
International Journal of Networking and Computing – www.ijnc.org

Data Coherency in Distributed Shared Memory

Franck Butelle
Franck.Butelle@lipn.univ-paris13.fr

LIPN, CNRS-UMR7030, Université Paris 13, F-93430 Villetaneuse, France

Camille Coti
Camille.Coti@lipn.univ-paris13.fr

LIPN, CNRS-UMR7030, Université Paris 13, F-93430 Villetaneuse, France

Received (received date)
Accepted (accepted date)

Communicated by Editor’s name

Abstract

We present a new model for distributed shared memory systems, based on remote data accesses.
Such features are offered by network interface cards that allow one-sided operations, remote direct
memory access and OS bypass. This model leads to new interpretations of distributed algorithms al-
lowing us to propose an innovative detection technique of race conditions only based on logical clocks.
Indeed, the presence of (data) races in a parallel program makes it hard to reason about and is usually
considered as a bug.

Keywords: Distributed shared memory, concurrent systems, race condition

1 Introduction

The shared-memory model is a convenient model for programming multiprocessor applications: all the
processes of a parallel application running on different processors have access to a common area of mem-
ory. Another possible communication model for distributed systems is the message-passing model, in
which each process can only access its own local memory and can send and receive message to other
processes.

The message-passing model on distributed memory requires to move data between processes to make
it available to other processes. Under the shared-memory model, all the processes can read or write at any
address of the shared memory. The data is shared between all the processes.

One major drawback of the shared-memory model for practical situations is its lack of scalability. A
direct implementation of shared memory consists in plugging several processors / cores on a single moth-
erboard, and letting a single instance of the operating system orchestrate the memory accesses. Recent
blades for supercomputers gather up to 32 cores per node, Network on Chip (NoC) systems embed 80
cores on a single chip: although the “many-core” trend increased drastically the number of cores sharing
access to a common memory bank, it is several orders of magnitude behind current supercomputers: in
the Top 5001 list issued in November 2010, 90% of the systems have 1K to 16K cores each.

1http://www.top500.org

1

Data Coherency in Distributed Shared Memory

The solution to benefit from the flexibility and convenience of shared memory on distributed hard-
ware is distributed shared memory. All the processes have access to a global address space, which is dis-
tributed over the processes. The memory of each process is made of two parts: its private memory and
its public memory. The private memory area can be accessed from this process only. The public mem-
ory area can be accessed remotely from any other process without notice to the process that maps this
memory area physically.

The notion of global address space is a key concept of parallel programming languages, such as
UPC [8], Titanium [26] or Co-Array Fortran [21]. The programmer sees the global memory space as if it
was actually shared memory. The compiler translates accesses to shared memory areas into remote mem-
ory accesses. The run-time environment performs the data movements. As a consequence, programming
parallel applications is much easier using a parallel language than using explicit communications (such
as MPI [10]): data movements are determined by the compiler and handled automatically by the run-time
environment, not by the programmer himself.

The memory consistency model followed by these languages, such as the one defined for UPC [15],
does not define a global order of execution of the operations on the public memory area. As a conse-
quence, a parallel program defines a set of possible executions of the system. The events in the system
may happen in different orders between two consecutive executions, and the result of the computation
may be different. For example, if a process writes in an area of shared memory and another process reads
from this location. If the writer and the reader are two different processes, the memory consistency model
does not specify any kind of control on the order in which these two operations are performed. Regarding
whether the reader reads before or after the data is written, the result of the writing may be different.

In this paper, we introduce a model for distributed shared memory that represents the data move-
ments and accesses between processes at a low level of abstraction. In this model, we present a mecha-
nism for detecting race conditions in distributed shared memory systems.

This model is motivated by Remote Direct Memory Access capabilities of high-speed, low-latency net-
works used for high-performance computing, such as the InfiniBand standard2 or Myrinet3.

The remainder of this paper is organized as follows. In section 2, we present an overview of previous
models for distributed shared memory and how consistency and coherency has been handled in these
models. In section 3 we present our model for distributed shared memory and how it can be related to
actual systems. In section 4 we present how race conditions can be represented in this model, and we
propose an algorithm for detecting them.

