Multiple tree automata: an alternative
tree-oriented formalism for LCFRS

Gwendal Collet and Julien David

! LIX UMR 7161, Ecole Polytechnique, 91128 Palaiseau cedex, France
2 LIPN UMR 7030, Université Paris 13—CNRS, 99, avenue Jean-Baptiste Clément,
93430 Villetaneuse, France **

Abstract. This paper introduces the Multiple Tree Automata that rec-
ognize languages of ordered trees. The authors originally created this
model in order to solve a problem of automatic random sampling of
ordered trees. This model is weakly equivalent to Linear Context Free
Rewriting Systems, though it emphasizes the top-down aspect and the
recognition of tree languages. We introduce a minimization algorithm for
deterministic automata. We also propose a graphical representation for
our automata which could be used for regular tree automata.

1 Introduction

In the literature, tree languages appear in two different contexts: either as the
main object of study for program schemes, search in files and can typically dealt
with Regular tree automata [2], Pushdown tree automata [4], either as derivation
trees for word languages in language theory and come from Context-free gram-
mars, Tree-adjoining grammars [5], Linear Context-Free Rewriting Systems [11,
7,12,9] (referred to as LCFRS). ..

In [1], the authors studied the random sampling of ordered trees containing
a given pattern. They gave an algorithm which produces a grammar recognizing
trees containing the pattern. The grammar, in order to be used by random
sampling methods, could not decompose the pattern branch by branch, as it
is done, for instance, in [3]. As a matter of fact, the authors had to come up
with a new model of tree grammar (which is presented in this paper) adapted to
their problem. This may be seen as a generalization of a top-down regular tree
grammar.

This model appears to be weakly equivalent to LCFRS, as their yields have
the same expressive power, which suggests it can be used in natural language
processing. The tree languages of both models are incomparable, as Multiple
tree automata allow to describe trees whose internal nodes can be labelled, and
LCFRS are more powerful than Multiple Tree Automata in the unlabelled case.
We note that when using LCFRS in natural language processing, it is a common
practice to compensate the absence of labels on internal nodes by using the labels

** We would especially like to thanks Joseph Le Roux for his precious comments on
this work.

of the non-terminal from which they are derivated. This is sufficient to obtain a
syntactic tree of a sentence.

Automata Tree languages Yields
Pushdown Tree Automata|Context-free tree languages Indexed languages
Multiple Tree Automata — Linear CF rewriting languages
Regular Tree Automata Regular tree languages Context-free languages

Fig. 1. Proper hierarchy between models of tree automata.

The paper is organized as follows. Section 2 introduces notations and defini-
tions. In Section 3, we present the Multiple Tree Automata. Section 4 contains
a pumping lemma. Section 5 describes a minimization algorithm for Determin-
istic Top-down Multiple Tree Automata. In Section 7, we discuss the closure
properties of languages recognized by Multiple Tree Automata. We state some
decidability results in Section 8. Section 9 is a small discussion on the possible
applications of Multiple Tree Automata in natural language processing.

2 Definitions

Definition 1. A ranked alphabet is a couple (X, arity) where X is a finite
alphabet {ay,...,ar} of k symbols and arity : X — N. Any symbol a € X such
that arity(a) = 0 (resp. arity(a) > 0) is a leaf (resp. an internal node). A
tree-alphabet is a ranked alphabet with at least one leaf.

Definition 2. A tree t over a tree-alphabet X is defined inductively as follows:

— Va € X aleaf, a is a tree,
— Vb € X an internal node, Vi1, ..., taritywm) trees, b(t1, ..., tarityv)) 15 a tree.

Ezample 1. Let X = {a,b,c,d} be a tree-alphabet such that /d\
arity(a) = 0, arity(b) = arity(c) = 1 and arity(d) = 2. b d
d(b(a),d(c(a),a))) is a tree over X, with its graphical represen- (‘1 c/ \a

tation on the right. \
a

We define the height of a tree inductively by:

0 if ¢ is reduced to a leaf,

height(t) =
eight(t) {1 + max{height(t;) | t = b(t1,.. ., tariy@))} otherwise.

B denotes the combinatorial class of set partitions. Let n= (n1,...,ng) be a
tuple. We have: | n | =k and || n [| = Zle n;. Also, for all 4 € {1,...,k} we
write || n | = 22:1 n;. Let a= (a1,...,ar) be a k-tuple and P = {p1,...,pi}
be a subset of {1,...,k}. We define : Z|p: (Gpyy---sp,)-

A k-forest is a k-tuple of trees. Let F be the set of forests and Fj, the subset
of k-forests. A tree language is a set of trees. The yield of a tree language L is
the set of the words built by reading all the leaves from left to right in a tree of
L. Tt can also be defined as the image of L by the morphism yield:

t if ¢ is reduced to a leaf,
yield(ty) - ... - yield(tarivyw)) if t = b(t1, ... taritys))

Definition 3 (Context). Let F' € F, and (nq,...,n;) a tuple of nodes, called
buds, such that each n; is a distinguished leaf of a tree in F. The pair C' =
{F,(n1,...,n)} is called a context®. The empty tuple of buds is denoted by
and we consider that a forest is a context with an empty tuple of buds, that is

F ={F,c}.

