, whether they are
optimal or not. While a deeper theoretical analysis of this behavior could be insightful,
it falls outside the scope of this thesis.

We train the network’s parameters in an end-to-end fashion by maximizing the
average Lagrangian bound L R(7r) obtained from the predicted LMs 7 over a training
set. This can be formulated as an empirical risk optimization problem or as an Energy-
Based Model [151] with latent variables, where the Lagrangian bound acts as the
(negative) energy associated with the coupling of the instance and subproblem solutions.
The LMs, or more precisely, their high-dimensional representations, serve as the latent
variables.

To improve the duality gap, we aim to maximize LR, which provides a natural
measure of prediction quality. Given an instance ¢, our objective is to learn latent
representations z of the LMs that maximize the Lagrangian bound:

max B, (10 [LR([Ap + fo(2)]+;0)] -

Here gy is the probabilistic encoder, mapping each dualized constraint ¢ in ¢ to a latent
vector z computed by independent Gaussian distributions, fy is the decoder mapping
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eac z. to its corresponding LM deviation 6. = fg(z.) from the CR dual value \., and
[]+ is the component-wise softplus function. We can observe that the function [-] is
used only to ensure non-negative multipliers, as we are dualizing inequality constraints.
In the case of dualizing equality constraints, this function must be omitted.

We can observe that this objective has the following properties amenable to gradient-
based learning:

1. LR(m) is bounded from above: optimal LMs 7r* maximize LR(7) over all
possible LMs, thatis LR(7*) > LR(w) forany m = [Ap + fe(2)], . Moreover,
LR(m) is a concave piece-wise linear function. In other words, all optimal
solutions will give the same bound. This tells us that the chosen loss is a good
choice for our task, as it correctly represents the original problem.

2. It is straightforward to compute a subgradient with respect to parameters 6:

O[Ap + fo(2)]+

.
20 ) ViaLR(m;1) 4.2)

VoLR(AD + fole i)~ (
To be formally correct, we can consider some subgradient generalization, as
the Clarke subgradient, presented in Chapter |I} The theory in this case tells
us that, considering the Chain rule, we can obtain a vector that possibly is not
a generalized subgradient of the function in the left-hand side of Equation 4.2}
However, Equation .2 holds with equality at the points where the function is
differentiable, so almost everywhere. This makes this gradient approximation a
good practical choice for a learning problem.

The Jacobian on the left of Equation[4.2]is computed via backpropagation, while
LR(; ) is simple enough for a subgradient to be given analytically. Provided
that & is an optimal solution of the relaxed Lagrangian subproblem of ¢ associated
with 7, we derive:

VaLR(mw;1) =b— AZ. 4.3)

This means that to compute a subgradient for 8, we first need to solve each
subproblem. Since subproblems are independent, this can be done in parallel.

Informally, the subgradient corresponds to the violation of the relaxed constraint
for an optimal solution of the Lagrangian subproblem associated with the provided
Lagrangian multipliers.

3. For parameters ¢, we again leverage function composition and the fact that g is
a Gaussian distribution, so we can approximate the expectation by sampling and
use the reparameterization trick [135],1226]] to perform standard backpropagation.
More specifically, the parametrization trick is based on the fact that the value of a
Gaussian random variable Y with law A/ (1, 0%) can be rewritten as Y = 1+ o X
with X ~ N(0,1) a normal random variable. The mean y and the variance
o are the outputs of a neural network model, and we can then differentiate all
the parameters using standard backpropagation techniques, as all the stochastic

2With a slight abuse of notation, we use function f : R™ — R”™ on batches of size p to become
R'mXp — Rn ><p‘
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components remain parameter-free in the normal variable X. We implement ¢
as a neural network, described in detail in the following section, returning a mean
vector ft. ¢ and a variance vector o ¢ for each dualized constraint ¢, from which
a sampler returns a representation vector z. component-wise as:

Ze=pegp+ED T (4.4)

where € ~ N(0, Id},) is a Gaussian vector with independent identically dis-
tributed components. For numerical stability, the variance is clipped to a safe
interval [220].

Dualizing Equalities

Let us note that the framework can also be applied when equalities are dualized, a case
explicitly considered in the numerical results. In this setting, we consider constraints of
the form Az = b. The Lagrangian subproblem keeps the same formulation, and the
only difference is that the multipliers are now unconstrained, that is 7= € R", rather than
being restricted to non-negative values, that is w € R}

This results in a simplification within our framework, as we no longer need to
account for a function that ensures non-negativity of the multipliers. The learning
problem can thus be formulated as:

rgaex Ez~q¢(-\b) [LR()\D + fg (Z); L)] .
with the only difference being that the projection operator [-] is no longer required.

4.1.2 Instance Bipartite Graph Representation

In this subsection, we will talk about how we can encode an Optimization instance to be
provided as input to a machine learning model. What we present here is related to the
works presented in Chapter 3] but we choose to talk in this Chapter for two different
reasons. First, it is related to how we encode one instance and not the machine learning
method used for a specific task. Secondly, different research works use this technique
for various proposals that are categorized in different sections of Chapter 3]

Choosing the appropriate feature representation to encode an instance is essential but
non-trivial, because this representation should be provided as input to a neural network
model. Many problem-specific approaches focus on constructing ad-hoc feature vectors.

Machine learning frameworks based on Graph Neural Networks(GNNs) are popular
and many surveys exist [39} [117} 249] 253 203]. However, the majority of these
approaches focus on problems defined by an underlying graph. For example, the
Traveling Salesman problem [[177] (TSP), Maximum Independent Set [206] (MIS),
Multi-Commodity-Capacitated-Network Design problem [91] (MCND), and many
other Optimization problems are described using a graph structure. An increasing
number of works focus on approaches that can be used for a larger class of problems,
and in this case, the construction of the feature vector should be completely automated.

In their analysis, Alvarez et al. [3]] identified three essential properties that a set of
features should possess. The first is that feature representation (and ML model) should
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allow for generalize across instances of varying sizes. The other two are related to
invariance properties concerning irrelevant changes within the instance (such as row or
column permutations) and to parameter rescaling, such as costs, right-hand sides, or the
coefficient matrix.

In the following, we will discuss a particular feature representation of the instance
becoming increasingly popular in the domain.

In [39]], Cappart et al. provide a survey on using GNNs in Combinatorial Optimiza-
tion. The bipartite graph representation of the instance, described in Gasse et al. [90],
provides a representation for a linear program input-output that can allow automatic
feature extraction.

The primary advantage of this representation is that it respects the first two properties
of the feature representation proposed in [5]], that is:

1. the number of features needs to be independent of the size of the problem instance,

2. the features should be invariant with respect to irrelevant changes in the problem,
such as row or column permutation.

Meanwhile, the third property:

3. the developed features need to be independent of the scale of the problem, i.e., if
the costs, coefficient matrix, or RHS vector are multiplied by some factor, the
features should remain identical.

The third property depends only on the chosen node features or how we perform the
convolution over the graph. This representation allows us to consider datasets with
different sizes in terms of variables and constraints. Furthermore, it enables the model
to share information between variables and constraints.

Consider the following linear problem:

n
s.t.Zaijxi S bj V] S {17 e 7m}'
i=1

We can construct a bipartite graph to represent this problem, considering a node for
each variable and a node for each constraint. If a variable appears in a constraint with a
non-zero coefficient (a;; # 0), we create an edge between the variable node 7 and the
constraint node j. The weight of the edge is set to the coefficient a;;.

In the original work by Gasse et al. [90]], this representation is used for the task
of variable selection in the B&B tree. The approaches developed for this particular
task have been discussed in more detail in Section They used Markov Random
Trees [251] to represent the decision process of the B&B, while the bipartite graph
representation is used at each node of the branching tree to represent the instance and
compute a probability distribution over variables to choose the next variable to branch
on.



64 CHAPTER 4. LEARNING LAGRANGIAN MULTIPLIERS

Variable Constraint
Nodes Nodes

Figure 4.2: Bipartite graph representation of an instance

The research community has shown increasing interest in this representation. Re-
cently, Chen et al. [46] proposed a theoretical analysis in which they showed that using
the bipartite graph representation as input, GNNs can effectively distinguish between
linear programming problems with different characteristics. Additionally, their study
demonstrated that GNNss can accurately approximate the feasibility, optimal objective
value, and optimal linear programming solution with minimal errors, particularly on
finite datasets or within compact domains.

This representation has also been applied to other tasks, such as selecting the good
subset of columns at each iteration of the Column Generation process as a classification
problem [187] and using Reinforcement Learning [47]], achieving a high-quality variable
partial assignment [[189], learn the node selection [160]] in a Branch & Bound (B&B),
even again warmstart B&B by finding an integer feasible solution [[133] and learn a
reformulation of linear programming (LP) [159]. Recently, some works have used this
representation for data construction, producing a deep generative framework for MILP
instances [92, 271]. We also use this technique in our work [64], described in detail in
this chapter, to learn a vector of Lagrangian multipliers.

To our knowledge, the bipartite graph representation of Gasse et al. [90] is the unique
instance representation that can be used in machine learning to represent a general MILP
instance and can handle a dataset composed of instances of different sizes, in terms of
number of variables and constraints, and with equivariance properties. We are aware of
only one other minor modification of this representation, presented by Ding et al. [67],
where the MIP instance is encoded as a tripartite graph, which extends the bipartite
graph as [90] with a further part composed to a single node to denote the objective
function, connected to all the other nodes in the graph.

4.1.3 Encoding and Decoding Instances

Encoder One of the challenges in machine learning applications to Combinatorial
Optimization is that instances have different input sizes. So, the encoder must be able to
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cope with these variations to produce high-quality features. Of course, this is also the
case in many other applications, for instance, in natural language processing, texts may
differ in size, but there is no consensus as to what a good feature extractor for MILP
instances looks like, contrary to other domains where variants of Recurrent Neural
Networks or Transformers have become the de facto standard encoders.

We depart from previous approaches to Lagrangian prediction [234]] restricted to
instances of the same size and follow more generic approaches to MILP encoding such
as [90, [189, [132]] where each instance is converted into a bipartite graph, described in
detail in Section and further encoded by GNNs to compute meaningful feature
vectors associated with dualized constraints. The Energy-Based modeling does not
inherently require the use of a GNN. In principle, any suitable encoder architecture
could be employed to map an instance representation to a latent vector for each dualized
constraint. However, we choose to adopt a GNN due to the suitability of the bipartite
graph representation, introduced in Section This representation enables us to
encode optimization instances in a way that is both scalable across varying instance sizes
and well-suited for neural network processing. Furthermore, it provides a consistent
feature representation for each dualized constraint, independent of the total number
of constraints, by leveraging information from both variables and constraints. Each
MILP is converted to a bipartite graph composed of one node for each variable and one
node for each constraint. An edge exists between a variable node n,, and a constraint
node n. if and only if v appears in c. Each node (variable or constraint) is represented
by an initial feature vector e,,. We use features similar to those proposed in [90], see
Section 4.1.2] for more details. Following [189], variables and constraints are encoded
as the concatenation of variable features followed by constraint features, of which only
one is non-zero, depending on the type of nodes.

To design our stack of GNNs, we take inspiration from structured prediction models
for images and texts, where Transformers [247] are ubiquitous. However, since our
input has a bipartite graph structure, we replace the multi-head self-attention layers
with simple linear graph convolutions [[138]]. Alternatively, this layer can be seen as
masked attention, where the mask is derived from the input graph adjacency matrix. We
follow [[189]], which showed that residual connections [[109], dropout [233]], and layer
normalization [[12] are essential for the successful implementation of feature extractors
for MILP bipartite graphs. More details on these components can be found in Chapter 2]

Before the actual GNNGs, initial feature vectors {e,, }, are passed through an MLP
F to find feature combinations and extend node representations to high-dimensional
spaces: h? = F(e,,), Vn. Then, interactions between nodes are taken into account by
passing vectors through blocks, represented in Figure [4.3] consisting of two sublayers,
that compute for each node representation h?, an updated representation hi**

 The first sublayer connects its input via a residual connection to a layer normaliza-
tion LN followed by a linear graph convolution CONV, followed by a dropout
regularization DO:

h,, = h, + DO(CONV (LN (h,)))

The graph convolution passes messages between nodes. In our context, it passes
information from variables to constraints, and conversely.
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» The second sublayer takes the result of the first one as input. It connects it
with a residual connection to a sequence made of a layer normalization LN, a
Multi-Layer Perceptron (MLP) transformation, and a dropout regularization DO:

h, = h], + DO(MLP(LN(h},)))

The MLP is responsible for finding non-linear interactions in the information
collected in the previous sublayer.

This block structure, depicted in Figure[4.3] is repeated several times, typically five
times in our experiments, to extend the locality domain. The learnable parameters of a
block are the parameters of the convolution in the first sublayer and the parameters of
the MLP in the second sublayer. Remark that we start each sublayer with normalization,
as it has become the standard approach in Transformer recently [42]]. We note in passing
that this has also been experimented with by [90] in the context of MILP, although only
once before the GNN input, whereas we normalize twice per block, at each block.

Finally, the GNN returns the vectors associated with dualized constraints {h.}..
Each vector h. is interpreted as the concatenation of two vectors [2,,; z,] from which
we compute 2. = 2, + exp(2z,) - € where elements of € are sampled from the normal
distribution. This concludes the implementation of the probabilistic encoder g .

Decoder Recall that, in our architecture, from each latent vector representation z, of
dualized constraint ¢, we want to compute the scalar deviation J.. to the CR dual value
Ac so that the sum of the two improves the Lagrangian bound given by the CR dual
solution. In other words, we want to compute d such as w = [Ap + 8] gives a good
Lagrangian bound LR(7). Its exact computation is combinatorial and problem-specific.
E]It is important to note that, since sampling is performed in the latent space rather than
directly in the output space, this does not directly affect the structural properties of the
Lagrangian multiplier vector. Therefore, to ensure that the predicted multipliers satisfy
the required structural constraints, it may be necessary to apply a projection operator
that enforces the prediction to be in the appropriate subspace. This is the approach
we take for dualizing inequalities, since the corresponding multiplier vector must be
non-negative.

The probabilistic nature of the encoder-decoder can be exploited further. During
evaluation, when computing a Lagrangian relaxation, we sample constraint representa-
tions 5 times from the probabilistic encoder and return the best LR(7) value from the
decoder.