2 Previous work

Distributed shared memory is often modeled as a large cached memory [14]. The local memory of each
node is considered as a cache. If a process running on this node tries to access some data, it gets it directly
if the data is located in its cache. Otherwise, a page fault is raised and the distributed memory controller
is called to resolve the localisation of the data. Once the data has been located (i.e., once the local process
knows on which process it is physically located and at which address in its memory), the communication
library performs a point-to-point communication to actually transfer the data.

In [18], L. Lamport defines the notion of sequential consistency: on each process, memory requests are
issued in the order specified by the program. However, as stated by the author, sequential consistency is
not sufficient to guarantee correct execution of multiprocessor shared memory programs. The require-
ment to ensure correct ordering of the memory operations in such a distributed system is that a single
FIFO queue treats and schedules memory accesses from all the processes of the system.

Maintaining the coherence of cache-based distributed shared memory can then be considered as a
cache-coherency problem. [19] describes several distributed and centralized memory managers, as well
as how coherence can be maintained using these memory managers.

However, in a fully distributed system (i.e., with no central memory manager) with RDMA and OS by-
pass capabilities, a process can actually access another process’s memory without help from any memory

2http://www.infinibandta.org/
3http://www.myri.com

2

International Journal of Networking and Computing

manager. In parallel languages such as UPC [8], Titanium [26] and Co-Array Fortran [21], data locality (i.e.,
which process holds the data in its local memory) is resolved at compile-time.

These languages rely on a concept called Parallel Global Address Space (PGAS). In this global address
space, a chunk of data can be localized by a tuple of two elements: the aforementioned data locality, which
is also called the process the data has affinity to, and the local address in the memory of the process this
given chunk has affinity to.

In UPC, data can be declared as either shared or private. When a process (called a thread in the UPC
terminology, by analogy with shared memory systems) accesses a shared chunk of data that does not have
affinity to itself, it is accessed remotely by the run-time system (GASNet [4] in the case of UPC, Titanium
and the LANL implementation of Co-Array Fortran). The semantics of these remote data accesses will be
discussed further in section 3.2.

The coordination language LINDA [1] implements a model where the distributed shared memory is
called a tuple space. Chunks of data called tuples can be added into the tuple space and read (and re-
moved or not) from it. It can also create new processes on-the-fly to evaluate tuples. Besides the partic-
ular semantics of the language (based on tuples matching), the model it defines for implementing dis-
tributed applications is quite different from other PGAS languages such as UPC and Co-Array Fortran. In
the LINDA model, the programmer explicitly pushes and pulls data from the distributed address space
(the tuple space), and the run-time system is in charge with data locality.

Queries to the tuple space involve a search for matching tuples in the whole tuple space. In [3], the
distributed memory manager is called the tuple handler. This implementation uses a centralized tuple
server, and the processes of the application are clients. As stated by the author of this work, this creates a
data bottleneck and is a major drawback of this implementation.

Javaspace [24] implements this distributed memory model using RMI and some features of the Java
language such as class types comparisons. The transaction model relies on a two-phase commit model.

The simplicity of the LINDA language and its siblings make them attractive for implementing dis-
tributed applications [12]. However, this simplicity has one major drawback: it has little (or no) safety
features. The programmer has no control on the data accesses, such has the locks provided by languages
from the family of UPC.

Locks are the most basic data safety mechanism there is. Their basic task is to ensure mutual exclusion
in a critical section: the process that holds the lock is the only one that can access the critical section,
while the other processes must wait until the lock is released to try to get it. As described more formally
in section 3.1, locks can also be defined on memory areas. They guarantee the fact that only one process
is accessing a given area of memory. Hence, they provide a certain form of data safety, in a sense that a
chunk of data cannot be altered by any other process which a given process is accessing it. However, they
are not sufficient to guarantee that the operations on this chunk of data are causally ordered and that the
distributed program is free from race conditions [13].

The MPI-2 standard [11] defines remote memory access operations. The MARMOT error checking
tool [16] checks correct usage of the synchronization features provided by MPI, such as fences and win-
dows. A window is an area of a process’s memory that is made available to other processes for remote
memory accesses. Windows are created and destructed collectively by all the processes of the commu-
nicator. MARMOT associates an access epoch to each window to determine whether conflicting accesses
are made to the same memory location in a window. MPIRACE-CHECKER [22] uses a mirror window and
marks it such in a way that unsafe, concurrent memory accesses can be detected as such. These tech-
niques are using features that are specific to the MPI-2 standard and its remote memory access model.