Definition 4. Let C; = {F1,(n1,...,m)} and Cy = {F>,(n},...,n},)} be two
contexts where Fy € F;. We define C1[C5] as the context {F3, (n},...,n})} where
F3 is obtained by replacing each n; in Fy by the tree t; in Fy. If F1 € Fi, we
Cy, ifn=1

C1[C71, otherwise

yield(t) = {

define C7'(n > 1) the following way: C}* = {

3 Model Presentation

The Multiple Tree Automata we present in this section is a generalization of
Regular Tree Automata. The main idea is that the transitions of the automaton
can handle a bounded number of nodes of same depth at once, instead of having
independency between siblings.

Although this model can handle labelled trees, in the following most examples
will feature unlabelled trees, i.e. tree-alphabet with at most one symbol for each
arity.

3.1 Multiple Tree Automata

In this section, we present the Multiple Tree Automata, which can equivalently
be seen as top-down grammars (building the tree from the root to the leaves).
A Multiple Tree Automaton is a tuple A =< Q,rank, I, X, T > such that:

— (Q,rank) is a finite ranked set of states,

— I C Q is the set of initial states, such that for all i € I, rank(i) = 1.

— X is a tree-alphabet.

— T CQx XV xPxQVis a finite set of transitions. For any transition t € T,

t=(n,(a1,...,0ankm)) P, 3), we have : P = {Py,..., P;} is a partition of
the set {1,..., .7 ") qrity(a;)} into k parts, where | 0 | = k and for all
1 < j < k we have rank(o;) = | P;|. Figure 2 shows an example of transition.

The size of such an automaton is the sum of the size of each transition:

|A| = ZtGT |start(t)].

Fig. 2. In this example, the tree-alphabet is X =
{l,l7 A,/l\:}. The automaton contains at least four
states: m, p, ¢, r where rank(n) = 4, rank(p) =
2, rank(q) = 3, rank(r) = 1. The transi-
tion described in the example is encoded by

(n, (4, m, b, {{1,3},{2,4,5},{6}}, (p, 4, 7))

Fig.3. The automaton on the left
recognizes the following language:

A
g

or {/\\mmm AN ml " wl" w /A w m}
The arrows indicates that the unary
node ! can be repeated respectively
n times or m times, with n > 0

and m > 0. We have rank(a) = 1,
rank(ni1) = 2, rank(n2) = 1,
rank(ns) = 2, rank(ny) = 3.

Let p € @ be a state in a Multiple Tree Automaton. We call p;, for i €
{1,...,rank(p)}, a seed of p. Intuitively, one can see a state of rank k as a
k-tuple of seeds on which the transitions act.

Let t = (p, 3, P, Z) be a transition in a Multiple Tree Automaton. We write
—
start(t) = p, label(t) —a, part(t) = P and end(t) =¢. Let p be a state in a
Multiple Tree Automaton. We write

label(p) = U {label(t)} and end(p) = U {end(t)}

teT teT
start(t)=p start(t)=p

Let p; be a seed of p, with p = start(t). We write endSeeds(t,i) the tuple of
states seeds from end(t) associated to p; by t. For instance, in Figure 2, which can
equivalently be considered as a transition in an automaton or a rule in a gram-
mar, we have rank(Ny) = 4 and endSeeds(t,1) = p1q1, endSeeds(t,2) = pa,
endSeeds(t,3) = ¢*, endSeeds(t,4) = q2qs71.

A course of a Multiple Tree Automaton is a tree in which nodes are transi-
tions of the Multiple Tree Automaton and for each node ¢, the node’s children

3 This notion will be used in Section 4.
4 £ denotes the empty tuple

— — —
are a tuple t' of transitions such that |end(t)| = | ¢’ | and for all ¢ < | ¢/ |,

end(t); = start(t}).
Let F = (a1(T1,1, - Tharity(an))s - - - > Ok (Thy1s - - - s T arity(ay))) b€ @ k-forest.
—
A context (F,) labels a course p if:
let ¢ be the root of p, we have:

— rank(start(t)) = k,

— label(t) = (a1,...,ax)

— part(t) is a partition of {1,...,> ", arity(a;)} into |end(t)| parts,
—

let ' = (T11,. ., Tharity(ay)): for i < [end(t)|, the context (F|/part(t)i7 1)

labels the sub-course of p enrooted in the ¢-th child of ¢.