Link with Energy-Based Models in Structured Prediction The Lagrangian sub-
problem usually decomposes into independent subproblems due to the dualization of
the linking constraints. Hence, we want to find an optimal variable assignment for each
independent Lagrangian subproblem, usually with local combinatory constraints, for its
objective reparameterized with 7. This approach is typical of structured prediction: we
leverage neural networks to extract features to compute local energies (scalars), which

3LR(m) is described in Section and Sectionfor the two problems on which we evaluate our
method.
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Graph Neural Network Block

Non-Linear Transformation

Figure 4.3: The Graph Neural Network block. The first part is graph message-passing:
we apply layer normalization to node features, then convolution over the instance’s
bipartite graph representation, and finally, dropout. The second phase consists of
normalization, a Multi-Layer Perceptron in parallel over all the nodes of the bipartite
graph, then dropout. Both sublayers use residual connections between input and output.
We apply this block several times to improve feature representations.

are used by a combinatorial algorithm to output a structure whose objective value can be
interpreted as a global energy. For instance, this is similar to how graph-based syntactic
parsing models in natural language processing compute parse scores (global energies) as
sums of arc scores (local energies) computed by a Recurrent Neural Network followed
by MLPs, where the choice of arcs is guided by well-formedness constraints enforced
by a maximum spanning tree solver, see for instance [[137]]. Thus, the decoder is local to
each dualized constraint, and we leverage subproblems to interconnect predictions:

1. We compute LMs (local energies) m. = [A.+ fo(2.)]+ for all dualized constraints
¢, where fg is implemented as a feed-forward network computing the deviation.

2. For parameter learning or if the subproblem solutions or the Lagrangian bound
are the desired output, vector 7r is then passed to the Lagrangian subproblem
which compute independently and in parallel their local solutions x and the
corresponding values are summed to give the global energy LR().

4.1.4 Initial Features

To extract useful features, we define a network based on graph convolutions presented

in Figure [f.T]in the line of the work of [90] on MILP encoding. We detail the initial

node features {e,, },, of the MILP-encoding bipartite graph presented in Section m
Given an instance of the form:

(P) minw ' (4.52)
Az (z) b (4.5b)
z e R} x NP (4.5¢)

we consider the following initial features for a variable x;:

* its coefficient w; in the objective function;
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* its value in the primal solution of CR;

« its reduced cost ¢; = w; — AT(A;|C;) in CR where (A;|C}) is the vector
constructed by appending A, the 4t column of A, and C;, the 4t column of
C'. As previously A is the dual solution of C'R;

* a binary value indicating whether x; is integral or continuous.

. > .
For constraint a " x (_) b of (@.3b), we consider:

* the right-hand side b of the constraint;
* the value of the associated dual solution in C'R;
* one binary value indicating whether the constraint is an equality or an inequality;

* one binary value stating whether c is dualized in the relaxed Lagrangian subprob-
lem.

We use for each node n of the bipartite graph a feature vector e,, € R8. The first
four components are used to encode the initial features if n corresponds to a variable
and are set to 0 otherwise. In contrast, the next four components are used only if n is
associated with a constraint and are set to 0 otherwise.

4.2 Evaluation

We evaluate our approach on two standard Operations Research problems: Multi-
Commodity Fixed-Charge Network Design and Generalized Assignment. In terms of
Lagrangian relaxation, we consider the relaxation of equality constraints in the Multi-
Commodity Fixed-Charge Network Design problem, which leads to an unconstrained
(that is, unrestricted-sign) Lagrangian multiplier vector. For the Generalized Assign-
ment problem, we relax inequality constraints, resulting in a nonnegative Lagrangian
multiplier vector. We review briefly the two problems and the data generation process.

4.2.1 Multi-Commodity Fixed-Charge Network Design

Given a network with arc capacities and a set of commodities, Multi-Commodity Fixed-
Charge Network Design (MC) involves activating a subset of arcs and routing each
commodity from its origin to its destination, possibly fractionated across several paths,
using only the activated arcs. The goal is to minimize the overall cost incurred by
activating arcs and routing commodities. This problem has been used in many real-
world applications for a long time, see for instance [[172] for telecommunications. It is
NP-hard, and its CR provides poor bounds when arc capacities are high. Hence, it is
usually tackled with Lagrangian relaxation-based methods [3].

A typical instance of the MC problem is defined by a directed simple graph D =
(N, A), a set of commodities K, an arc-capacity vector ¢, and two cost vectors r and
f. Bach commodity k& € K corresponds to a triple (0¥, d*, ¢*) where of € N and
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(6,7,3)

(4,6,2)

(4,4,2) (7,8,4)

Figure 4.4: Example of MCND instance. It has two demands, the first in red and
the second in blue. The labels next to the demand sources s; and destinations d; are
the amount of flow volume that should go out (if positive) or into (if negative) the
sources/destinations. The labels over the edges represent (in order) the capacity of the
edge, the fixed cost, and the routing costs (assumed in this example to be the same for
the two commodities).

4 52 -3
Q (0,4) O (1,4) (3,0)

Figure 4.5: Solution of the example MCND instance represented in Figure .4] The
red edges are the ones used by the first commodity, and the ones in blue are only by
the second one. Both the commodity uses the purple edge. The labels over the edges
represent the amount of flow sent by the commodities through the edge.
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d* € N are the nodes corresponding to the origin and the destination of commodity
k, and qk € N* is its volume. For each arc (i,j) € A, c¢ij > 0 corresponds to the
maximum amount of flow that can be routed through (4, j) and f;; > 0 corresponds to
the fixed cost of using arc (i, 7) to route commodities. For each arc (i, j) € A and each
commodity k € K, rfj > 0 corresponds to the cost of routing one unit of commodity k
through arc (1, j).

An MC solution consists of an arc subset A’ C A and, for each commodity & € K, in
a flow of value ¢* from its origin o to its destination d* with the following requirements:
all commodities are routed only through arcs of A’, and the total amount of flow routed
through each arc (¢, j) € A’ does not exceed its capacity c;;. The solution cost is the
sum of the fixed costs over the arcs of A’ plus the routing cost, the latter being the
sum over all arcs (4, j) € A and all commodities k € K of the unitary routing cost rl’?j
multiplied by the amount of flow of k routed through (3, j).

This problem has been studied in several works considering different relaxations.
In particular, we will consider the Flow relaxation [85] for the MC problem. For the
MC problem, other relaxations exist that are more expensive to solve than the Knapsack
relaxation but can provide even better bounds. The reader is referred to [3]] for more
details.

In many cases, the Bundle method is an efficient solver for such decomposition
approaches [|83]].

MILP formulation

A standard model for the MC problem [91] introduces two sets of variables: the
continuous flow variables xfj representing the amount of commodity k that is routed
through arc (7, j) and the binary design variables y;; representing whether arc (i, j) is
used to route commodities. Denoting respectively by N;" = {j € N | (i,j) € A} and
N7 ={j € N| (j,i) € A} the sets of forward and backward neighbors of a vertex
1 € N, the MC problem can be modeled as follows:

. k .k
Ty (Z (fijyia‘+ Z%%) (4.6a)

i,j)EA keK
Sooaki— Y ak =tk Vie N,Vk e K (4.6b)
jeN;} JEN;
> aly < ey, v(i,j) € A (4.6¢)
keK

Vk e K,V(i,j) € A

k _
zij =0 st.i=dForj =0 (4.6d)
0<al <¢ Y(i,j) € A,Vk € K (4.6e)
yij € {0,1}, V(i,j) € A (4.6f)
where
¢ ifi=o",
by =4 —¢F ifi=d,

0 otherwise.
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The objective function {@.6a) minimizes the sum of the routing and fixed costs.
Equations (#.6D)) are the flow conservation constraints that define the flow of each com-
modity through the graph, since > 0. Constraints are the capacity constraints
ensuring that the total amount of flow routed through each arc does not exceed its
capacity or is zero if the arc is not used to route commodities. Equations (#.6d) ensure
that a commodity is not routed on an arc entering its origin or leaving its destination.
Finally, inequalities are the bounds for the @ variables, and inequalities (#.6f) are
the integer constraints for the design variables.

Lagrangian Knapsack Relaxation

A standard way to obtain good bounds for the MC problem is to solve the Lagrangian
relaxation obtained by dualizing the flow conservation constraints in Formu-
lation (#.6). Let 7* be the Lagrangian multiplier associated with node i € N and
commodity £k € K. Note that, since the dualized constraints are equations, 7r has
no sign constraints. Dualizing the flow conservation constraints gives the following
Lagrangian subproblem LR (7 ):

. k _k
min iiYij + 755
() satisfies (50— @60 (,Z (f”y” 27 ”)
K2

J)EA kek

T Dm0 D el )l

kEK ieN JEN JEN,

Rearranging the terms in the objective function and observing that the Lagrangian
subproblem is decomposed by arcs, we obtain a subproblem for each arc (i, j) € A of
the form:

(LRij (71')) I:IEll;l fijyij + Z wfjxf] 4.7a)
' kEK;;
Z LL'Z- S cijyij (47b)
keEK;;
0<al <" Vk € Kij (4.7¢)
Yij € {0, 1} 4.7d)

where wf; = rj; — nf + 7F and Ky = {k € K | j # oF and i # d*} is the set of

ij

commodities that may be routed through arc (i, 7). Lagrangian duality implies that
LR(m)= Y LRy(m)+>_ > xfof
(i,4)€A iEN keK

is a lower bound for the MC problem, and the best one is obtained by solving the
following Lagrangian Dual problem:

(LD) max LR(w)

TERN XK
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30

Figure 4.6: An example of a Generalized Assignment Instance with 3 bins (in white)
and 8 objects (with different colors). The bins have different capacities (here 20, 30, and
15) while the objects have different sizes (written inside the boxes). Each edge should
have a label, corresponding to the reward associated to assign an object to a bin. In this
figure, we did not write them as it would be too confusing.

Solving the Lagrangian Subproblem For each (i,j) € A, LR;;(w) is a MILP
with only one binary variable. If y;; = 0, then, by and @79), «f; = 0 for all
k € K;;. If y;; = 1, the problem becomes a continuous knapsack problem. An optimal
solution is obtained by ordering the commodities of K;; for decreasing values wf“]
and setting for each variable 7} the value max{min{q", cij — >y x 1) ¢"}, 0} where
K (k) denotes the set of commodities that preceded k in the sorted list. This step can be
done in O(|K;;|) by computing a:fj in the computed order. Hence, the complexity of
the continuous Knapsack problem is O (| K;;|log(|K;;|)). The solution of LR;; () is
the minimum between the cost of the continuous Knapsack problem and 0.

Note that the continuous knapsack can be solved in linear time [205]].

4.2.2 Generalized Assignment (GA)

Generalized Assignment (GA) [216] consists, given a set of items and a set of capaci-
tated bins, of assigning items to bins without exceeding their capacity to maximize the
assignment’s profit. GA is a well-known problem in Operations Research and has nu-
merous applications [194] such as job-scheduling in Computer Science [[14], distributed
caching [81]], or even parking allocation [[184]. We refer to [41] for a survey.
Lagrangian relaxationhas already been studied for this problem [128}[191].
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Figure 4.7: An example of a solution of the GA instance in Figure #.6] Each object
is assigned to exactly one bin without exceeding the capacity of the bin. The optimal
solution will be the one that minimizes the costs (not represented in Figure .6).

A GA instance is defined by a set I of items and a set J of bins. Each bin j is
associated with a certain capacity c;. For each item 4 € I and each bin j € J, p;; is the
profit of assigning item 7 to bin j, and w;; is the weight of item ¢ inside bin j.

MILP formulation

Considering a binary variable x;; for each item and each bin that is equal to one if and
only if item 7 is assigned to bin j, the GA problem can be formulated as:

max Z Zpijxij (4.8a)

el jeJ
d ay<i Viel (4.8b)
jeJ
Zwijxij S Cj V] eJ (48C)
i€l
zij € {0,1} Viel, Vje.. (4.8d)

The objective function (#.8a) maximizes the total profit. Inequalities (#.8b) assert
that each item is contained in no more than one bin. Inequalities ensure that the
sum of the weights of the items assigned to a bin does not exceed its capacity. Finally,
constraints assure the integrality of the variables.
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Lagrangian Relaxation

A Lagrangian relaxation of the GA problem is obtained by dualizing (@.8b). For i € I,
let 7; > 0 be the Lagrangian multiplier of inequality (.8b) associated with item . For
each bin j, the subproblem becomes:

(LR;(m)) m;xxz Z(pij — Ti)Tij
iel jeJ
> wigwi; < ¢
il
Tij € {0, 1} Viel

It corresponds to an integer Knapsack with |I| binary variables. For w > 0, the
Lagrangian bound LR () is:

LR(m) =Y LR;(m)+ Y m.

jeJ i€l
The Lagrangian Dual can then be written as:

min LR()

11|
ﬂeRzo

Solving the Lagrangian Subproblem In this case, the Lagrangian subproblem re-
duces to a binary Knapsack problem [61]]. To solve it, we implement a well-known
dynamic programming algorithm [175]. This algorithm is pseudo-polynomial, and more
precisely, for a subproblem associated with the bin j € .J, the complexity is O(|I] - ¢;).
Hence, the cost to solve all the subproblems is O(|I| - >_ ¢ ; ¢;).

4.2.3 Dataset collection details

In this sub-section, we provide further details on the dataset construction.

Multi-Commodity Fixed-Charge Network Design

While the Canad dataset is the standard and well-established dataset of instances for
evaluating MC solvers [37], it is too small to be used as a training set for machine
learning, where large collections of instances sharing common features are required.
Thus, we generate new instances from a subset of instances of the Canad dataset [57],
which we divide into four datasets of increasing difficulty. The first two datasets, Mc-
SML-40 and Mc-SML-VAR, contain instances that all share the same network (20 nodes
and 230 edges) and the same arc capacities and fixed costs, but with different values
for origins, destinations, volumes, and routing costs. Instances of the former all involve
the same number of commodities (40), while for the latter, the number of commodities
varies from 40 to 200. Dataset Mc-B1G-40 is generated similarly to Mc-SML-40 but
upon a bigger graph containing 30 nodes and 520 arcs. Finally, Mc-BI1G-VAR contains
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examples generated using either the network of Mc-SML-40 or the one of Mc-B1G-40,
with the number of commodities varying between 40 and 200.

We generate four datasets of 2000 instances each (1600 for training, 200 for valida-
tion, and 200 for test) based on Canad instances [57]. These Canad instances have been
chosen such that the Lagrangian Dual bound can be solved in nearly one second for the
easiest instances and in approximately one hour for the hardest ones.

The first two datasets Mc-SML-40 and Mc-SML-VAR consider the same graph with
20 nodes and 230 edges, and the same capacity and fixed cost vectors. The first dataset
has only instances with 40 commodities, whereas the second one has instances with 40,
80, 120, 160, or 200 commodities.

Origins and destinations are randomly chosen using a uniform distribution. Volumes
and routing costs are randomly sampled using a Gaussian distribution. Sampling uses
four different means  and variances o2, which are determined from the four canad
instances p33, p34, p35 and p36 (having the same graph and fixed costs as the datasets)
in order to generate four different types of instances: whether the fixed costs are high
with respect to routing costs, and whether capacities are high with respect to commodity
volumes.

