
DiPOSH: a modular testbed
and OpenSHMEM implementation

Camille Coti

LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité, France

University of Oregon

SC 2019, OpenSHMEM BoF
Denver, Colorado

November 19th, 2019

Roadmap

Presentation of (Di)POSH

DiPOSH

Compatibility with other communication libraries

Low-level profiling

Fault tolerance

Conclusion

DiPOSH
Presentation of (Di)POSH

Implementing OpenSHMEM in POSH

POSH runs multiple OpenSHMEM processes
Shared Memory

Segments

POSH
processes

Shared heap is symmetric
I POSH creates a shared memory segment for each process
I Just locate objects at the same offset in the shared segments

Communication routines are datatype-specific
I shmem_int_put, shmem_char_put, shmem_float_put..

− > Use C++ templates
I Implement shmem_<T>_put and let the compiler do the job

Global static data is symmetric
I In practice :

I In the BSS segment of the executable if not initialized at compile-time
I Int the data segment if they are

I Workaround : parse the code and replace them by SHMEM allocations
just after the initialization of the library

DiPOSH
Presentation of (Di)POSH

Thin layers
pa
ra
lle
l

co
m
m
un

ic
at
io
n

in
te
rf
ac
e

m
id
dl
ew

ar
e

hardware
driver

550 ns

100 ns

C
rit
ic
al

pa
th

pa
ra
lle
l

co
m
m
un

ic
at
io
n

in
te
rf
ac
e

UCCS70 ns

source : UCX (HOT
Interconnects 2017)

Software overhead
I Achieve low network latency
I Waste no time going through the

software stack !

Take advantage of the simple
OpenSHMEM interface
I Implement data movements in a

few instructions
I Avoid additional copies, branches
I ... while being portable

DiPOSH
DiPOSH

DiPOSH Architecture

Shared Memory
Segments

MPI

Shared Memory
Segments

MPI

... ...

Intranode communication via
shared memory segments

Internode communication via
MPI one-side routines

DiPOSH
processes

DiPOSH

processes
Shared Memory

Segments

MPI

Shared heaps : cornerstone
I One shared heap per process
I Processes on the same node communicate through this heap

I Segment of shared memory
I Copy into/from the segment

I Inter-node communications : network
I Buffers read from/written into this shared memory segment

Run-time environment
I In charge with starting the OpenSHMEM processes, sharing their

communication information...
I Any distributed overlay network (currently supported : MPI and

PadicoTM)

DiPOSH
DiPOSH

Network Portability

Process 2

neighbor connections

0
MPI

1
MPI

2
local

3
SM

4
IB

5
IB

Process 3

neighbor connections

0
MPI

1
MPI

2
SM

3
local

4
IB

5
IB

Currently supported :
I MPI, TCP, shared memory, KNEM

I Under testing : Knem and NewMadeleine

I Want to see yours in this list ? Contact us !

DiPOSH
DiPOSH

Software composition for network portability

The API calls network-specific routines
I Each network driver must

implement an interface
I ... plus some network-specific

methods

→ composition over inheritance

Endpoint

TCPendpoint

socket : int
address : sockadd_in

MPIendpoint

rank : int

SMendpoint

sharedHeap : SharedHeap_t

�interface�
Communication

put(...) : ...
get(...) : ...

CommTCP

put(...) : ...
get(...) : ...

CommMPI

put(...) : ...
get(...) : ...

CommSM

put(...) : ...
get(...) : ...

At start-up time, processes discovers how they can communicate with the other
ones
I "Plug" the right object into the neighbor’s local communication gate

I Endpoint (polymorphism)
I Calling neighbor[rank]->put(....) will call the appropriate low-level

communication routine
I Communication interface

DiPOSH
Compatibility with other communication libraries

Multi-library programming
DiPOSH lets you use other parallel programming interfaces
I For example, MPI
I Possible with DiSPOH’s MPI run-time environment

→ Take advantage of both programming models
I e.g., mix MPI’s two-sided semantics and OpenSHMEM’s blocking

one-sided semantics

start_pes(0);
rank = shmem_my_pe();
value = (int*)shmalloc(sizeof(int));
/* do stuff */
if(0 == rank)

shmem_int_put(value, &result, 1, 1);
MPI_Barrier(MPI_COMM_WORLD);
/* do stuff */
if(0 == rank)

MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
if(1 == rank)

MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &stat);

DiPOSH
Low-level profiling

Low-level profiling
TAU already supports OpenSHMEM
I Low-level profiling information
I Tune application using communication optimization

Low-level profiling information
I Usual function calls

I MPI_Init() in red
I shmem_*_get in purple

I Information about the NUMA communications.

DiPOSH
Fault tolerance

Fault tolerance : Chandy & Lamport’s algorithm (1985)

Idea : circulate a marker
I Initiate the checkpoint wave by sending a first marker
I Once a process receives the marker :

I Flush the communication channels
I Take a local snapshot
I Send the maker to all the other processes

I Checkpoint wave done (locally) after reception of all the other processes’
markers.

P0

P1

P2
m
1

m
2

m
arker

m
arker

Checkpoint

Checkpoint

Checkpoint

m
3

Adaptation : get() might cross the marker !

DiPOSH
Fault tolerance

Fault tolerance performance

I Checkpointing time scalability on a
mechanical HDD with various
memory footprints.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

C
h
e
ck

p
o
in

ti
n
g

 t
im

e
 (

s)

Number of processes

Mechanical HDD, data: 230 B
Mechanical HDD, data: 228 B
Mechanical HDD, data: 226 B
Mechanical HDD, data: 224 B

Mechanical HDD, data: 32B

I Scalability of 30 multiplications of two
square matrices of size 2048× 2048,
with and without a checkpoint during
the computation. Mechanical HDD.

 0

 20

 40

 60

 80

 100

 120

 140

 1 4 9 16 25

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

se
c)

Number of processes

One checkpoint
No checkpoint

Overhead

I Restart time : SSD and mechanical
HDD.

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12

R
e
st

a
rt

 t
im

e
 (

s)

Number of processes

Minimum, mechanical HDD, data: 230B
Minimum, mechanical HDD, data: 32B

Minimum, SSD, data: 230B
Minimum, SSD, data: 32B

Checkpoint storage is critical

DiPOSH
Conclusion

Open perspectives

Network portability (cf [Coti & Malony, PPAM 2019])
I Support other networks
I At various levels : UCX, NewMadeleine... vs InfiniBand
I Support other run-time environments

Use as a testbed for distributed algorithms over one-sided communications
I Fault tolerance (cf [Butelle & Coti, HPCS 2018])
I Collective communications

OS support
I Shared heap : binding ? Bound to the process it belongs to ? Moving with

communications ?

Fault tolerance
I Scalability, other algorithms

... still under development !

	Presentation of (Di)POSH
	DiPOSH
	Compatibility with other communication libraries
	Low-level profiling
	Fault tolerance
	Conclusion