Figure 4 shows an example of a course labelled by a context and a course
labelled by a tree.

Fig.4. The example on the left
@), ¢ (resp. on the right) is a course la-
@ @ T belled by a context C' (resp. a tree
/<\ T). The values t1,...,tr denote the
transitions of the automaton in Fig-
@® ® @), ure 3. The black squares in C' and T
denote leaves, whereas white square

denote buds.

The right-language of a state p, or simply the language of a state p, is
the forest that labels a course enrooted in p. The tree language recognized by a
Multiple Tree Automaton is then the union of right languages of the initial states.

A Multiple Tree Automaton < @, rank, I, X, T > is deterministic if:

— given a value k, there is at most one initial 7,
— for all state ¢ € @ and all tuple a of symbols in X7%"%(@) there is at most
— —
one pair {P, ¢} such that (q,g,P, q)eT.

In Section 7, we show that some languages recognized by a Multiple Tree
Automaton cannot be recognized by a deterministic one.

Remark 1 (Bottom-up). One could also define a Bottom-up analogue of these au-
tomata, reading a tree starting from its leaves, better suited for parsing purposes.
Similarly to Regular Tree automata, this can be done be reversing transitions.
In the non-deterministic case, the expressive power of Bottom-up and Top-down
MTA are the same. This is no longer true in the deterministic case, much like
Regular Tree Automata.

A Multiple Tree Automaton is accessible if each of its states is accessible.
A state ¢ is accessible if it is an initial state or if there exists a course ¢ enrooted
in an initial state such that ¢ € end(t), with ¢ a node of c.

A Multiple Tree Automaton is co-accessible if each of its states is co-
accessible. A state ¢ is co-accessible if its right language is not empty.

A Multiple Tree Automaton is trimmed if it is both accessible and co-
accessible.

Lemma 1. A Multiple Tree Automaton can be trimmed in linear time and space.

Proof. Computing the accessible part of the automaton can be done with exactly
the same method as for finite word automata and is linear in the number of
transitions. To compute the co-accessible part, the idea is to keep a data structure
which indicates for each state p, the list of transitions ¢ and the list of positions
i such that end(t); = p . One starts by marking each state which can read a
tuple of leaves. Then we use the list mentioned before to mark the transitions
t such that the states end(t) are all marked (each transition is associated to a
counter, therefore such test can be made in constant time). When such transition
is marked, start(t) is also marked, and so on. At the end, unmarked states and
transitions are deleted from the automaton.

G = < N,rank,{a},{n, |,/ D}, R >

N = {a, nl,nz,nmml}

R= = (_:/\J_v.) + <$n:/\:) Ny = ('7'7') + (é,aé',é)

= =n

n2

Fig.5. A Grammar representation of the automaton in Figure 3.

Remark 2 (Multiple tree grammar). One could rather see our automata as gram-
mars. Figure 5 shows a grammar representation of the automaton in Figure 3.
Since the formal definition is fairly similar, we skip it.

4 Pumping Lemma

In the following, the height of a k-forest is the maximal height of its trees. The
lemma is illustrated by Figure 6.

Fig. 6. F1, F» and F3 respectively are the forest in white, blue and red. If we define
Cy = {F1, (n1,n2,n3)}, Co = {Fs, (n},n5,n3)} and C3 = {F3,0}, then we can see from
left to right Ch [02 [03”, C1 [CS [03]] and C1 [03]

Lemma 2 (Pumping Lemma). If L is a tree language recognized by a Multiple
Tree Automaton, there exists a value h such that for all trees F € L such that
height(F') > h then:

— there exist three forests Fy € Fy and Fy, F3 € F;, with Fy non reduced to

leaves,

— there exists a tuple of nodes (nq,...,n;) with same depth in Fy and we write
Cl = {Fl, (nl, e ,nl)},

— there exists a tuple of nodes (ny,...,n;) with same depth in Fy and we write

Co = {FZa (nla s anl)} and C3 = {F3a ®}7
— such that F = C1[C2[C3]].

For all m > 1, the trees C1[CY'[Cs]] are in L and so is C1[Cs].5

The following lemma shows an example of application of the Pumping Lemma
and of a language that is not recognized by a Multiple Tree Automaton.

Lemma 3. The language of complete binary trees cannot be recognized by a
finite Multiple Tree Automaton.

Proof. Suppose that such an automaton exists. Then let h be greater than the
number of transitions in the automaton. The complete binary tree T' of height h
is recognized. For all contexts Cy = {Fi, (n1,...,n)}, Co = {Fa, (n},...,n))},
C3 such that T' = C1[C2[C}3]], the tree C1[C5] is not a complete binary tree. We
conclude using the Pumping Lemma.