The third dataset Mc-B1G-40 is generated similarly to the first one, except that it is
based on a graph with 30 nodes and 520 edges. The means and variances used to sample
the fixed costs and the volumes are determined from the four Canad instances p49, p50,
p51, and p52. The number of commodities is equal to 40 in each instance.

Finally, the last dataset Mc-BIG-VAR contains instances with either the graph, capac-
ities, and fixed costs of the first two datasets or the ones of the third dataset. Sampling
uses either the Canad instances p33, p34, p35, and p36 or the Canad instances p49, p50,
p51, and p52 for determining the mean and variance, depending on the size of the graph.
The number of commodities varies from 40 to 200 if the graph is one of the first two
datasets and from 40 to 120 otherwise.

Generalized Assignment

We create two datasets of GA instances containing 2000 instances each (1600 for
training, 200 for validation, and 200 for test). The first one contains instances with 10
bins and 100 items, whereas the second one contains instances with 20 bins and 400
items. For each dataset, all instances are generated by randomly sampling capacities,
weights, and profits using a Gaussian distribution of mean y and variance o2, and the
values are clipped to an interval [a, b]. The values u, 02, a and b are determined from
the instance €10100 for the first dataset, and from the instance €20400 for the second
oneﬂ More specifically, for each type of data (capacities, weights and profits), o and
o2 are given by the average and variance of the values of the instance, and @ and b are
fixed to 0.8 times the minimum value and 1.2 times the maximum value, respectively.

“4Instances 10100 and 20400 are GA instances generated by [268]] and available athttp: //www.all
cm.is.nagoya-u.ac.jp/~-yagiura/gap/.
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4.3 Numerical Results

We want to evaluate how our Lagrangian bound prediction compares to an iterative
model based on subgradient and how useful the former is as an initial point to warm-
start the latter. For that purpose, we choose a state-of-the-art proximal Bundle solver
provided by SMS++ [[88]], which allows writing an MILP in a block structure fashion
and using decomposition techniques to solve subproblems efficiently. We also compare
our approach with the CR computed using the CPLEXE] optimizer.

All MILP instances for which we want to evaluate our model are first solved by
SMs++. For an instance ¢ we denote 7, the LMs returned by SMS++.

4.3.1 Hyperparameters and Implementation Details

In this subsection, we provide technical details about the framework implementation.
More specifically, we define the model architecture in terms of the number of layers,
layer sizes, and activation functions. We define hand-crafted features for the baseline
methods used in our comparison, such as MLP and k-NN, which do not rely on GNN-
based automatic feature extraction. We detail the optimizer hyperparameters used during
training, as well as the GPU and CPU specifications of the machines employed in the
numerical experiments. Finally, we define the metrics and the validation techniques
used to analyze the quality of the provided solutions.

Model Architecture For all datasets, the MLP F' from initial features to high dimen-
sions is implemented as a linear transformation (8 to 250) followed by a non-linear
activation. Then, we consider a linear transformation of the size of the internal repre-
sentation of nodes for the GNN. The choice of this hidden space dimension is based on
preliminary results indicating that higher dimensions (as 500) do not yield improved
performance and require longer computation times. In contrast, smaller dimensions (as
125) result in weaker performance.

For MC, we use 5 blocks, while for GA, we use only 3. The observation that fewer
layers suffice for GA can be explained by examining the bipartite graph representation
of the instance, which is denser in GA than in MC. For example, in MC, a variable
mfj appears in three constraints involving several variables, while in GA, each variable
x;; appears in |I| + |J| constraints. Hence, the propagation needs fewer convolutions
for the information to be propagated. Additional information regarding the number of
blocks is provided in Tables[d.5|and[4.6] at page[81]

The hidden layer of the MLP in the second sub-layer of each block has a size of
1000. The decoder is an MLP with one hidden layer of 250 nodes, which is the same
size as the hidden representation.

All non-linear activation functions are implemented as ReLU. Only the one for the
output of the GA is a softplus. The dropout rate is set to 0.25.

Features used for MLP and k-NN Since MLP and k-NN do not use a mechanism
such as convolution to propagate the information between the representations of the

Shttps://www.ibm.com/products/ilog-cplex-optimization-studio
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dualized constraints, we consider for initial features of each dualized constraint all the
information provided to our model, as well as a weighted linear combination of variable
feature vectors. The weights are the variable coefficients in that constraint, and each
feature vector contains the initial features provided to our model for the variable and the
following additional information:

¢ the mean values and deviations of the coefficients of that variable on the dualized
constraints and the non-dualized ones,

* its lower and upper bounds.

Optimiser Specifications We use RAdam as optimizer, with learning rate 0.0001
for MC and 0.00001 for GA, a Clip Norm (to 5) and exponential decay 0.9, step size
100000 and minimum learning rate 10~ 10,

GPU specifics For the training on the datasets Mc-SML-40, Mc-B1G-40, GA-10-100,
and Ga-20-400, we use Nvidia Quadro RTX 5000 GPUs with 16 GB of RAM. To train
the datasets Mc-SML-VAR and Mc-B1G-VAR we use Nvidia A40 GPUs accelerators with
48 GB of RAM. To test performance, we use Nvidia A40 GPU accelerators with 48Gb
of RAM for all models and datasets in validation and test sets.

CPU specifics The warm start of the proximal Bundle in SMS++ needs only CPU;
the experiments are done on an Intel Core i7-8565U CPU @ 1.80GHz x 8.

Metrics We use the percentage gap as a metric to evaluate the quality of the bounds
computed by the different systems, averaged over a dataset of instances Z. For a system
returning a bound B, for an instance ¢ the percentage GAP is:

1 «— LR(x?) - B,
100 x — Y =0l P
72 Li()

GAP measures the quality of the bound B,, and is zero when B, equals the optimal
Lagrangian bound.

Data for Evaluation We divide each dataset of 2000 instances into train (80%),
validation (10%), and test (10%). Parameters are learned on the training set, model
selection is performed on the validation set, and test proxies for unseen data. Results
are averaged over three different random initializations.

4.3.2 Bound Accuracy

Table . T|reports the performance of different Lagrangian multipliers prediction methods
on our 6 datasets. We compare the bound returned by CR, and the bound of the
Lagrangian subproblem obtained with LMs computed by different methods:

¢ LR(0) is the LR value computed with LMs set to zero.
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* LR(CR) is the LR value computed with LMs set to the CR dual solution.

* LR(k-NN) is the LR value computed with LMs set to the average value of LMs
from the train set returned by a k-NN regressor.

* LR(MLP) is the LR value computed with LMs returned by an MLFE] instead of
the GNN-based encoder-decoder.

* Ours, that is, the LR value computed with LMs set the output of our encoder-
decoder. As written in the previous section, we sample 5 LM assignments per
instance and return the best LR value.

Let us observe that all baseline methods, except for LR(0), require solving the CR
to generate their predictions. This implies that their runtime is at least as large as that
of solving the CR itself, and therefore always greater than or equal to both C'R and
LR(CR), as they also require solving the Lagrangian subproblem. Moreover, baselines
that exploit information from the CR are only useful if they lead to a smaller GAP. When
such methods yield worse GAP values, as in the case of LR(k-N N), this indicates that
the prediction fails to effectively leverage the information from the CR, rendering the
approach ineffective in practice.

All the approaches considered here are one-shot, meaning they provide a bound in
a non-iterative way, without any time limit. Some of these approaches also produce a
vector of Lagrangian multipliers that can be used to warm-start an iterative solver for
the Lagrangian Dual, thereby enabling the computation of more accurate solutions. A
comparison of different initialization strategies for such a solver, specifically the Bundle
method, is presented in Table

For all datasets, our method outperforms other approaches. Our model can reach
2% difference with BM on Mc-SML-40, the easiest corpus with a small fixed network
and a fixed number of commodities. This means that if we can accept an average 2%
bound error, one pass through our network can save numerous iterations. The margin
with other methods is quite large for MC datasets where the CR bound is far from the
optimum, with a gap reduction ranging from 77% (Mc-BI1G-VAR) to 84% (Mc-SML-40)
depending on the dataset. For GA, where the CR is closer to the optimum, our model
still finds better solutions. Even though the gap absolute difference may seem small, the
gap reduction from the second-best model LR(CR) ranges from 30% (GA-10-100) to
449% (GA-20-400), a significant error reduction.

Compared to more straightforward ML approaches, we see (i) that retrieving LM
values from k-NN is not a viable solution, even when the validation instances are close
to the training instances (Mc-SML-40), k-NN cannot find meaningful neighbors, and
(ii) the graph feature extractor (GNN) is paramount: the LR(MLP) architecture seems
unable to deviate LMs consistently from the CR solutions. It can even perform worse
than CR or LR(CR) (GA-20-400).

Regarding speed, LR(0) is the fastest since it simply amounts to solving the relaxed
Lagrangian subproblem with the original costs. Then CR and LR(CR) are second, the
difference being that for the latter, after solving CR, the dual solution A associated with

% Additional initial features are used, as shown in Section
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Table 4.1: Bound accuracies of different one-shot methods on test sets, averaged over
instances. All methods, except for LR(0), require solving the CR to make predictions.
Therefore, in these cases, their runtimes must be greater than that of the CR.

Dataset Methods GAP % time (ms)
CR 12.99 90.63
LR(0) 100.00 0.35
McC-SML-40 LR(CR) 12.97 90.98
LR(k-NN) 38.80 219.42
LR(MLP) 10.70 142.48
ours 2.09 120.96
CR 22.29 283.63
LR(0) 100.00 1.32
MC-SML-VAR LR(CR) 22.29 285.03
LR(k-NN) 44.12 371.51
LR(MLP) 16.71 369.61
ours 4.42 374.20
CR 15.94 22091
LR(0) 100.00 0.75
Mc-BIG-40 LR(CR) 15.85 229.57
LR(k-NN) 54.57 334.99
LR(MLP) 13.67 556.89
ours 4.20 283.40
CR 20.66 287.20
LR(0) 100.00 1.37
Mc-BIG-VAR LR(CR) 20.63 288.55
LR(k-NN) 49.74 886.91
LR(MLP) 16.14 515.60
ours 4.77 374.78
CR 1.91 9.59
LR(0) 3.13 0.44
GA-10-100 LR(CR) 0.79 10.15
LR(k-NN) 1.07 11.70
LR(MLP) 0.78 51.71
ours 0.55 16.19
CR 0.44 71.40
LR(0) 2.70 7.51
GA-20-400 LR(CR) 0.27 78.80
LR(k-NN) 0.43 89.68
LR(MLP) 0.28 114.41
ours 0.15 124.96

the dualized constraint is used to compute the LR(Ap). Slowness for LR(MLP) and
LR(k-NN) is mainly caused by additional feature extraction. discussed in Section[#.3.1]

4.3.3 Warm-starting the Bundle Method

We want to test whether the Lagrangian multipliers predicted by our model can be used
as an informed starting point for an iterative solver for the Lagrangian Dual (LD), namely
the Bundle method as implemented by SMS++. The Bundle method is stabilized with
a quadratic penalty, assuring a smooth objective at the expense of longer computation
times. We hope our model can produce good starting points and thus avoid many early
iterations.

In Table [4.2) we compare different initial LM vectors on the validation set of Mc-
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Table 4.2: Impact of initialization for a Bundle solver on Mc-BiG-VAR. We consider
initializations from the null vector (zero), the CR duals (CR), and our model (Ours).

i zero CR Ours
time (s) # iter. time (s) # iter. time (s) # iter.
le-1 34.34 (+81.22) 90.12 (£52.41) 31.67 (£75.12) 83.00 (£50.73 ) 16.09 (+42.79) 60.39 (£ 41.37)
le-2 68.80 (£188.21)  141.43 (£112.72) 62.09 (£171.71)  133.26 (£109.60 ) 36.10 (£ 106.22) 105.93( & 97.04)
le-3 100.71 (£288.16 ) 188.14 (£167.33) 89.26 (£251.15)  179.40 (£170.15) 57.23 (£ 177.24) 143.36 (+ 142.58)
le-4  105.03(£298.53)  207.90(£198.92) 101.14 (£283.52)  200.42 (£197.60 ) 63.25(£190.47)  159.42 (£ 162.32)

BIG-VAR for the Bundle method. We run our Bundle solver until the difference between
LR(7*) and the current bound is smaller than the threshold e. We average resolution
times and numbers of iterations over instances and compute the standard deviation. We
compare three initialization methods: zero initializations, using the CR dual solutions,
and our model’s predictions.

We can see that CR is not competitive with the null initialization since the sup-
plementary computation absorbs the small gain in the number of iterations. However,
despite the additional prediction time, our model’s predictions significantly improve
over the other two initialization methods. Resolution time is roughly halved for the
coarsest threshold and above one-third faster for the finest one. This is expected, as
gradient-based methods naturally slow down as they approach convergence.

We also note that this initialization could be further improved by incorporating more
bundle information. For example, using an initial bundle of gradients and predicting a
good initial value for the regularization parameters. More generally, one could consider
learning an initialization specifically optimized to perform well over a fixed number of
Bundle method iterations. However, achieving this would require differentiating through
the Bundle method execution, which is a nontrivial challenge. These considerations
motivate adapting the Bundle method to support differentiation through its steps, thereby
leading to the research direction presented in Chapter 5]

4.3.4 Ablation Study

In this subsection, we present and discuss additional numerical experiments designed
to: better understand how the main components of our architecture affect performance,
evaluate generalization to larger instances within the same problem family, and assess
the impact of model size on performance.

Model Modifications In Table4.3|we compare three variants of our original model,
denoted ours, on Mc-SML-40 and Mc-BIG-VAR. Results are averaged over 3 runs.

In the first variant, -max, we sample a single multiplier per constraint, instead of
drawing multiple candidates per dualized constraint and selecting the best. We can see
that this has a minor impact on the quality of the returned solution. In —sum, the dual
solution values are passed as constraint node features but are not added to the output of
the decoder to produce LMs, i.e. the network must transport these values from its input
layer to its output. This has a significant negative impact on GAP scores. In the third
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Table 4.3: Ablation studies comparing the prediction of our model (-ours) with
predicting LMs, or using the same model to perform 5 predictions and take the best
(—max), or on rather than deviation from the CR (-sum), not using the CR features at
all (—cr), or replacing the probabilistic encoder by a deterministic one (-sample).

| GAP %
model | Mc-SML40  Mc-BiG-Vak
ours ‘ 2.09 4.77
-max ‘ 2.10 4.79
—sum 2.63 6.77
-cr 20.26 23.78
—-sample ‘ 2.18 5.86

variant, —cr, the CR solution is not given as input features to the network (nor added to
the network’s output). This is challenging because the network lacks a good starting
point, effectively equivalent to initializing the Lagrange multipliers to zero. The last
variant, —sample, uses the CR as ours but does not sample representations z. in the
latent domain. We interpret the vector h. associated with dualized constraint c after the
GNN stack directly as vector z., making the encoder deterministic.

