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DiPOSH
Presentation of (Di)POSH

Implementing OpenSHMEM in POSH

POSH runs multiple OpenSHMEM processes
Shared Memory

Segments

POSH
processes

Shared heap is symmetric
I POSH creates a shared memory segment for each process
I Just locate objects at the same offset in the shared segments

Communication routines are datatype-specific
I shmem_int_put, shmem_char_put, shmem_float_put..

− > Use C++ templates
I Implement shmem_<T>_put and let the compiler do the job

Global static data is symmetric
I In practice :

I In the BSS segment of the executable if not initialized at compile-time
I Int the data segment if they are

I Workaround : parse the code and replace them by SHMEM allocations
just after the initialization of the library
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Software overhead
I Achieve low network latency
I Waste no time going through the

software stack !

Take advantage of the simple
OpenSHMEM interface
I Implement data movements in a

few instructions
I Avoid additional copies, branches
I ... while being portable
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DiPOSH Architecture

Shared Memory
Segments

MPI

Shared Memory
Segments

MPI

... ...

Intranode communication via
shared memory segments

Internode communication via
MPI one-side routines

DiPOSH
processes

DiPOSH

processes
Shared Memory

Segments

MPI

Shared heaps : cornerstone
I One shared heap per process
I Processes on the same node communicate through this heap

I Segment of shared memory
I Copy into/from the segment

I Inter-node communications : network
I Buffers read from/written into this shared memory segment

Run-time environment
I In charge with starting the OpenSHMEM processes, sharing their

communication information...
I Any distributed overlay network (currently supported : MPI and

PadicoTM)
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Network Portability
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Currently supported :
I MPI, TCP, shared memory, KNEM

I Under testing : Knem and NewMadeleine

I Want to see yours in this list ? Contact us !
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Software composition for network portability

The API calls network-specific routines
I Each network driver must

implement an interface
I ... plus some network-specific

methods

→ composition over inheritance

Endpoint

TCPendpoint

socket : int
address : sockadd_in

MPIendpoint

rank : int

SMendpoint

sharedHeap : SharedHeap_t

�interface�
Communication

put( ... ) : ...
get( ... ) : ...

CommTCP

put( ... ) : ...
get( ... ) : ...

CommMPI

put( ... ) : ...
get( ... ) : ...

CommSM

put( ... ) : ...
get( ... ) : ...

At start-up time, processes discovers how they can communicate with the other
ones
I "Plug" the right object into the neighbor’s local communication gate

I Endpoint (polymorphism)
I Calling neighbor[rank]->put(....) will call the appropriate low-level

communication routine
I Communication interface
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Compatibility with other communication libraries

Multi-library programming
DiPOSH lets you use other parallel programming interfaces
I For example, MPI
I Possible with DiSPOH’s MPI run-time environment

→ Take advantage of both programming models
I e.g., mix MPI’s two-sided semantics and OpenSHMEM’s blocking

one-sided semantics

start_pes( 0 );
rank = shmem_my_pe();
value = (int*)shmalloc( sizeof( int ) );
/* do stuff */
if( 0 == rank )

shmem_int_put( value, &result, 1, 1 );
MPI_Barrier( MPI_COMM_WORLD );
/* do stuff */
if( 0 == rank )

MPI_Send( &number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD );
if( 1 == rank )

MPI_Recv( &number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &stat );
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Low-level profiling

Low-level profiling
TAU already supports OpenSHMEM
I Low-level profiling information
I Tune application using communication optimization

Low-level profiling information
I Usual function calls

I MPI_Init() in red
I shmem_*_get in purple

I Information about the NUMA communications.
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Fault tolerance

Fault tolerance : Chandy & Lamport’s algorithm (1985)

Idea : circulate a marker
I Initiate the checkpoint wave by sending a first marker
I Once a process receives the marker :

I Flush the communication channels
I Take a local snapshot
I Send the maker to all the other processes

I Checkpoint wave done (locally) after reception of all the other processes’
markers.
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Adaptation : get() might cross the marker !
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Fault tolerance

Fault tolerance performance

I Checkpointing time scalability on a
mechanical HDD with various
memory footprints.
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I Scalability of 30 multiplications of two
square matrices of size 2048× 2048,
with and without a checkpoint during
the computation. Mechanical HDD.
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Checkpoint storage is critical
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Conclusion

Open perspectives

Network portability (cf [Coti & Malony, PPAM 2019])
I Support other networks
I At various levels : UCX, NewMadeleine... vs InfiniBand
I Support other run-time environments

Use as a testbed for distributed algorithms over one-sided communications
I Fault tolerance (cf [Butelle & Coti, HPCS 2018])
I Collective communications

OS support
I Shared heap : binding ? Bound to the process it belongs to ? Moving with

communications ?

Fault tolerance
I Scalability, other algorithms

... still under development !
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