5 Minimization Algorithm

One of the key feature of Multiple Tree Automata, in contrast to Regular Tree
Automata, is that a state might have a rank greater than 1. If this generalization
might prove useful to describe some languages, there might be some cases in

5 Note for the reviewer: a proof can be found in the annex.

which a state can be replaced by several states of lower ranks, without modifying
the language recognized by the automaton. We say that we ”split a state” in
such case. To split states in a Multiple Tree Automaton is necessary to build a
minimization algorithm.

Fig. 7. Multiple Tree Automata on this figure are equivalent. The states N; and Na,
both of rank 2, can respectively be splited into {S1, S2} and {S3, S4} which are all of
rank 1. Then, S; and Sy (resp. S3 and Si) can be merged into Bi (resp. Bsz). The

right-most automaton is minimal.

Let A=< Q,rank,I,X,T > be a deterministic trimmed Multiple Tree Au-
tomaton. Let p and g be two states of A. Without loss of generality, we con-
sider that rank(p) < rank(q). Let p; (resp. g;) be a seed of p (resp. ¢) with
ie{l,...,rank(p)} (resp. j € {1,...,rank(q)}). The two seeds p; and ¢, are
equivalent, denoted by p; ~, g, if :

— there exists an injection inj : {1,...,rank(p)} — {1,...,rank(q)} from the
seeds of p to the seeds of g such that inj(i) = j.

— for all transitions ¢ such that start(t) = p, there exists at least one transition
t' such that start(t') = ¢ and which satisfies the following property:

o forall k€ {1,...,rank(p)}, label(t), = label(t)in;(k)-

We call it the matching property.

— for all transitions ¢ such that start(t) = p, and for all transitions ¢’ satisfying
the matching property with the same injection, for all k£ < |endSeeds(t,)|,
we have endSeeds(t,1) ~s endSeeds(t', 7).

To split a state p according to a partition B = {By,...,B;} of the set
{1,...,rank(p)} into [parts is the action of replacing the state p by [states
B;(p), where the seeds of each state B;(p) correspond to the seeds indexed by
B; in p. To split a state p implies to split each of its ingoing and outgoing tran-
sitions. Doing so without modifying the language of the automata signifies that
two seeds p; and p; which are not in the same state after the split are inde-
pendant. Two seeds of p are dependant if for all transitions ¢ with start(t) = p,
label(t); can have a given value iff label(t); also have a given value. In order to

test the indepedancy of seeds according to a given split, we define the function
miz. Let A be a set of k-tuples and B be a partition of {1,...,k}. We have

miz(A,B) = {b|Vi,3 € A, b p,=ap,}-

Ezample 2. For instance, define A = {(a,b,¢),(d,e, f)} and B = {{1,3},{2}}.
Then we have miz(A, B) = {(a,b,), (d,b,), (a, e,), (d ¢, f)}.

A state p is splitable according to a partition B of the set {1,...,rank(p)} if:

— label(p) = mix(label(p), B),

— for all part B; € B, for all transitions ¢,¢' such that start(t) = start(t') = p,
label(t')p, = label(t)|p,, then for all j € B; and all £, we have endSeeds(t, j)¢ ~s
endSeeds(t', j)e.

— For all transitions ¢ such that start(t) = p and label(t) —a, B must be
compatible with ¢, meaning we have the following property. For all i, €
{1,...,rank(p)} such that there exist j € endSeeds(t,%) and j' € endSeeds(t,i)
where j and j’ belong to the same part in part(t), then ¢ and i’ belong to
the same part in B.

Set partitions form a lattice. We can compute the most refined partition
which can split a state using this information.
Two states p and ¢ are equivalent, denoted by p ~ ¢ if:

— rank(p) = rank(q),
— forallie {1,...,rank(p)}, pi ~s -

A deterministic trimmed Multiple Tree Automaton is minimal if it does not
contain a splitable state or a pair of equivalent states.

In the finite automata theory, a minimal automaton is the complete deter-
ministic automaton with fewest states recognizing a given language. While in
Multiple Tree Automata, the number of states is an insufficient size measure for
an automaton. Indeed, an automaton whose states have high ranks might take
more space than automata with more states but smaller ranks. Furthermore one
can notice that splitting a state strictly reduces the size of the automaton.

Theorem 1. There is a unique, up to labelling, minimal Multiple Tree Automa-
ton associated to each language. It is the smallest deterministic Multiple Tree
Automaton recognizing a given language.

Theorem 2. The minimization algorithm is polynomial for Multiple Tree Au-
tomaton if the rank of each state is bounded by a constant.