We can see that the performance of —sum is just below ours, while —cr cannot
return competitive bounds. These results suggest that incorporating the CR solution as
input features is critical to the effectiveness of our architecture. In contrast, the direct
computation of the deviation instead of the full LM is not an important trait. Still, we
note that the performance of —cr should be compared with LR(0) in Table rather
than LR(CR). In that case, the GAP is reduced by approximately 80%, showing that
our model does not simply repeat the CR solutions. This means that our model could be
used without exploiting the CR solution as input information, opening our methods to a
wider range of problems and paving the way for faster models.

Finally, ~sample is a system trained without sampling at training time, i.e. the
encoder-decoder is deterministic. We see that sampling results in a slight performance
increase in both small and large instances.

Generalization Properties We test the model trained on Mc-B1G-VAR on a dataset
composed of 1000 bigger instances. They are created using the biggest graph used to
generate the Mc-BI1G-VAR dataset, but contain 160 or 200 commodities, whereas the
instances of Mc-BIG- VAR with the same graphs only contain up to 120 commodities.

In Table[d.4] we can see that our model still performs well in these instances, dividing
the gap provided by LR(CR) by four.

Number of Layers In Tables [4.5] and f.6] we present the gaps of three different
architectures with varying numbers of layers. The columns represent three different
architectures: ’Ours,” the architecture we introduce in this work; ”Nair,” the architecture
proposed by Nair et al. in [189]; and "Gasse,” the one presented in [90]. The rows
indicate an incremental number of layers from one to ten.
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Table 4.4: Generalization results over larger instances.

GAP % time (s)
# commodities Ours LR(CR) Ours LR(CR)
160 6.51 27.85 1.533 0.8915
200 7.62 30.18 1.4328 1.0889

Table 4.5: Test set 1 sample - Mc-SML-40 - GAP

#Layers | Ours Nair Gasse

1] 7.56 7.63 9.59
21 527 523 10.11
31 3.18 330 9.47
4| 262 3.06 2.72
51229 247 2.59
6| 1.90 223 2.76
71 1.80 191 2.80
8| 1.69 1.76 2.68
91 1.64 1.70 2.84
10 | 1.56 1.56 3.16

From Table 4.6 we observe that using more than four layers for GA seems to be
counterproductive. This can be explained by examining the bipartite graph representa-
tion of the instance. In the Generalized Assignment problem, the shortest path between
two different nodes associated with the relaxed constraints always consists of four
edges. For the Multi-commodity problem, there is no similar bound, as the shortest
path between two relaxed nodes depends on the specific structure of the instance. From
Table d.5] we see that adding more than six layers leads to diminishing improvements,
though we can still enhance solution quality by increasing the number of layers.

The computation times for all models and all numbers of layers are similar, ranging
from 0.012 seconds to 0.015 seconds. There is a slight increase in time with more layers.
Among the architectures, Gasse’s model is only 0.001 seconds faster than ours, which
requires approximately the same time as Nair’s model.

Gasse’s architecture is also more unstable, which could result in significantly higher
gaps with some layers compared to fewer layers. This instability may be due to the
absence of Layer Normalization, leading to very high gradient values.

Notice that the results in Table[4.5]and Table 4.6 show slight differences compared
to the ones on the main part for 5 layers, as they correspond to other training runs.

4.4 Conclusions

In this chapter, we present an approach for predicting a vector of Lagrangian multipliers.
A key advantage of our method, compared to existing approaches in the literature,
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Table 4.6: Test set 1 sample - GA-10-100 - GAP (s)

#Layers | Ours  Nair Gasse

1] 0553 0.557 0.70
20543 0.546  0.699
310533 0524 0.695
410509 0.524  0.690
510512 0517 0.682
6 | 0513 0518 0.720
710510 0511 0.785
8 1 0,512 0517  0.752
91 0511 0515 0.785
10 | 0.512 0.516  0.722

is its ability to handle instances of varying sizes, thus accommodating Lagrangian
multipliers vectors of different dimensions. This flexibility is enabled by employing the
bipartite graph representation [90] of a problem instance.

The model begins with a probabilistic encoder that processes the bipartite graph
representation and produces one latent representation per dualized constraint. Instead of
outputting a deterministic representation, the encoder predicts the mean and variance
of a Gaussian distribution, from which multiple latent representations can be sampled.
These sampled representations are then passed through a decoder, which operates in
parallel across the dualized constraints and predicts deviations from the corresponding
components of the dual solution in the Lagrangian relaxation.

When dualizing inequality constraints, we apply a final non-negative activation
function to ensure that the predicted Lagrangian multipliers remain feasible.

It is worth noting that using the CR solution constrains the applicability of our
approach to instances where the CR is relatively easy to compute, but at the cost of
producing weaker bounds compared to those obtained from Lagrangian relaxation.
These limitations motivated us to investigate more generalizable, generative alternatives.
Preliminary steps in this direction are discussed in the future work outlined in Chapter [6]

We demonstrate that our approach can be trained to maximize the Lagrangian bound,
eliminating the need for optimal multipliers during training. Furthermore, we show how
this framework can be interpreted as an Energy-Based Model (EBM), highlighting a
novel application of EBMs to the Lagrangian relaxation setting.

Numerical results show that our method can significantly improve the quality of
the primal solution obtained from dualized constraints in the CR and outperforms
standard machine learning baselines. Additionally, we evaluate our predictions as
initializations for the Bundle method, an exact solver of the Lagrangian Dual. Our
approach consistently reduces both the number of iterations and the time required to
solve it within a specified accuracy.
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Chapter 5

Machine Learning for
Non-Smooth Optimization

This chapter presents two machine learning-based approaches to tackle non-smooth
optimization. The first approach is developed to work explicitly inside the Bundle
method, while the second approach takes inspiration from it to provide a differentiable
framework that enables end-to-end differentiation using Automatic Differentiation
techniques. We restrict ourselves to dualizing only equality constraints, which leads to
a Lagrangian Dual that is an unconstrained concave problem. It is possible to extend
the presented approach to handle dualization of inequalities. However, this case is not
explicitly considered in the numerical results, and we prefer to discuss it in Chapter [6]

As discussed in Chapter [T} the Bundle method is an iterative algorithm needing,
at each iteration, the selection of a scalar that simultaneously serves as the step size
and the weight of the regularization term in the Master problem. This regularization
parameter, denoted by 7 in Chapter [T} controls both the step magnitude and the update
direction, and significantly influences the formulation and solution of the Dual Master
problem. Traditionally, selecting this parameter relies on heuristic approaches, referred
to as n-strategies, often requiring an extensive grid search to achieve high performance.
Some of those are presented in Chapter I}

The first approach presented in this chapter constructs an 7-strategy using a machine-
learning model. Although it can be seen as hyperparameter tuning of the 7 regularization
in the Bundle method, the approach differs from classic approaches of Algorithm
Configuration. In the latter, algorithmic parameters are mainly chosen using techniques
that do not require differentiation during algorithm execution, as they generally need to
run the algorithm for all the datasets with several parameter configurations. Our approach
differs from Algorithm Configuration approaches as it is closer to the Amortization
and Unrolling methods. We propose an objective-based learning approach that requires
differentiation through the algorithm execution.

An RL approach could tackle this problem, but we take advantage of a heuristic
differentiation of our algorithm to propose an Unrolling approach. A key challenge
while keeping the structure of the Bundle method is differentiating the search direction

85
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with respect to the regularization parameter. To address this problem, we obtain an
analytical formulation of the solution to the Dual Master problem (T.20) as a function of
the same iteration regularization parameter, allowing us to approximate the derivative of
this step. This methodology aligns with techniques presented in Chapter [3| concerning
differentiation through the Karush-Kuhn-Tucker (KKT) conditions.

However, this approach does not account for dependencies on previous search
directions, as it only expresses the direction in the current iteration as a function of the
regularization parameter at the same iteration. Additionally, standard Bundle method
implementations involve non-differentiable computations, such as piecewise-constant
operations with uninformative derivatives.

To overcome these limitations, the second approach replaces these non-differentiable
components with smoother approximations based on a neural network model. Specif-
ically, we propose a neural network that approximates the search direction using in-
formation from the current bundle and the step size. This neural network replaces
the n—strategy heuristic and the Dual Master problem (T.20) that computes the search
direction from the current bundle and the n—strategy. This neural network integrates
an approach inspired by the Bundle method, as outlined in Algorithm I] incorporating
soft-updates for the stabilization point. The result is a differentiable approach that
enables end-to-end differentiation using Automatic Differentiation techniques. This
approach is presented to handle unconstrained concave optimization problems, which
corresponds, in the Lagrangian relaxation, to dualizing equality constraints. It can be
seen as a learned optimizer for unconstrained concave maximization, thus belonging to
the Learning-to-Optimize domain.

Both approaches are based on unrolling techniques, briefly presented in Section[3.2.4]
of Chapter 3] consisting of reformulating the algorithm execution to allow for a compu-
tation graph of the process that can be used during back-propagation. Furthermore, both
share the same loss function, which is presented in Section

The following sections focus separately on the two approaches, presenting the
provided prediction and showing how we can differentiate through the execution of those
methods. More precisely, Section[5.1.1]is dedicated to learning only the regularization
parameter 7), while Section [5.1.3]is dedicated to the approach that is based on machine
learning.

5.1 Overall Architecture

Since the decisions taken by the two approaches are made dynamically during algorithm
execution, Reinforcement Learning [236] is inherently relevant. To enable the applica-
tion of standard Reinforcement Learning techniques, the problem has to be framed as a
Markov Decision Process [210]. However, this is usually done when differentiating the
execution is not possible. We primarily focus on algorithm differentiability, allowing
the use of a conventional learning approach by directly differentiating the objective
function. Recent advancements in machine learning have explored differentiating the
output of iterative algorithms with respect to iteratively selected parameters, as discussed
in the section on Amortization in Chapter 3] Building upon this research direction, we
explicitly demonstrate how it is possible to differentiate through the execution of the
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Bundle method.

Amortized optimization radically differs from Reinforcement Learning. The former
is trained using supervised learning techniques, such as minimizing the expected error
or directly maximizing/minimizing the objective function over many instances. In con-
trast, Reinforcement Learning approaches are trained to maximize the expected reward
through exploration, relying on trials and rewards that are not directly differentiable.

The approaches presented in this section address problems of the form:

Inax ¢(m)

where ¢ : R™ — R is a concave function and we have no constraints in the feasible
region. We recall that the Lagrangian Dual is an application case. As we are considering
unbounded 7, this corresponds to dualizing equality constraints. Observe that the
first approach can also be applied as it is to @ > 0, that is, dualizing inequalities.
Instead, the second approach needs some modifications to be applied in the setting of
non-negative solutions. Anyway, these modifications are not explicitly tested in the
numerical experiment, hence we restrict ourselves to w € R™.

In both proposed approaches, we assume that a fixed maximum number of iterations,
T, is performed, and the learning problem can be formulated as the maximization of
the final objective function. Learning-to-Optimize approaches aim to maximize the
function:

T
Ly(W) = wd(m(W)) (5.1)

where (W) denotes the trial point at iteration ¢. It is computed by a neural network
parametrized by W. This neural network architecture depends on the approach, and
is described in Section[5.1.1]and[5.1.3] Furthermore, we consider ~; = 47—, where
0 <~ < 1is ahyperparameter.

The function £~(W) is a linear combination of the function values ¢ evaluated at
different points along the trajectory. Consequently, its subgradient with respect to W
can be written as

T
aW*CPY(W) = {Z’tht RS aW(b(ﬂ-t(W)) fort = 13 T 7T} .
t=1

Thus we only need the subgradients Oy ¢ (7w, (W)) for each ¢ < T.

Although the function ¢ (7 (W)) could be non-concave, and so the standard sub-
gradient can be undefined. This poses no practical issues when using it as a loss function
for learning: optimization proceeds without global-convexity guarantees, seeking only
parameter improvements rather than certificates of global optimality. Moreover, the func-
tions involved are differentiable almost everywhere, which makes this approximation a
good practical choice.

In the smooth case, Clarke’s [53, Chapter 2] chain-rule results [[104] justify the
approximation

ow o(m(W)) = {v1-v2 : v1 € Ox (m(W)), v2 € Ow m(W)}.  (5.2)
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Moreover, at any point where W — ¢(m;(W)) is differentiable, the approximation
in (5.2) becomes formally correct. Given that the set of non-differentiable points has
Lebesgue measure zero, Equation serves as a valid surrogate gradient in learning-
based optimization, where the focus lies on improving parameters rather than certifying
global optimality. Hence, this gradient approximation is effective for a learning task.

Here, O, ¢(mi(W)) is a subgradient of ¢ at 7r;(W), which can be computed under
the assumption that ¢ is concave. Moreover, we can observe that it is already computed
during the execution of the Bundle method. As discussed in Chapter[d] in the context
of Lagrangian relaxation, we can find a subgradient by solving the subproblem to a
given Lagrangian multiplier. Moreover, the subgradient corresponds to the violation
of the relaxed constraints in the subproblem’s primal solution for the given multipliers.
Further details can be found in Equation #.3)) in Section[d.1.1]

In the case in which 7, (W) is differentiable, to compute the gradient Oy (W), it
is necessary to unroll the iterative process used to obtain 7r;(W'). The exact computation
of this gradient depends on the algorithm structure, and it is discussed in detail in the
following sections.

5.1.1 Learning the step size

For the first approach, we aim to learn a sequence n = (W) = (:(W))¢—1,... 1 of
regularization parameters. We follow here the Bundle method structure presented in
Pseudocodeand we demonstrate how to obtain a subgradient for a point 7w, (W) found
at iteration ¢, considering 1 provided by parameters W. Here 7;(W') depends on the
entire sequence 77 generated by the model with parameters W during the execution.

We start by explicitly writing the trial point 7r;(W') obtained in an iteration ¢t < 7.
For each iteration ¢ < T" we can define the partition of the iteration indexes into serious
steps and null steps as {1,2, -+ , ¢} = Igg(t)UIns(t), as defined in Chapter[1} Serious
steps refer to iterations in which the stabilization point is modified, while null steps
correspond to those in which it remains unchanged. Further details can be found in
Chapter|T}]

Now that we have defined the terms, we can express the trial point as follows

T (W) = 70 + 1 (W)w'™ (1:(W)) + Yoo e (W)w® (e (W)

tlelss(f/—l)

where w®") (1, (W)) = Dies, g,;@l(t) (nw (W) is the new search direction, obtained
as a convex combination of the gradients in the bundle 5, with coefficient provided by
the solution 8(*) of the Problem (T.20).