6 Comparison with other formalisms

In this section, we compare the languages recognized by Multiple Tree Automata
with other formalisms. Though, in order to make a meaningful analysis, we
distinguish two kinds of recognized languages:

Algorithm 1: Minimization Algorithm
Data: A Multiple Tree Automaton A
Min + A,
repeat
A+ Min;
~s4 Compute equivalence on seeds of A;
SP <+ Split states of A according ~y;
Min < Minimize SP according to ~s;
until Min = A ;
return Min;

0 N Ok W N

— Tree languages, i.e. the set of trees accepted by a Multiple Tree Automaton.

— Yields: the collection of words read along the leaves of the tree languages.
The yields are the ones interesting for natural language processing. If two for-
malisms are equivalent at yield level, they are said to be weakly equivalent.
For instance, LCFRS with fan-out 2, Linear Indexed Grammars, Combina-
tory Categorial Grammars, Tree-adjoining Grammars and Head Grammars
have been proven to be weakly equivalent in [10]. A fortiori, if two formalisms
can express the same tree languages, then they are also weakly equivalent.

Lemma 4 (Yields of Multiple Tree Automata). Multiple Tree Automata
are weakly equivalent to LCFRS.

The idea of the proof is that Multiple Tree Automata are weakly equivalent
to Simple Ordered LCFRS, which are themselves weakly equivalent to LCFRS.

7 Closure Properties

Fig. 8. A non-deterministic Multiple Tree Automa-
ton over {l,l7 f\:} which recognizes the language of
trees with exactly one unary node. This automaton
cannot be determinized, as it would require to han-
dle dependencies between an unbounded number of
siblings.

Theorem 3. The non-deterministic automata are strictly more powerful than
deterministic automata.

Proof. Consider the language of unary-binary trees with exactly one unary node,
recognized by the non-deterministic MTA in Figure 8.

Lemma 5. The family of languages recognized by Multiple Tree Automata is
closed under union and concatenation, but not under complementation.

Proof. The construction of the automaton is almost straightforward for union
and concatenation. MTA are not closed under complementation as one can con-
struct a MTA for the complement of the language of complete binary trees (not
recognizable, as proven in Lemma 3).

Congecture 1. The family of languages recognized by Multiple Tree Automata is
closed under intersection.

The intersection of two automata A; =< Qq,ranky, I, F1, X, 77 > and
Ay =< Qa,ranks, Is, Fy, X, Ty > can be computed by creating an automa-

—

ton A3 =< Qs,ranks, I3, F5, X, T5 > such that each state g3 is a couple ((¢1
— — —

,P1),(42,Pa)), where ¢ (resp 45) is a tuple of states from Q1 (resp. Q2) and

Py (resp. P2) is a partition of the seeds in 31 (resp. ?2) A transition t3 € T3,
such that start(t3) = gs has the following property: let label(ts) = w, we have:

VP; € Py, 3ty € Ty s.t. start(ty) = qu4, label(t1) = wp, , WP, g

VP; € Py, 3ty € Ty s.t. start(ty) = qu, label(tz) = wp, , WP,
What we fail to prove yet is that this automaton will always be finite. The
states of both input automata describe a finite number of dependencies between
seeds. Our intuition is that the conjunction of those dependencies will also be
finite. We notice that to the best of our knowledge, the closure of LCFRS under
intersection is still an open problem.

8 (Almost obvious) Decidability Results

In the following, the complexity results consider that the size of an automaton
is its number of transitions.

Lemma 6. Given a Multiple Tree Automaton A and a tree alphabet X':

— Universality: if A is deterministic, to decide whether it recognizes all trees
over X can be done in linear time. It A is non-deterministic, the same
problem is in coNP.

— Emptiness: to decide whether the language recognized by A is empty can be
done in linear time.

— Membership: given a tree t, to decide whethert € L 4, can be done in time
O(|t|) if the automaton is deterministic and in time O(|t|n) in the general
case (where n is the number of states in A).

— Finiteness: to decide whether the language recognized by A is finite can be
done in linear time.

— Equivalence: if A is deterministic, and given a second deterministic Mul-
tiple Tree automaton, to decide whether they recognize the same language is
polynomial.

9 Perspectives

We recall that Multiple Tree Automaton were already used for the random sam-
pling of trees containing a given pattern. LCFRS could not have been given a
result as general, since it could not have dealt with pattern whose internal nodes
are labelled.

The intersection of two Multiple Tree Automata should be investigated.

Multiple Tree Automata could be an interesting model for natural language
processing[8]. We believe the parsing complexity will be the same as LCFRS.

In order to make this model interesting, a solid implementation of the model
will have to be built, using fast algorithms for construction, membership and
parsing.

References

1. Gwendal Collet, Julien David, and Alice Jacquot. Random sampling of ordered
trees according to the number of occurrences of a pattern. to be submitted, 2014.
available at http://lipn.univ-paris13.fr/ david/articles/cdj.pdf.

2. H. Comon, M. Dauchet, R. Gilleron, C. Léding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr /tata, 2007. release October, 12th 2007.