It is important to note that for ¢; < t5, the direction w(*2) (1, (W')) depends on the
entire trajectory up to iteration ¢5. This means it depends on all the associated 7;, (W).
This dependence is indirect in the sense that, for ¢; < to, w(t2) depends on 7;, only
through the gradient g¢, and linearization error o, found at iteration ¢;.

Here, we forget this dependence by supposing that the search direction depends only
on the regularization parameter of the same iteration. We will discuss this dependence

in Section[5. 1.2}
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Figure 5.1: NN architecture predicting only the 7, at each iteration.

Decoder

Using the property of linearity, we can decompose the associated subgradient as:

owmi (W)= > dw e (W)w™ (e (W) + dw (e (W)w ™ (e (W))).

t/GIss(t—l)

Thus, it suffices to compute dyy (1, (W)w®) (1, (W))) for all ' € Isg(t — 1) and for
t'=t.
For a generic t/, using the product rule:

dw (e (W)w™) (1 (W) = s (W) () (e (W) +0w (mer (W)™ (1 (W)).

Here Ow (1 (W) can be computed using Automatic Differentiation, as it only depends
on the NN architecture used to predict 7.

NN architecture 7, (W) We employ a Recurrent Neural Network consisting of first a
Recurrent Neural Network layer, such as LSTM, to predict the mean p € R" and the
variance o € R” that will be the mean and the variance of a Gaussian distribution used
to sample a hidden representation h € R”. We recall that the output of an RNN model
is a sequence, but we always use the last one dynamically during the bundle execution.
We use a parametrization trick to allow differentiation through this distribution, already
presented in Equation .4] of Section [.1.T] The size of the hidden representation, as
well as other hyperparameters of the network, will be discussed in Section[5.2.1] This
parametrization trick provides a Gaussian distribution with mean p;, and variance op,
leading to h ~ N (pp, Idp © op).

The hidden representation h is provided as input to an MLP that predicts a scalar
value. This scalar is ensured to lie within a range (between 0.00001 and 10000). More
details on feature selection and hyperparameters of the NN architecture are provided in
Section[5.21

The search direction w® (1, (W)) depends also on the regularization parameter
n:(W), as it is obtained from the solution of the Problem (I.20). We can apply the
chain rule, obtaining

B (w™) (13 (W) By (s (W)).

The contribution Gn(w(t/) (ny (W))) complicates back-propagation. In the next Section,
we provide further details on how to approximate that term.
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5.1.2 Details on Computing Derivatives of the Direction for Learn-
ing the Step Size

This section is dedicated to computing the subgradient of the direction w (1) with
respect to the regularization parameters 7, of different iterations. We first provide
details on computing the approximation of the subgradient of w(*1) with respect to the
regularization parameters 7;, at the same iterations. Then we show why we did not
consider dependencies for further iterations to # ;.

Approximating 9,, w® (1)

We denote by ) = 8(*)(5,) the solution of the DMP at iteration ¢, found using the
regularization parameter ;. In [82], one method is presented to solve the Dual Master
problem iteratively and efficiently. Denoting by B the set of indices for which the
solution of the Dual Master problem (T.20) at iteration ¢ is positive, that is Hl(t) > 0. We
recall that ) is an element of the | 3;|-dimensional Simplex, and so each component is
comprised between 0 and 1, and the components of the vector sum to one. This vector
represents the coefficients of the convex combination of the gradient in the bundle,
which will be used to obtain the new trial direction. Moreover, we denote by G the
matrix of the gradients contained in the bundle, with columns g; for i € ;. Given a
set of indexes B, we define the matrix Qp = GgG p obtained as the product of the
gradient matrices G restricted to the bundle components in B.
When @) g is invertible, the solution found in [82] can be written as:

-1
6\ — 0! [ e 1 (eQBO‘Be _ QBH . (5.3)

ng,le Nt ng,le

Where e is the vector, of size | B|, with all the components equal to one, & is the vector
composed of the linearization errors for the indices in B and le is the inverse of the
matrix G ' G restricted to the indexes in B, and so it is well defined.

By definition of B, Hgt) = 0 for i ¢ B. This allows us to find two vectors égt) and

éét) such that the components in B can be computed as:

—1 -1
;(t Qpe 5t — ez ap
(6§ ))B - eQ]}e and (05 ))B B QBl ( eCj;E;le € aB)

and they are zeros outside B.
Hence, we can express 8(*) (1, ) locally as:

- 1 -
60 (n) =6+ 6
t

Note that éi” and éé” does not depend to 7;. Thus, we can compute the subgradient
as:

1 -
3n9(t) (me) = _729?)
Ur

The problem, in the case in which rank(Qp) < |B|, is that @ 5 is not invertible, and so
we use this gradient strategy only when B defines a set {g; };c 5 of independent vectors
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and we put otherwise this subgradient to zero. This is a simple strategy, and further
improvement can be discussed. Using the resolution process presented by Frangioni [82],
only two cases are possible for the solution 8(*) of the Dual Master problem (T.20). The
first case is the one previously used to approximate the subgradient. It is the case in
which the non-zero components B are such that {g; };c is a set of linearly independent
vectors. The second case, in which we can still express 0 as a function of ¢, s when
the non-zero components in B are such that removing only one vector {g; }c 5 the set
contains only linear independent vectors. Using the resolution process presented by
Frangioni [82]], no other cases are possible, as when we obtain more than two linearly
independent vectors, we can start a reduction process at the end of which we find one of
the previous cases.

Other simple strategies are possible. For example, to compute the gradient, we can
remove indices from B, associated with small values of 01@, up to obtaining a set of
independent vectors.

Given 61" (1),) the search direction w® (1) = 7, 90" (n;) = GO (n,) and
then

1 ~
d, (Ge(ﬂ (m)) = =GO

Approximating 0,, w®) fort; <t,

As seen in the previous section, we compute the derivative 8,,t'w(t), that is a gradient
of the search direction with respect to the regularization parameter 7; of the same
iteration ¢, using an analytical formulation. This section focuses on an analysis of the
dependencies of the search direction with respect to the 7 parameters of other iterations.

As previously mentioned, these cross-iteration dependencies are omitted in practical
computations. Therefore, this section does not propose practical approximation methods
for these dependencies. Instead, it offers a formal justification for their omission.

Here, we slightly abuse notations by allowing the sum and product of sets to denote
the corresponding set of all possible sums or products of their elements. Technically,
subgradients are sets, not vectors, but in practice, we typically work with a single vector
from the subgradient.

We also employ the chain rule at several moments, which is non-trivial for subgra-
dients, even in the context of concave/convex functions. Furthermore, the functions
involved in the resolution process may not be convex or concave. This implies that the
classical subgradient may not exist, and we must instead rely on a generalized notion of
local subgradient, such as Clarke subgradient [53]].

Observe that 0, " w(2) = () when t1 > to. Since 1, does not influence the optimal
value w(t2) of prior iterations, the subgradient is null for £; > ¢». Hence, we only focus
on tl < tg.

It is possible to observe that the direction w(*2) depends on ¢, only through the
trial point 7wy, = 7,1 + T}tlfw(tl). More precisely, we can see that the solution of
the Dual Master problem [1.20|depends only on the gradient g;, and the linearization
error v, associated with this point. Hence, to compute 9, w(*2), it becomes necessary

to compute the dependencies of this gradient and linearization error: 6,”1 gtlagtl w(t2)
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and 8y, a, Do, w'),

For both 9, w(®2) and g, w(*2) we can use the same approximation presented in
Equation [5.3|for estimating d,_ w(t2),

For the term 0, o, we recall the definition of linearization error

Qi = dj(ﬁ'h—l) - ¢(7Tt1) =+ g;[ (Trtl - ﬁ'tl—l)'

Since the stabilization point is fixed before iteration ¢, it is independent of 7, :
T
8”7t1 Oty = _aﬂtl ¢(7Ttl) + aﬂtl (gtlﬂ-tl)

Using the trial point definition 74, 41 = 7, 1 + ntlw(tl) we can rewrite this as

aﬁnatl = _ann (b(ﬁ-h*l + nt1w(t1)> + 877t1 (gt—z (ﬁ-h*l + ntlw(tl))) :

Applying the chain rule:
) =0 Oy, (T 1+ nw ™) + 0y, (g (Re, -1 + 1y w™)
ﬁtlatl 7T¢(7Tt1) ntl(ﬂ-tl 1 , w ) Mt gtl(ﬂ-tl 1 T, W ) .

Using the product rule for derivatives and the definition of g;, = Or¢(m,) we
obtain

a’h] Q= 79751877“ (ntlw(tl))+am1 (g;[) (ﬁt1*1+77t1w(t1))+g;[am1 (ﬁ-zfl + thw(m)> '

By linearity and using the fact that 7;, _; does not depends on 7;, we have

8"7t1 Qg = _gt—llanh (ntlw(tl))+ant1 (gl) (ﬁ-tlfl—'—ntlw(tl))—i—gt—[anﬁ (ntlw(tl))

and so
Oy, oy = O, (9) (7,1 + N, wt)).
We then reduce the problem to computing the gradient of g,, with respect to 7, .
We have
O, Gty = O, O (1) = Oy, On (e, —1 + my, w'™)).

Even if ¢ were differentiable, this would yield

6711,1 gi, = 87]11 vﬂ'gb(ﬂ'h) = 8?71,1 vﬂ'd)(ﬁ'h—l + ntlw(tl)) =
= v?‘rd)(ﬁ-tlfl + nt1w(tl))a77t1 (ntlw(tl)) = Vzr(b(ﬂ-tl)ann (w(tl))w(tl)'

Hence, computing 87“1 g:, and 8%1 oy, ultimately requires evaluating the Hessian
02 ¢(my,), i.e., a second-order subgradient. Even in the twice-differentiable setting, this
will be expensive.

However, this is not feasible in general. While an approximation of this second-order
term might be theoretically possible, such an investigation falls beyond the scope of this
thesis.
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5.1.3 Bundle Network: a Machine-Learning Based Bundle Method

In this section, we propose an alternative machine learning-based approach that si-
multaneously learns both the step size (i.e., regularization parameter) and the search
direction. Unlike the previous approach, we do not provide an analytical differentiation
of this approach, as it is based solely on operations that can be differentiated using
automatic differentiation tools commonly employed in machine learning. Furthermore,
this approach allows us to capture longer-term dependencies compared to the method
presented in the previous section. This is particularly interesting because this method
could be combined with one that learns the initialization, such as the one presented in
Chapter [d This aspect is not explicitly developed in this thesis.

For this approach, we restrict ourselves to the case in which the Bundle is used to
solve unconstrained optimization problems. In the case of the Lagrangian relaxation, this
corresponds to dualizing equality constraints. Further generalizations are possible, but
not implemented, and we refer to Chapter [6|for more details. We begin by considering
an initial point 7wy € R™ and setting the initial stabilization point 7t equal to the starting
trial point 7y. Next, we compute the subgradient gg = d¢(mp) and the linearization
error og = 0, since the trial point and the stabilization point coincide. We add this
information to the bundle.

At each iteration, we proceed as follows. First, we compute the features associated
with the last component added to the bundle; we do not back-propagate through the
feature extraction. More details on feature extraction can be found in Section [5.2.1]
These features are fed as input to a neural network, which outputs a vector 0 e AlB:l
in the |§;| = t dimensional simplex, and a step size 7;. More details on the network
architecture can be found in Section The vector 8*) is used, as in the standard
Bundle method, to compute the search direction w® as a convex combination of the
gradients in the bundle f;, i.e. w") = Z‘lit(l) 9?) g;. This direction is then used to
update the trial point as w11 = 7 + ntw(t). We then compute the objective value, the
subgradient, and the linearization error in the new trial point, adding this information to
the bundle:

Bir1 = Be U{Gt+1, 1, Ve41}-

In the classic Bundle method, presented in Chapter [I] the stabilization point at
iteration ¢ is updated whenever

S(mest) —o(@) >m-(n- 1| 0gil 2+ 3 b))

i€ P4 1€ P

where the right-hand side corresponds to the objective value of Problem (T.20), scaled
by a constant 0 < m < 1, typically small (e.g., 0.01). When m = 0, this rule updates
the stabilization point whenever the new trial point yields a strictly better value of the
objective function ¢. Even using the simpler condition ¢(7r;1) > ¢(7;) still leads to a
non-differentiable update mechanism. Indeed, this operation is piecewise constant, and
its derivative, when it exists, is zero almost everywhere.

We begin by observing that, denoting by r = arg max((¢(m11), ¢(7:))) the one-
hot vector encoding equal to (1,0) if ¢(mw41) > @(7¢) and (0, 1) otherwise. So it is
a vertex of the two-dimensional simplex. The update of the stabilization point can be
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rewritten as:
TT(Wt+1, 71',5) = T'17Tt+1 + rgﬁ't.

Still, there is a concavity/convexity issue with the updates as the stabilization point
remains the same since ¢(7m11) > ¢(7;) and it moves with non-continuity to 711
when the previous condition is no longer satisfied. Moreover, the gradient is zero almost
everywhere, and it is not defined at the singular point. A common strategy in machine
learning to obtain smoother approximations of the arg max operator is to replace it with
a soft version, such as the softmax. To ensure smooth updates of the stabilization point,
we apply the softmax of the objective value of the stabilization and the new trial point.
Hence, we consider:

r = softmax(p(mit1), (7))

and the updates are performed as previously. This corresponds to choosing a possibly
different convex combination of the two vectors, which will not necessarily be a vertex
of the two-dimensional simplex but any point in it.

We iterate up to a certain fixed number of iterations 7". The rationale behind the fact
that we consider only the objective values to update the stabilization point, ignoring the
term associated with the objective value of the Dual Master problem, can be found in the
fact that the SS formula, line [I2]of Algorithm|T] is crucial for the abstract convergence
proofs, but setting m = 0 does not substantially affects the practical behavior of the
method.

Algorithm 3 Machine learning-based version of the Bundle method|I] that substitutes
the resolution of the Master problem and the non-continuous operations with a smoother
version based on neural networks.