3. T. Flouri, B Melichar, and J. Janousek. Subtree matching by deterministic push-
down automata. In IMCSIT’09, volume 4, pages 659-666. IEEE Computer Society
Press, 2009.

4. Iréne Guesserian. Pushdown tree automata. Math. Systems Theory, 16:237 — 263,
1983.

5. Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct grammars.
J. Comput. Syst. Sci., 10(1):136-163, February 1975.

6. Laura Kallmeyer. Parsing Beyond Context-Free Grammars. Springer Publishing
Company, Incorporated, 1st edition, 2010.

7. Laura Kallmeyer. Linear context-free rewriting systems. Language and Linguistics
Compass, 7(1):22-38, 2013.

8. Andreas Maletti and Giorgio Satta. Parsing algorithms based on tree automata.
In IWPT, pages 1-12. The Association for Computational Linguistics, 2009.

9. Benoit Sagot and Giorgio Satta. Optimal rank reduction for linear context-free
rewriting systems with fan-out two. In ACL 2010, Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics, July 11-16, 2010,
Uppsala, Sweden, pages 525-533, 2010.

10. K. Vijay-Shanker and David J. Weir. The equivalence of four extensions of context-
free grammars. Mathematical Systems Theory, 27:27-511, 1994.

11. K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural
descriptions produced by various grammatical formalisms. In Proceedings of the
25th Annual Meeting on Association for Computational Linguistics, ACL 87, pages
104-111, Stroudsburg, PA, USA, 1987. Association for Computational Linguistics.

12. David J. Weir. Linear context-free rewriting systems and deterministic tree-walking
transducers. In Proceedings of the 30th Annual Meeting on Association for Com-
putational Linguistics, ACL '92, pages 136—143, Stroudsburg, PA, USA, 1992. As-
sociation for Computational Linguistics.

Annex

Pumping Lemma and Swapping Lemma

Proof (Lemma 2). Assume that £ is recognized by a Multiple Tree Automaton

— —
with h transitions. Then for any forest f€& L such that height(f) > h, there
exists a course ¢ of root t such that start(t) is an initial state of the automaton

and whose leaves match terminal states of the automaton. ¢ has height height(7
) > h, therefore there exists a path in ¢ where a transition ¢ of the automaton
occurs at least twice. Let ¢; be ¢ in which we replaced the subtree enrooted on
the first encounter of ¢ by a leaf. Let co be the subtree of ¢ enrooted in the first
encounter of ¢, in which we replaced the subtree enrooted on the first encounter
of t by a leaf. Let c3 be the subtree of ¢ enrooted in the second encounter of
t. We obtain a well-formed course of the automaton, named c¢;[c3], by replacing
the subtree enrooted on the first encounter of p in ¢ by c3. We also obtain a
well-formed course by inserting a copy of ¢z at the second encounter of p. This
insertion can be iterated since it adds a third encounter of p. This yields well-
formed courses written ¢ [} [cs]], (n > 1). Then we have | = rank(p), (n1,...,n)
and (n},...,n]).

Lemma 7 (Swapping Lemma). Let L be a language recognized by a Multiple
Tree Automaton < Q,rank,I,X,T >. Let a forest F € L and i < height(F)
such that the number of node in F' of depth i is greater than }_ ., rank(q).
Then there exist three forests Fy, Fy and F3 such that

— there exist two disjoints tuple of leaves of depth i in Fy.
— we have (F,e) = C1[(FaF3,¢€)], with Cr = {F1, (n1,...,m)}
— The following forest are also in L: Cy[(FaFy,)], C1[(F5F5,¢)], C1[(F3F3,€)]

Proof. Let F' € L be such that, at a given depth ¢, the number of nodes is greater
than the sum of ranks of all the states, then a same state p appears at least twice
at depth ¢ in the course labelled by F'. Therefore the sub-courses enrooted in the
occurrences of p can be swapped or replaced by one another.

Determinism

Proof (Theorem 3). Assume that there is a deterministic automaton recognizing
the same language. For h > 0,0 < i < 2" let B(h,i) be the unary-binary tree
built from a complete binary tree of height h with one unary node attached on
its ' leaf. We have: {B(h,i),h > 0,0 < i < 2"} C L. Hence the complete
binary tree of height h labels a valid course of the automaton and has 2" buds.
Since the automaton is deterministic, this course C' is the same for all 7. In order
to recognize each B(h,) for all ¢, one must be able to read either a leaf or an
unary node from each bud. If the buds are handled with at least two states, the
transitions are chosen independently in each state, losing control on the total
number of unary nodes. And if the buds are handled with a unique state, it has
rank 2", leading to unbounded ranks and states number in the automaton.