1: Choose my, T

2 T T > Initialize stabilization point

3: (o, @0, v0) ¢ (9¢(mo), 0, P(0))

4: Po < {(g0, 0)}

s:fort=1,---,T do

6: o = features_extraction (5;) > We do not back-propagate through the feature
extraction

7: N, Y — nn(ey) > Output of a neural network

8: 0 «— sparsemaz(~v®) > Approximate Solution of the DMP

9: w) Zlfi’(‘) giﬂgt) > New trial direction

10: Ty — 7+ nw® > Compute new trial point

1 (gepr,0uq1,v041)  — (00(mg1), 0(Fe) — d(miga) + gl (mepr —
7), P(mi41)) > Gradient and linearization error

12: Bir1 < B U (Gra1, 0pr1,0441) > Update Bundle

13: i1 < softmax(d(mis1), ¢(71)) © (i1, ) > Smooth updates of the
stabilization point

14: Update o; Vi =0, - -+, | B¢ > Update the linearization errors

15: end for
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Step and Direction Architecture

This section provides further details on the architecture, schematically presented in
Figure which is used to predict 77, and ).

Given the features ¢, € R? at the current bundle 3;, a Recurrent Neural Network,
specifically an LSTM layer, maps this vector to a hidden space by predicting six vectors
of size h. We denote these vectors as Hhg, s Ohg, s by, s Ohy, s Bhy, s Oh,, € R", and they
represent the mean and the variance used to extract, by sampling through a Gaussian
distribution, the hidden representation of the keys and the queries used to represent the
current iterations as in attention mechanisms [247], as well as the hidden representation
for 7;. More precisely, to obtain the hidden representations hg,, hy, , h,, we perform
the same parametrization trick as for the other model, presented in Equation[d.4] The
size of the hidden representations and other hyperparameters of the network will be
discussed in Section[3.2.11

The sampled representations are then fed into three independent Multi-Layer Per-
ceptrons that predict a scalar 7; and two vectors g; and k;.

The vectors q; and k; are, respectively, the query and the key of the current iteration.
The vector k; is stored in memory for use in subsequent iterations. Using g; and all the
vectors {k;} yit(l), we can compute a scalar for each component in the bundle using an
Attention Layer defined as follows:

YO = (k] @) € R,

To obtain the approximate solution of the Dual Master problem [I.20] we pass this
vector to a sparsemax function:

0 = p(y1)) e A

here A! = {0 e 0,1+ | e = 1} is a simplex setand ¢ : R™ — A™ isa
function assuming values in the simples, some examples are softmax or sparsemax.
This yields a vector 8(*) whose components lie in [0, 1] and sum to one.

Sparsemax [176]] has already been discussed in Section [3.2.2] It is a differentiable
function that allows mapping an n-dimensional vector to one element of the simplex. It
is similar to softmax, presented in Section[2.3.4] but it allows for obtaining a sparser
vector, in the sense that more components are equal to zero.

5.2 Numerical Results

In this section, we compare our approaches to classical iterative methods for solving
the Lagrangian Dual, specifically those based on subgradient information. In particular,
we evaluate their performance against both simple subgradient-based methods and the
classical Bundle method, using different heuristic n-strategies.

More specifically, we consider ADAM and Gradient Ascent using a simple strategy
for regularizing the step size: if we pass more than two iterations without improving the
objective value, we divide the step size by two. These two baselines are well-established
in the context of concave maximization (or convex minimization) and serve as relevant
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Figure 5.2: Schematic representation of the architecture used to predict the step-size 7,
and the weights 8(*) for the convex combination of the gradients in the bundle at the
current iteration.

points of comparison. They are of particular interest because they are typically faster
than the Bundle method, relying only on the latter point (for Descent) and the gradient
of the last inserted point and the previous search direction. These two methods are
discussed in detail in Section [I.3]of Chapter I}

We further compare our approach with classic variants of the Bundle method. For the
Bundle method, we consider the four long-term 7-strategies presented in Section[I.3.3]
of Chapter[I} inspired by the ones used in the state-of-the-art bundle-based BundleSolver
component of SMS++ [88]]. With the non-constant ones, we also consider the middle-
term 7)-strategy and the short-term 7—strategy proposing increasing as 741 = 1.1 - 7,
and decreasing as 7,41 = 7 - 0.9, presented in the same Section. For all these six
classic approaches, we perform a grid search to choose the best initial parameter 7
considering different values. We evaluate the initialization of the ny parameter using the
values 10%, 103, 102, 10%, 109 and 10~!. For each fixed maximum number of iterations
(10, 25, 50, and 100), we select the value of 7 that achieves the lowest average GAP
over the test set. The results of this grid search are summarized in Table 5.1}

The values are so large, so we rescale the objective ¢ dividing the function value
using the norm /g, go of the gradient gy in the starting point o, always taken equal
to the zero vector. Note that even if the objective value changes, the optimum of the

function ¢ and \/ﬁi are the same. Exploring alternative rescaling techniques could
9o 90

be an interesting direction for future work, but this is beyond the scope of the present
thesis.

We consider the Lagrangian Dualof the Multi-Commodity Network Design pre-
sented in Section[d.2.T|of Chapter [d] We consider the same datasets as in the previous
Chapter, plus a larger dataset that was not possible to consider previously due to the
large size of the bipartite graph representation.
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For each instance ¢ on which we evaluate our model, the Lagrangian relaxation is
solved using SMS++. The obtained Lagrangian multipliers, denoted by 7, are used
for computing the GAP, already presented in Chapter 4] that serves as a measure of
optimality for all methods.

5.2.1 Hyperparameters and Implementation Details

In this subsection, we provide technical details about the implementation. More specifi-
cally, we specify the hyperparameters of the NN architecture (regarding layers, layer
sizes, and activation functions) for both architectures: the one that learns only the step
size and the one that learns the step size and the direction. We also define the features
(hand-crafted). We specify the hyperparameters for the optimizer used for the training
and the GPU and CPU specifics of the machines used for the numerical experiments.
Finally, we define the metrics and the validation techniques used to analyze the quality
of the provided solutions.

Loss functions To weigh the contributions of the different iterations, we use v =
0.999. In other works focusing on learning optimizers, as [10], this parameter is taken
equal to 1. For the first approach, we consider a slight variant for the « in the loss.
More precisely, we consider a telescopic sum only for the contributions of the serious
steps. Meanwhile, we use a smaller contribution (constant) for all the Null Steps equal
to 0.00001, which is smaller than all the (possible) contributions of the null steps
(0.00001 < 0.999'° ~ 0.990). As

Model Architecture - ML-n-Learning For all datasets, the model first predicts a
hidden representation of size 64 using a Recurrent Neural Network (LSTM, presented

in Section [2.2.4] of Chapter [2).

This hidden representation h of size 128 is provided to a a Multi-Layer Perceptron
composed of two hidden layers of size 512 and 128, considering a softplus activation
function. Then, a final output layer predicts a two-component vector. These represent
the mean and the standard deviation of a Gaussian distribution used to sample the hidden
representation of 7;. The parameter 7 is then predicted as the output of an MLP, and it
is set into a predefined interval (in between 1076 and 10%)
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Dataset Methods 10iter. 25iter. 50iter. 100 iter.
Bundle hard 100.0 10.0 10.0 10.0
Bundle balancing 100.0 10.0 10.0 100.0
Bundle soft 100.0 100.0 100.0 100.0
M Bundle constant 100.0  100.0  100.0 100.0
Descent 10.0 10.0 10.0 10.0
Adam 1.0 1.0 1.0 1.0
Bundle hard 100.0 100.0 100.0 100.0
Bundle balancing 100.0 100.0 100.0 100.0
Bundle soft 100.0 100.0 100.0 100.0
NS Bundle constant 100.0  100.0  100.0 100.0
Descent 100.0 10.0 10.0 10.0
Adam 1.0 1.0 1.0 1.0
Bundle hard 10.0 10.0 10.0 10.0
Bundle balancing 10.0 10.0 10.0 10.0
Bundle soft 10.0 10.0 10.0 10.0
NP Bundle constant 10.0 10.0 10.0 10.0
Descent 10.0 10.0 10.0 10.0
Adam 1.0 1.0 1.0 1.0
Bundle hard 10.0 10.0 10.0 100.0
Bundle balancing 10.0 10.0 10.0 10.0
Bundle soft 10.0 10.0 10.0 10.0
NPT Bundle constant 100.0 10.0 10.0 10.0
Descent 10.0 10.0 10.0 10.0
Adam 1.0 1.0 1.0 1.0
Bundle hard 100.0 100.0 100.0 10.0
Bundle balancing 100.0 100.0 100.0 100.0
Bundle soft 100.0 100.0 100.0 100.0
M Bundle constant 100.0  100.0  100.0 100.0
Descent 100.0 100.0 10.0 10.0
Adam 10.0 1.0 1.0 1.0

Table 5.1: Best average initialization values for the 1y parameter over the test set for
all methods that require a grid search. The values {10%, 103, 102, 10!, 10°, 10~!} are
evaluated, and for each fixed maximum number of iterations (10, 25, 50, and 100), the
value yielding the lowest average GAP is selected.
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Model Architecture - Bundle Network In this case, we consider a first Recurrent
Neural Network model (LSTM), presented in Chapter [2] that goes from the features
space to predict 6 vectors of size 128. These are the means and variances used to sample
three vectors that are the hidden representation of the 7 parameter, the one for the key
for the last found component, and the one for the query for the current iteration.

Each of these three representation are then passed as input to a different decoder (so
we have here 3 different decoders), each of which has the same architecture. We only
consider a hidden layer of size 8 - 6 - 128, and we produce a vector of size 128 for the
key and the query, and only one scalar for 7;.

Features At iteration ¢, we perform a human-designed feature extraction, chosen to
provide similar information to that used by the heuristics n—strategies. We add further
features to represent the component added to the bundle in the associated iteration, and
we add further features to characterize this entry and to compare it with previously
added components. For the two approaches, we consider the same features to represent
the information gained in the last iteration. They can be divided into three categories.

Features related to iteration ¢, summarizing the optimization dynamics at the current
iteration:

* the last step-size n;_1,
* The square norm of the search direction ||w*~1)||3,

* The square norm of the search direction weighted with ;, that is 7,1 ||w = ||2.
This corresponds to the quadratic part in the DMP objective function,

* The linear part in the DMP: 23;11 0@»9?71),

+ aboolean value to see if the quadratic part is bigger than the linear part ||w¢ |3 >
t—1 _ ,(t—1)
> —1aty
* aboolean to see if the quadratic part, rescaled by a big n* = 10000, is greater
than the linear part: n*|]w®~ 1|3 > 22;11 aj9§t_1),

¢ The iteration counter .

Features describing the last trial and stabilization points. These features capture
information about the most recent trial point 7r; and stabilization point 7;:

* The objective value in the last trial point ¢(7r;) and in the last stabilization point

P(m),

* The linearization error in the last stabilization point &; and in the last trial point
Qg

* The square norm of the last trial point ||7r;||2 of the last stabilization point ||7;||2
and of the gradient in the stabilization point ||g¢||2,

¢ the square norm, the mean, the variance, the minimum, and the maximum of the
vector g,
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* the square norm, the mean, the variance, the minimum, and the maximum of the
vector ;.

Features comparing the last inserted component with the ones already contained in
the bundle:

* The minimum and the maximum of the scalar product of the gradients in the
bundle min; (g, g;) and max;(g, g;),

* The minimum and the maximum of the scalar product of the points in the bundle
min; (7, ;) and max; (7w, 7;),

* The scalar product of the last inserted gradient and the last search direction
T o (t—1)
g, w .

Optimiser Specifications We use Adam as optimizer, with a learning rate 0.00001, a
Clip Norm (to 5), and exponential decay 0.9.

GPU specifics For the training on the datasets, we use Nvidia A40 GPUs accelerators
with 48GB of RAM. We test performance on the same machine. All the variants, except
for Bundle Network, are CPU-only based. The experiments are done on the same
machine with QEMU Virtual CPU version 2.5+.

Metrics We use the percentage GAP as a metric to evaluate the quality of the bounds
as defined in Chapter 4]

Data for Evaluation We also divide each dataset used in Chapter @ composed of
2000 instances, into train (1000), validation (500), and test (500) sets. For the newly
generated dataset, the validation and training sets each consist of an equal number of
instances, while the test set consists of 100 instances. Parameters are learned on the
training set, model selection is performed on the validation set, and test proxies for
unseen data.

The higher times for ML-n-strategy in Table are due to the fact that the pre-
dictions of this model are performed on CPU. A better implementation, considering
predictions on GPU, will surely be advantageous.

5.2.2 Bound Accuracy

Table [5.2|reports the average performances of different algorithms for the resolution of
the Lagrangian Dual on our datasets. For the heuristic strategies that did not use machine
learning, we consider a grid search for the initialization of the step-size/regularization
parameter. We consider values in between 10* and 10~1, after ensuring that the best
ones lie strictly in this interval. For each fixed number of iterations (10, 25, 50 and
100), we choose the 7, associated with lower final GAP.
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Methods 10 iter. 25 iter. 50 iter. 100 iter.
GAP time GAP time GAP time GAP time

Bundle h. 20.18 0.044 6.68 0.117 284  0.269 .17 0.767
Bundle b. 17.68 0.054 6.09 0.145 1.84 0327 041 0.898

S Bundles. 17.58 0.044 6.10 0.116 1.82 0271 036 0.778
1 Bundlec. 1196 0.048 4.16  0.128 1.30 0.293  0.31 0.816
E Descent 44.66 0.008 14.11  0.021 470 0.044 224  0.093
¢ Adam 48.87 0.011 12.84 0.027 3.04 0.055 1.89  0.109
= Bundlen. 920 0.105 175 0.18 053 0.321 0.17  0.592

Bundle n-1. 283 0.088 5.15 0219 1.14 0486 0.34 1.791

Bundle h. 1827 0.094 955 0254 4.08 0.564 1.96 1.433

Bundle b. 1583 0.124 739 0334 288 0.736  0.74 1.749
% Bundles. 15.82 0.094 692 0256 258 0576 0.67 1.421
z Bundle c. 12.79 0.108  4.33 029 166 0.635 0.58 1.503
S Descent 6243 0.025 28.64 0.066 11.14 0.142 4.00 0.303
9@ Adam 5148 0.034 1542 0.086 4.74 0.17 275 0.341
LE) Bundle n. 12.60 0.138 3.28 0269 124 0496 050 0.952

Bundle n-1. 23.17 0.206 4.89  0.531 1.61 1.144 055  2.635

Bundle h. 2066 0.07 854 0.185 532 0410 288 0.986
- Bundle b. 20.67 0.084 7.37 0222 3.17 0485 1.24 1.209
~ Bundles. 20.67 007 737 0.184 3.17  0.407 1.19 1.042
© Bundlec. 19.34 0.076 564 0203 2.08 0447 0.78 1.110
2 Descent 28.53 0.023 14.12  0.058 991 0.117  8.21 0.241
Z Adam 2489 0.025 938 0.064 730 0.129 690 0.256
LE) Bundle n. 1270  0.130 341 0243 126 0436 047 0.832

Bundle n-1. 23.75 0.161 8.56 0.41 256 0837 0.82 1.834

Bundle h. 2623 0.095 999 0248 441 0550 2.23 1.386

Bundle b. 21.82 0.123 10.01 0324 346  0.695 1.08 1.652
% Bundles. 21.83 0.094 953 0253 343 0.550 1.02 1.353
= Bundle c. 1798 0.112 634 0289 266 0.627 0093 1.477
;:% Descent 54.11 0.029 2469 0.074 10.58 0.154 485 0.323
O Adam 4421 0.034 1375 0.086 542 0170 3.84 0.345
S Bundlen. 20.10 0.139 511 0.271 201 0495 070 0953

Bundle n-1. 25.83 0.198 8.22 0506 231 1.084  0.75  2.463

Bundle h. 31.16 047 16.88 1.219 102 2491 5.65 6.064

Bundle b. 31.65 0.546 14.45 1.41 7.18  2.961 3.07 6.862
% Bundle s. 31.6 0473 1392 1.219 6.82 2,629 3.01 6416
< Bundle c. 26.74 0495 1193 1263 6.17 2.699 3.17 6.504
6 Descent 48.09 0.380 41.24 0977 33.66 1.9 1944  3.856
O Adam 50.18 0396 31.88 0.934 16.88 1.902 822  3.853
S Bundle n. 29.73 0491 1434 123 805 2474 448 4.98

Bundle -1. 31.03 5424 1493 13736 7.39 29.102 3.81 63.606

Table 5.2: Comparison between our approach and several baseline methods. For the
baselines, the initial regularization parameter or step size is selected via grid search,
whereas our method requires no hyperparameter tuning and is trained for only 10
iterations. The Methods column lists various Bundle implementations (abbreviated
by their initial letters). Specifically, Bundle hard, Bundle soft, Bundle balancing, and
Bundle constant use grid search to tune the initial 7 parameter. In contrast, Bundle
network and Bundle n-learning require model training prior to use and correspond to
the two approaches introduced in this chapter.
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GAP vs Iterations MC-SmI-40 GAP vs Time MC-Smi-40
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Figure 5.3: Comparison plots of the GAP (in logarithmic scale) during the execution of
our trained neural network and different baselines in terms of iterations (in the left) and
in terms of time (in the right) for MC-SML-40 dataset.