Minimization Algorithm

Theorem 4. There is a unique, up to labelling, minimal Multiple Tree Automa-
ton associated to each language. It is the smallest deterministic Multiple Tree
Automaton recognizing a given language.

Proof. Let A1 =< Q1,ranky, 11, X,T; > be a Multiple Tree automaton of mini-
mal size. Let Ay =< Qo,ranks, I, X, Ty > be a distinct automaton recognizing
the same language. Given a context C, two courses labelled by C in A; and
Ay are said to be isomorphic if the unlabelled tree structures are the same and
there exists a bijection u : @1 — @2 between the states appearing in both
courses such that the labels (i.e. the transitions associated to each node) are
equivalent. Two transitions t1,to are equivalent iff ¢; = (pl,Z,P, (q1,---,q¢))
and to = (p(p1), a,P, (11(q1), - - -, p(ge)). Notice that two states related by p are
equivalent. Since A; and Aj are distinct but recognize the same language, there
exists a context which labels two non-isomorphic courses. Suppose we have two

isomorphic courses and that we add a transition t; = (pi, Z,’R (q1,...,q0)) in
—

first one. Necessarily, we can add a transition to = (u(p1), a, P, q’) in the sec-
ond course. If P # P’, then the dependencies between seeds are not the same,
which implies that one automaton has at least one splitable state. If there is

i
no bijection v compatible with p which guarantees that ¢'= (v(q1),...,v(qe)),
then there exists at least one element in the domain (resp. the image) of v that
should have more than one image (resp. preimage). This would imply that one of
the automata contains two equivalent states. Since splitting states and merging
equivalent states both strictly reduce the size of the automaton, A, can be re-
duced (A; being minimal). Finally, if there are no splitable state nor equivalent
states, then As must be isomorphic to Ay, which is then the unique minimal
automaton.

Theorem 5. The minimization algorithm is polynomial for Multiple Tree Au-
tomaton if the rank of each state is bounded by a constant.

Proof. An automaton can only be splited and minimized a polynomial number
of times. Indeed, each state p can at most be splited rank(p) times. If states are
not splited, some have to be merged by the minimization step, or the algorithm
will stop. This can happen at most »_ rank(p). Each step inside the loop can be
made in polynomial time:

— Seeds equivalence can naively be done by comparing each pair of seeds.
Each comparison can be done in constant time if the size of the alphabet
and the rank of each state are bounded by a constant. Also, the number of
injections from one state to another is also a constant.

— To split the states requires, for each state, to compute the finest partition
which satisfies the three predicates given in the definition. Each of those
predicates are anti-monotonic and can be checked in polynomial time. Since
the rank is bounded by a constant, so is the size of the set partition lattice.

In order to find the finest partition, one can perform a breadth-first search
in the lattice and stop at the first partition which satisfies the predicates.

— State equivalence can be computed in linear time using ~g. This step is
almost identical as an iteration of Moore’s algorithm on finite automata:
Each state is associated to a word made of the equivalence class of its seeds.
The states are sorted using a lexicographical sort. A state is equivalent to
the one it follows in the list if they are both associated to the same word.

Fig. 9. A non-deterministic Multiple Tree
Automaton over {m,/\} which recognizes
the language of binary trees which are not
complete, by accepting a tree only if a pair
(m,/\) is read somewhere in the tree. The
complement of this language cannot be rec-
ognized by a finite MTA.

Multiple Tree Automata and LCFRS

Lemma 8. Ordered simple LCFRS and general LCFRS are equivalent.

Proof. First, notice that ordered LCFRS and general LCRFS has already been
proven to be weakly equivalent to general LCFRS in [6].

Simple LCFRS are LCFRS where the tuples appearing in the left-hand side
of any production rule are made of either only terminals or only variables (while
it can be a combination of both in the general case). This constraint does not
restrict expressiveness, as it is sufficient to do the following substitution when
1;)2» contains terminals and variables:

. *
A(wl,oxl’lwm L1, W1ly ey Wi 080, 1Wn,1 wn’enwn)g”) — e, with ww' eT

—> —
w1 Wn

A(yl,oxl,lyl,l 1,0 Y1,815 -y Yn, 080, 1Yn,1 xn,znyn,zn)

— —
w1 Wn
/
= — A (yl,Oaml,la Y1155 T1015Y1,815 -3 Yn,05Tn,15Yn,1y- - - 7xn,enayn,[n)
and
/
A (wl,Oaxl,lawl,lv ey L1, W1y e e ey Wi 05 Tyl Wil e - vy xn,lnawn,fn) — ...

where A’ is a new non-terminal, and y; ; are new variables.

Lemma 9 (Yields of Multiple Tree Automata). Multiple Tree Automata
are weakly equivalent to LCFRS.