From Table|5.2| we can see that Bundle Network outperforms other techniques in
terms of GAP for a fixed number of iterations in different datasets. Even in the dataset
MC-CANADN where it does not outperform classic Bundle methods (in terms of GAP),
it performs similarly to the Bundle method and lies between them and Adam/Descent
methods.

The model learning only 7 is less advantageous in the first iterations, but provides
performances near to the optimal n-strategy found by a grid search while considering
more iterations.

By Figures[5.3}5.6] we can see that Bundle Network needs an initialization time
that slows down the approach. These times can also depend on passages of CPU vectors
to the GPU and vice versa, and possibly they can be improved. For MC-CANADN
the performance are a bit poorer than the exact Bundle method, but still not so fair.
Nevertheless, Bundle networks generalizes well to a larger number of iterations than
those used during training (10) providing the best gaps for almost every dataset and for
a larger number of iterations the initialization times become less relevant.

From Table[5.2] we can also see that the constant 7—strategy provides almost every
time the best performance, compared to the other deterministic n—strategies. This
is a well-known characteristic of the Bundle method, as 100 iterations is a relatively
small number of iterations for an Aggregated Bundle method, making 7 tuning less
performative than a constant strategy obtained after a grid-search. This is because the
Bundle method operates in distinct phases: initially, its goal is to identify promising
directions for improvement, and later it focuses on collecting high-quality subgradients
near the optimum to certify optimality This raises an interesting question about using
multiple models to capture this Bundle behavior, which is beyond the scope of this
chapter.

5.2.3 Ablation Study

In this subsection, we compare the Bundle network trained with and without the sam-
pling strategy for the hidden representation discussed earlier. We consider also the two
alternatives to provide an element of the simplex: softmax and sparsemax. In the case
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Figure 5.4: Comparison plots of the GAP (in logarithmic scale) during the execution of
our trained neural network and different baselines in terms of iterations (in the left) and
in terms of time (in the right) for MC-SML-VAR dataset.
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Figure 5.5: Comparison plots of the GAP (in logarithmic scale) during the execution of

our trained neural network and different baselines in terms of iterations (in the left) and
in terms of time (in the right) for MC-B1G-40 dataset.
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Figure 5.6: Comparison plots of the GAP (in logarithmic scale) during the execution of
our trained neural network and different baselines in terms of iterations (in the left) and
in terms of time (in the right) for MC-B1G- VAR dataset.
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Figure 5.7: Comparison plots of the GAP (in logarithmic scale) during the execution of
our trained neural network and different baselines in terms of iterations (in the left) and
in terms of time (in the right) for MC-CANADN dataset.

in which we do not use the sampling mechanism, the hidden representations for the
queries, the key, and the step size are not predicted by sampling them through a Gaussian
distribution. Indeed, we learn the mean and the variance. Instead, it is predicted directly
by the encoder.

In the test phase, the hidden representation is not sampled for either approach.
Instead, we take the mean directly when the model predicts both the mean and the
variance.

Table 5.3: Comparison of softmax and sparsemax, with or without using the sample
strategy, or using the sample strategy only for t on MC-SML-40

Activation  Sample 10 iter. 25 iter. 50 iter. 100 iter.

t gk GAP time GAP  time GAP  time GAP  time
softmax 9.20 0.105 1.75 0.185 053 0.321 0.17 0.592
softmax X 9.78 0.104 1.85 0.187 0.56 0.321 0.17 0.592
softmax X X 10.41 0.105 1.99 0.185 0.60 0.318 0.18 0.588
sparsemax 583 0.125 57.93 0214 5747 0.361 57.29 0.661
sparsemax X 13.16 0.124 261 0212 0.80 0.359 0.24 0.655
sparsemax X X 10.51  0.126 2.07 0.214 0.60 0.363 0.18  0.662

Tables shows that, the sampling mechanism seems to be advantageous while
using sparsemax, meanwhile performances suggest to do not use it when softmax is
considered, even if the performance difference is smaller while using softmax. One
possible advantage of combining sampling with sparsemax is that this approach may
help the model escape regions where sparsemax has a zero derivative.

5.2.4 Testing on another dataset

Table [5.8] shows several interesting generalization properties of Bundle network. For
MC-SML-40 training the model on MC-SML-VAR provides better performances than
the model trained on MC-SML-40 itself. There are no other cases in which train the
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Table 5.4: Comparison of softmax and sparsemax, with or without using the sample
strategy, or using the sample strategy only for t on MC-B1G-40

Activation  Sample 10 iter. 25 iter. 50 iter. 100 iter.

t gk GAP time GAP  time GAP  time GAP  time
softmax 12.70  0.130 341 0.243 1.26  0.436 047 0.832
softmax X 12.85 0.131 334 0.244 1.22  0.436 045 0.831
softmax X X 12.88 0.131 336 0244 1.26  0.436 0.48 0.834
sparsemax 38.65 0.150 24.00 0.270 10.34 0.475 339 0.898
sparsemax X 39.40 0.150 32.37 0.270 17.76  0.474 1.58 0.896
sparsemax X X 13.27 0.150 3.50 0.272 1.40 0.479 0.51 0.905

Table 5.5: Comparison of softmax and sparsemax, with or without using the sample
strategy or using the sample strategy only for t on MC-SML-VAR

Activation  Sample 10 iter. 25 iter. 50 iter. 100 iter.

t qk GAP time GAP  time GAP  time GAP  time
softmax 12.60 0.138 328 0.269 1.24 0.496 0.50 0.952
softmax X 13.03 0.137 3.27 0.268 1.26  0.492 0.51 0.948
softmax X X 14.68 0.139 394 0.269 1.55 0.494 0.62 0.957
sparsemax 30.23  0.157 15.96  0.293 1245 0.527 11.05 1.006
sparsemax X 56.83  0.160 56.03  0.300 56.00 0.538 56.00 1.033
sparsemax X X 14.02  0.158 3.80 0.298 1.56 0.531 0.64 1.007

model on another dataset provides better performance that the model trained on the
dataset itself. Anyway there are several cases in which, in particular for 50 and 100
iterations, the model trained on a different dataset performs better than the Bundle
method obtained by the grid search.

5.3 Conclusions

In this chapter, we explore two approaches based on unrolling and amortization. The
first is a machine learning-based 7-strategy that predicts the value of the parameter 7 at
each iteration. We demonstrate how this approach can be differentiated to maximize the
objective function in an unsupervised manner. However, the gradient computation in
this case is only approximate. As confirmed by the numerical experiments, this method
performs less effectively than the second approach, which jointly predicts both the n
parameter and the new search direction. By bypassing the need to solve the Dual Master
problem at each iteration, this second method leads to a smoother optimization process
and yields more informative gradients. Moreover, it exhibits strong generalization
capabilities, maintaining robust performance even beyond the training horizon and
across different datasets for the same problem.
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Table 5.6: Comparison of softmax and sparsemax, with or without using the sample
strategy or using the sample strategy only for t on MC-BIG-VAR

Activation  Sample 10 iter. 25 iter. 50 iter. 100 iter.

t gk GAP time GAP  time GAP  time GAP  time
softmax 20.10 0.139 511 0.271 2.01 0.495 0.70  0.953
softmax X 16.79 0.141 4.78 0.273 1.68 0.499 0.63 0.956
softmax X X 16.66 0.139 4.63 0270 1.80  0.495 0.67 0.955
sparsemax 42.84  0.160 32.39  0.301 29.68 0.541 2325 1.031
sparsemax X 30.20 0.162 12.33  0.305 6.25 0.542 378 1.033
sparsemax X X 18.94 0.162 4.24 0.305 147 0.548 0.61 1.045

Table 5.7: Comparison of softmax and sparsemax, with or without using the sample
strategy, or using the sample strategy only for t on MC-CANADN

Activation ~ Sample 10 iter. 25 iter. 50 iter. 100 iter.

t gk GAP time GAP  time GAP  time GAP  time
softmax 29.73  0.491 1434 1.23 8.05 2474 448 498
softmax X 29.74 0462 1422 1.171 8.0 2.358 441 475
softmax X X 31.97 0.498 17.07 1.259 10.04 2533 5.77 5.1
sparsemax 4121 0474 21.93 1.198 1558 2413 11.94 4.857
sparsemax X 29.89 0.493 13.23  1.248 751 251 458 5.055

sparsemax X X 5891 0.463 55.04 1.156 53.94 2313 53.64  4.65
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Dataset GAP %

Test Train | 10iter. 25iter. 50iter. 100 iter.
MC-SML-40 9.2 1.75 0.53 0.17

MC-SML-VAR 8.02 1.69 0.51 0.17

MC-SML-40 MC-Bi1G-40 18.02 4.14 1.49 0.47
MC-BI1G-VAR 10.77 2.26 0.7 0.2

MC-CANADN 13.5 3.18 0.89 0.25

best baseline 11.96 4.16 1.30 0.31
MC-SML-40 19.87 5.72 2.32 1.0

MC-SML-VAR 12.6 3.28 1.24 0.5

MC-SML-VAR MC-BI1G-40 33.83 14.03 7.54 3.9
MC-BI1G-VAR 16.21 3.83 1.39 0.52

MC-CANADN 16.4 4.74 1.56 0.53

best baseline 12.79 4.33 1.66 0.58
MC-SML-40 35.09 5.78 1.63 0.62

MC-SML-VAR 56.68 25.62 8.88 3.06

MC-B1G-40 MC-Bi1G-40 12.7 341 1.26 0.47
MC-B1G-VAR 37.57 10.74 4.89 1.49

MC-CANADN 62.79 35.18 16.83 4.82

best baseline 19.34 5.64 2.08 0.78
MC-SML-40 21.50 5.48 2.07 0.85

MC-SML-VAR 21.03 7.64 2.67 0.95

MC-Bi1G-VAR  MC-B1G-40 28.39 11.15 5.87 2.94
MC-BI1G-VAR 20.10 5.11 2.01 0.70

MC-CANADN 26.51 10.07 4.58 1.44

best baseline 17.98 6.34 2.66 0.93
MC-SML-40 44.29 24.95 15.26 9.0

MC-SML-VAR 34.39 17.07 9.34 5.02

MC-CANADN MC-BI1G-40 56.38 35.08 23.79 15.33
MC-B1G-VAR 33.66 16.16 8.84 491

MC-CANADN 29.73 14.34 8.05 448

best baseline 26.74 11.93 6.17 3.17

Table 5.8: Comparison of the network with and without the sampling strategy on
different datasets. Here, we also consider the generalization properties of networks
trained on one dataset and tested on another dataset. The rows best baseline shows the
mean value (in the test set) of the Bundle variant associated with the lower gap.
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Chapter 6

Conclusions and Future
Research Directions

This chapter summarizes the main results achieved in this thesis and presents some
directions for future research. Section[6.1lis dedicated to the overall conclusions drawn
from our research, whereas Section @] outlines research avenues that have emerged
during this scientific exploration.

6.1 Conclusions

In this thesis, we focused on the domain of machine learning for optimization. The thesis
proposed a novel integration of machine learning techniques with classical optimization
frameworks, specifically targeting the prediction of Lagrangian multipliers. The first
contribution, discussed in Chapter[4] focuses on the prediction of Lagrangian multipliers.
This requires encoding an optimization instance in a form suitable for input to a machine
learning model.

Accordingly, we employ the bipartite graph representation, originally introduced by
Gasse et al. [90] and described in detail in Section[d.1.2] This representation allows for
encoding various optimization problems and handling instances of different sizes.

Starting from a simple feature representation for each node, we use a Graph Neural
Network (GNN) encoder to iteratively refine node embeddings through message-passing.
Final embeddings are retained only for the dualized constraints. Each embedding
parametrizes the mean and the variance of a Gaussian distribution from which we
sample a latent representation of each dualized constraint. These representations are fed
into a decoder, composed of a parallel Multi-Layer Perceptron, each predicting a scalar
corresponding to a predicted Lagrangian multiplier for each dualized constraint.

This model can be cast as an Energy-Based Model, as shown in Chapter 4 Numeri-
cal experiments on Multi-Commodity Network Design and Generalized Assignment
problems demonstrate that our model delivers tight bounds efficiently and generates
Lagrangian multipliers that can be used to initialize exact solvers for the Lagrangian

109
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Dual problem, such as the Bundle method. Thus, our approach belongs to the family of
amortized optimization approaches.

Next, we investigate ways to incorporate learning into the Bundle method itself.
While initialization is important, it is not the only factor affecting the performance of
the Bundle method. In Chapter [5] we start by exploring a complementary direction:
learning the regularization parameter in the Bundle method.

By rewriting the Bundle method in a sub-differentiable form, we enable gradient
approximation via unrolling techniques and dynamically learn the parameter. However,
this approach still relies on solving a quadratic problem at each iteration to determine a
search direction and includes non-differentiable operations for updating the stabilization
point.

To address these limitations, ChapterE]introduces a smoother variant of this method,
called Bundle Network. This variant replaces hard updates for the stabilization point
with soft updates and uses a learning model, based on recurrent and attention layers, to
predict the search direction at each iteration. This results in a smoother optimization
process, which achieves better performance in numerical experiments than the one
that only tunes the regularization parameter. In particular, it lowers the gaps in many
datasets for the Multi-Commodity Network Design problem. Even when the predicted
solutions provide a worse gap than the ones obtained with state-of-the-art methods, their
quality is still close. Bundle Network removes the necessity of performing a grid search
to choose the best initialization for the regularization parameter and to determine the
best strategy to handle increments or decrements of that parameter, thus providing a
significant advantage.

Moreover, this method can be used for larger instances for which the convolution
on the bipartite graph representation becomes intractable. The second approach from
Chapter [5] can be viewed as a learned optimizer. We demonstrate that the approach
has good generalization capabilities: when trained on datasets composed only of small
instances, the model still performs well on larger ones.

6.2 Future Directions

Although Chapters 4] and [5] explore different approaches, they are also complementary:
advances in one area may benefit the other. For instance, the method proposed in
Chapter 4] could serve as the initial Lagrangian multipliervector for the second approach
from Chapter[5] thereby facilitating joint training of the models. This section outlines
several open research directions that emerged during my academic journey.

Section [6.2.1] discusses the representations considered as inputs to the machine
learning model. In Chapter[dand Chapter[5] we use radically different ways to represent
information related to an optimization instance, each of which offers distinct advantages
and limitations. Here, we discuss the limitations of both approaches and explore possible
strategies for their improvement. Section [6.2.2] stems from the explorations carried
out in Chapter [5] and more particularly the second approach. Here we discuss some
problems that emerged during this research and further extensions opened up by this
exploration.
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These subsections should not be regarded as comprehensive research plans but as
preliminary research notes.

6.2.1 Instance Representation

In Chapters[dand 5] we explore different strategies to represent an optimization instance
such that it can serve as input to a neural network. Throughout, we focus on repre-
sentations that support datasets of varying sizes and are adaptable to different types of
optimization problems.

The bipartite graph representation considered in Chapter[dhas proven to be effective
for modeling optimization instances of diverse sizes and providing them as input to neu-
ral networks. In Chapter[5] we instead take advantage of inserting our prediction inside
an iterative resolution process, where, at each step, hand-crafted feature representations
are computed for each newly inserted component, exploiting task-specific knowledge.

Problematic of the Bipartite Graph Representation

The bipartite graph representation automates feature extraction by relying on simple
characteristics defining the variables and constraints of the optimization problem.

However, it also presents significant limitations. In particular, because the graph
contains one node per variable and one node per constraint, message-passing operations
become computationally infeasible for large-scale instances.

Solutions for General Graphs The Graph Neural Network (GNN) community
has proposed several strategies to address scalability issues. These methods include
subgraph-based training techniques [89], dropout mechanisms [195], convergence-
guaranteed sampling methods [254], as well as dimensionality reduction via vector
quantization [[101} |68]] and Sobolev-norm-based approaches to sparse convolutions [97]].

Architectural innovations have also been introduced, such as filters with efficient
precomputation [217]], and sparse attention mechanisms with Lg regularization in
GATs [273]]. Other research directions explore transfer learning for GNNs [[141]], and
the impact of sparse matrix storage formats [211].

Domain-Specific Strategies for Optimization Instances General-purpose GNN
techniques may not be optimal for our setting. Our application involves bipartite graphs
where predictions are required only on a subset of nodes. Since the graph encodes
an optimization instance, we may leverage domain-specific structures to compress the
representation while preserving the quality of computed features.

Many optimization problems exhibit a block diagonal structure, at least partially.
For instance, in Lagrangian relaxation, families of constraints often involve only subsets
of variables, interconnected by other families of constraints. This observation motivates
a two-level strategy: first, performing convolutions within these smaller blocks, and
then aggregating information across blocks via a higher-level graph.

However, exploiting sparsity at the adjacency matrix level could be insufficient.
The real challenge lies in identifying structures within the bipartite graph that allow us
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to condense information in some part of the graph, useless for direct predictions, for
example, inspired by Hierarchical GNN [231].

Thus, an important question is how to define and exploit such structures to enable
effective message-passing on substantially smaller graphs.

Dependency on the Continuous Relaxation Another limitation of the approach
presented in Chapter []is its dependence on Continuous relaxation (CR).

Our method enhances the bounds obtained from CR by feeding solution informa-
tion into a neural network. However, solving the CR itself may be computationally
prohibitive or may yield the same bounds as a Lagrangian relaxation. Anyway, our
experiments suggest that features related only to the instance are insufficient for strong
predictive performance.

Solving the Lagrangian subproblem for a single vector of Lagrangian multipliers
is often faster than the resolution of the CR. However, the CR is just one way of
deriving Lagrangian multipliers. A natural question thus arises: how can we enhance
feature representations by leveraging solution information obtained through alternative
approaches?

This is a non-trivial challenge, as solving this task could become the task itself. In
the sense that the approach presented in Chapter [d] already provides a way to predict a
Lagrangian multiplier vector. Nonetheless, this prompts the idea of considering some
kind of generative process that utilizes information gained from the Lagrangian subprob-
lem to enhance feature representations. Yet, this also establishes a clear connection with
the second approach discussed in Chapter [5] which further highlights the significance of
how we compute the features for this methodology.

Challenges with Hand-Crafted Features

Automating feature extraction is highly desirable. First, it would eliminate the need for
human expertise, and second, it could lead to representations better tailored and more
efficient for particular tasks.

To illustrate a key limitation of manually designed feature logic, we examine a
scenario that initially motivated our investigation into feature quality. In particular,
we suggest modifying our approach to add new components to the bundle only when
necessary.

For instance, let us consider the case where a newly visited point lies on the same line
as a previously visited one, as illustrated in Figure[6.1} This case is interesting because
it highlights how two points can share identical gradient information. This means that
they have the same component in the quadratic part of the Dual Master problem [I.20]
but one point will have a higher coefficient in the linear part, which results in higher
linearization error. This implies that in the optimal solution of the Dual Master problem,
the associated coordinate will always be equal to zero. Therefore, it is sufficient to keep
only the point with the lower linearization error, since the solution of the Dual Master
problem, and consequently, the search direction, will remain unchanged.

We attempted to integrate this idea, but the resulting framework of the Bundle
Network provides poorer performance. This may be attributed to the feature encoding
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being too weak to achieve previous performance levels. This underscores the importance
of a richer and dynamically updated feature representation.

6.2.2 Bundle Network Extensions

In this section, we discuss modifications to the Bundle Network for different purposes.
First, we present some general-purpose extensions inspired by the classical Proximal
Bundle method. These may require a more appropriate representation of the visited
points, as preliminary experiments suggest that the current representation is insufficient.
We will then conclude by examining potential achievements aimed at extending our
approach to meta-learning. This may involve introducing modifications inspired by
Bundle methods for non-convex optimization problems.

Extension to Constrained Problems

Our Bundle Network implementation is limited to unconstrained concave or convex
optimization problems.

From the perspective of Lagrangian relaxation, this restriction corresponds to dual-
izing only equality constraints. However, many practical problems involve inequalities,
and extending the Bundle Network to handle them is an interesting next step. Concretely,
if we introduce only inequality constraints, the Lagrangian Dual inherits non-negativity
requirements on its multipliers. In other words, we move from solving the Dual Master
problem in Equation (T.20) to the non-negative multiplier variant in Equation (I.19) (as
presented in Chapter [I).

To maintain the smooth multiplier updates that motivate the Bundle Network, we
can assure non-negativity simply by enforcing the new trial point to be non-negative
component-wise. In practice, one can achieve this by applying a non-negative activation
function to each tentative multiplier update. This mean that line [I0] of Algorithm [3]
become:

Tyl < G'(ﬁ't + ntw(t))

where o is an activation function, assuming non-negative values, as ReLU or Softplus,
applied component-wise to the vector 7, + n,w®).

When the feasible set involves more complex constraints, as general polyhedra or
nonlinear regions, a direct extension is less straightforward. One promising idea is to
incorporate a projection operator onto the feasible multiplier set at each iteration, thus
ensuring validity of the dual variables without sacrificing smoothness. We leave the
detailed development and analysis of such projections to future work.

Removing Outdated Components

In classical Bundle methods, some techniques are considered to avoid adding redundant
points and to regularly remove outdated points. Components that no longer influence
the search direction after many consecutive iterations are removed. Even the bundle
size could be fixed, forcing the removal of the more useless components. This prevents
the bundle from growing uncontrollably. Points that describe the function far from the
current stabilization point are typically discarded after being inactive for many iterations.
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Figure 6.1: This figure represents a case in which we do not want to add a new
component to the bundle, as 7; and 74, share the same sub-gradient. Instead, we
would like to update the information by changing the stabilization point and updating
the function value and the linearization error with the information in 7, 1, which should
also become the new stabilization point.

By dynamically maintaining a compact bundle with an enhanced feature repre-
sentation, we could further reduce the prediction space and improve scalability. Let
us observe that this is easy to implement. At inference time, it is possible to simply
remove the associated components from the bundle. At training time, all the information
should be maintained to properly perform the back-propagation. Anyway, this is easy to
implement as we can use an adaptive mask to choose which component to consider and
which to remove.

Bundle Network for non-convex Optimization and Meta Learning

There is a growing interest in applying the Bundle method for optimization problems
arising from the machine learning community [150]. Variants of Proximal Bundle
methods [139] are used to optimize complex, non-differentiable loss functions often
encountered in machine learning [[196].

Recent research on Bundle methods for non-convex problems [[63}162], opens the
possibility to use the Bundle variants for machine learning problems. Bundle methods
have been applied to improve the training of SVMs [56], especially for large-scale
problems [[126, 243|]. Extensions of Bundle methods have also been proposed for
multiclass SVMs, where Bundle methods can handle a larger number of constraints
efficiently [78]].

Bundle Network for non-convex Optimization A natural question that arises is:
how to adapt the Bundle Network for non-convex functions? In this context, several
modifications should be considered. First, since the loss function may be non-convex,
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it would be necessary to implement specific techniques to prevent the model from
becoming trapped in a local optimum that is not globally optimal.

Figure[6.2]illustrates a simple example of a non-smooth and non-convex objective
function. We start from the stabilization point shown in green at iteration ¢, and we
assume we already have the information related to the red line in the bundle. Moving
rightward in the following iteration, two different settings can be considered. If we find
the new trial point in blue, we escape from the bad local optimum, and the information
provided by the red line becomes obsolete and should be discarded. When the blue
point becomes the new stabilization point, the linearization error associated with the
point in the red line will be negative, whereas, for convex functions, linearization errors
are always non-negative. This negative error provides a simple criterion for identifying
outdated information, related to other locally concave parts of the function, possibly
leading to a worse local optimum.

If the new trial point is the red one, since its objective value is lower than that of
the green point, we do not update the stabilization point immediately. At this stage, we
cannot determine whether the red point leads to a better local optimum. In this case,
additional exploration techniques might be necessary to avoid becoming trapped in a
bad optimum.

¢ ¢

™ .

— *
T T T4l T Tt4+1 o*

T

Figure 6.2: Example of a non-convex function with two possibilities in which the Bundle
could escape or not through a local optimum. The green point is the current stabilization
point. If at the next iteration we find the blue point and we change the stabilization point,
we have to suppress the information related to the green point to converge to the global
optimum. If we encounter the red point, the stabilization point remains unchanged,
and it becomes necessary to implement exploration techniques to escape from the local
optimum.

Bundle Network for Meta Learning A clear and compelling application in this
context is training a neural network using the Bundle Network framework. In other
words, we want to solve, using Bundle Networks, the optimization problem of selecting
the best parameter configuration for a neural network that minimizes a specific loss
function. In this case, instead of maximizing the Lagrangian subproblem value, we
minimize the mean loss function value in a given dataset. The solution will not be
Lagrangian multiplier vectors, but the parameter configuration of the neural network.
Our meta-learning task, then, is to determine the parameters of the optimizer in such a
way that it provides effective updates for solving this learning problem.
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Let us observe that, in general, learning problems do not require additional con-
straints. This highlights a complementary research direction to the one already discussed:
here, we aim to apply our approach to more elaborate objective functions without intro-
ducing additional constraints to the feasible region.

Making Predictions in the Dual Space Andrychowicz et al. [10] directly make
predictions in the solution space, eliminating the need for explicit feature extraction.
This is made possible by considering the input component-wise in the space II and using
the obtained subgradient information. This approach can be problematic in some cases.
For the Lagrangian relaxation, the input can be extremely large, as it depends on the
number of dualized constraints. Moreover, in Meta-Learning settings, the input would
have the same size as the number of parameters in the network being trained, which
makes it impractical for large architectures.

An advantage of our approach is that we make predictions in the dual space rather
than directly in the parameter space. We assert that, denoting by d(*) the solution of the
Master problem in the classic Bundle method at iteration ¢, the size of d(® is the same as
that of the solution 7v € II. The vector d(*) is linked to the solution of the Dual Master
problem by the formula d® = nw® = 5, 17| 6" g; where 8®) € [0,1]!%! s the
solution of the Dual Master problem. The dimension of |3;| is generally significantly
smaller than the dimension of II. Indeed, |3;| can be bounded by the number of training
epochs in a typical implementation. Furthermore, we do not need to call our model for
each component in /3; since we store the information of previously visited components.

This gives us reason to believe that our approach can be significantly beneficial for
neural network training, as it may enable better scalability for larger networks. This
could still require exploiting some block structure to encode and share information
between the different parameters.

Given that the points in the space II correspond to parameter configurations of a
neural network, ad-hoc techniques can be developed, for instance, to handle parameters
and gradients specific to different layers. Andrychowicz et al. [10] used a parallel model
on all the components; meanwhile, we need to carefully choose the feature representation
to obtain good performance. A useful task, therefore, will provide valuable information
without operating directly on the high-dimensional parameter space.

This could also prompt further modifications to the Bundle framework, potentially
bringing it closer to the Disaggregated Bundle method, introduced in Chapter[T} Anyway,
this connection is not immediate. On one hand, we would like to be able to consider
different gradient aggregations to propose ad-hoc updates for the layers in the network.
On the other hand, the Disaggregated Bundle is generally related to a decomposable
structure with independent functions, which are only related to the choice of a common
trial point. In the case of learning problems, we only have a single function: the value
of the loss in the learning problem.
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