Proof. An ordered simple linear context-free rewriting system® is a tuple <
N,T,P,S > where N is a set of non-terminal symbols, S € N is a start symbol,
T is a set of terminal symbols and P is a set of production rule of the form:

A(wy, .o Wrank(a)) = Bi(T11, - T1rank(By)) - Be(@e1, - T rank(By))5

where A, Bi,...,By € N, the x; ; are variables and the wy, are either tuples of
terminals or tuples of variables. A production rule in an ordered LCFRS satisfies
the following properties:

— linearity: for each ¢, j,k,l with i # k or j # 1 z; ; # a1,

— regularity: each x; ; appears exactly once in w1 -+ Wrank(A)s

— partial ordering: if x;; occurs before zp; in w1 - Wrank(a), then Vi, z; ;
occurs before z;; in B; if j < L.

We describe an algorithm which transforms an ordered simple LCFRS into
a Multiple Tree Automaton, where the ranked alphabet (X, arity) contains at
most one internal node of each arity (only leaves carry labels). Let o : N — X
be be the inverse function of arity. We define a function £ as follows:

B(w):{w, ifweT,

a(Jw]), otherwise.

Letp = A(wla C) wrank(A)) — Bl (xl,la cee 7xl,rank(Bl)) e B@(mé,la cee 7x£,rank(B[))
be a production rule.

pos(x;,j) = position of z; ; in wy - - - Wrank(a)
P(n;) = {pos(z;;)|1 < j < rank(B;)}

Part(p) = {P(n1),...,P(Bg)}

The partition Part(p) encodes the repartition of variables in the production rule
of a LCFRS.

5 equivalent to general LCFRS, see Annex

Algorithm 2: From ordered simple LCFRS to MTA

Data: A Linear Context Free Rewriting System < N, T, P, S >
Result: A Multiple Tree Automaton A =< Q,rank, I, Tr >

1 forall a € T' do

2 Add a state s(a) in Q with rank(s(a)) = 1;

3 Add a transition (s(a), (a),?,€) in T'r;

4 forall n € N do

5 L Add a state s(n) in @ with rank(s(n)) = 1;

6 Add s(S) in I;

7 forall
A(’LU1, RS wrank(A)) — 31(1’1,1, sy xl,'rank(Bl)) o Bl(xf,ly B xl,'rank(Bg)) er
do

8 L Add the transition (A, (B(w1),. .., B(Wrank(a))), Part(p), (B, ..., Be)) in

Tr;

9 return < Q,rank,I, X, Tr >;

In order to see that this transformation is a bijection, one also has to con-
sider Multiple Tree Automata for which all transitions ¢ have the following prop-
erty: label(t) contains either only leaves, or only internal nodes (the transition-
property). In order to convert a Multiple Tree Automaton into one that satisfies
those properties, one has to add a state A, for each leaf a. Then, for each tran-
sition that do not satisfy the transition-property, replace each occurrence of a
by a letter b of arity 1, A being the arrival state for the new bud. For each state
A,, one has to add the transition (Ag, (a),?,¢).

Properties

Lemma 10 (Universality). Given a deterministic Multiple Tree Automaton
and a tree alphabet X, to decide whether it recognizes all trees over X can be
done in linear time. Given a non-deterministic Multiple Tree Automaton, the
same problem is in coN P.

Proof. Indeed, a deterministic Multiple Tree Automaton is universal if and
only if it is complete, which can easily be checked. If the automaton is non-
deterministic with n states, then it is sufficient to show that for all tree of height
n—+1 is recognized and use the pumping lemma. That can be done in exponential
time and linear space. On the other hand, if the automaton is not universal, one
can check a counter-example in polynomial time.

Lemma 11 (Emptiness). Given a Multiple Tree Automaton, to decide whether
the language it recognizes is empty can be done in linear time.

Proof. The language recognized by an automaton is empty if does not contain
any state after being trimmed. This can be done in linear time according to
Lemma 1.

Lemma 12 (Equivalence). Given two deterministic Multiple Tree Automata,
to decide whether they recognize the same language is polynomial.

Proof. First minimize both automata. Since the minimal automaton is unique,
one just needs to compare the two resulting minimal automata.

Lemma 13 (Membership). Given a Multiple Tree Automaton with n states
recognizing a language L and a tree t, to decide whether t € L, can be done in
time O(|t|) if the automaton is deterministic and in time O(|t|n) in the general
case.

To test the membership in a Multiple Tree Automaton is similar to finite state
automata, though the implementation, which we will not describe here, is more
complicated. Note that the computation can be parallelized since it requires to
do independent test on the subtrees of the input tree.

Lemma 14 (Finiteness). Given a Multiple Tree Automaton, to decide whether
the language it recognizes is finite can be done in linear time.

Proof. A trimmed Multiple Tree Automaton recognizes a finite language if it
does not contain a loop, which can be checked in linear time. We conclude using
Lemma 1.