3 Memory and communication model

In this section, we define a model for distributed shared memory. This model works at a lower level than
most models described previously in the literature. It considers inter-process communications for remote
data accesses.

3

Data Coherency in Distributed Shared Memory

3.1 Distributed shared memory model

In many shared-memory models that have been described in the literature [2, 9, 25], pairs of processors
communicate using registers where they read and write data. Distributed shared memory cannot use
registers between processors because they are physically distant from each other; like message-passing
systems, they can communicate only by using an interconnection network.

Figure 1 depicts our model of organization of the public and private memory in a multiprocessor sys-
tem. In this model, each processor maps two distinct areas of memory: a private memory and a public
memory. The private memory can be accessed from this processor only.

The public address space is made of the set of all the public memories of the processors (the Global
Address Space). Processors can copy data from/to their private memory and the public address space,
regardless of data locality.

Public memory can be accessed by any processor of the application, in concurrent read and write
mode. In particular, no distinction is made between accesses to public memory from a remote process
and from the process that actually maps this address space.

P0 P1 P2

Private

Address
Space

Public

Address
Space

Remote
getRemote

put

Remote
put

Figure 1: Memory organization of a three-processor distributed shared memory system.

The compiler is in charge with data locality, i.e., putting shared data in the public memory of pro-
cessors. For instance, if a data x is defined as shared by the programmer, the compiler will decide to
put it into the memory of a processor P . Instead of accessing it using its address in the local mem-
ory, processors use the processor’s name and its address in the memory of this processor. This cou-
ple (pr ocessor _name, local _addr ess) is the addressing system used in the global address space. The
compiler also makes the address resolution when the programmer asks a processor to access this shared
data x.

In addition, since NICs (Network Interface Controllers) are in charge with memory management in the
public memory space, they can provide locks on memory areas. These locks guarantee exclusive access
on a memory area: when a lock is taken by a process, other processes must wait for the release of this lock
before they can access the data.

3.2 Communications

Processors access areas of public memory mapped by other processors using point-to-point communi-
cations. They use one-sided communications: the process that initiates the communication can access
remote data without any notification on the other processor’s side. Hence, a processor A is not aware of
the fact that another processor B has accessed (i.e., read or written) its memory.

Accessing data in another processor’s memory is called Remote Direct Memory Access (RDMA). It can
be performed with no implication from the remote processor’s operating system by specific network in-
terface cards, such as InfiniBand and Myrinet technologies. It must be noted that the operating system is
not aware of the modifications in its local shared memory. The SHMEM [6] library, developed by Cray, also
implements one-sided operations on top of shared memory. As a consequence, the model and algorithms
presented in this paper can easily be extended to shared memory systems.

4

International Journal of Networking and Computing

RDMA provides two communication primitives: put and get. These two operations are represented in
figure 2. They are both atomic.

P0 P1 P2

get
put

Figure 2: Remote R/W memory accesses.

Put consists in writing some data into the public memory of another processor. It involves one mes-
sage, from the source processor to the destination processor, containing the data to be written. In figure 2,
P2 writes some data into P1’s memory.

Get consists in reading some data from another processor’s public memory. It involves two messages:
one to request the data, from the requesting processor to the processor that holds the data, and one to
actually transfer the data, from the processor that holds the data to the requesting processor. In figure 2,
P0 reads some data from P1’s memory.

Communications can also be done within the public space, when data is copied from a place that has
affinity to a process to a place that has affinity to another process.

The get operation is atomic (and therefore, blocking). If a thread gets some data and writes it in a given
place of its public memory, no other thread can write at this place before the get is finished. The second
operation is delayed until the end of the first one (figure 3).

P0 P1 P2

get

put

Figure 3: A put operation is delayed until the end of the get operation on the same data.

3.3 Race conditions

One major issue created by one-sided communications is that several processors can access a given area
of memory without any synchronization nor mutual knowledge. For example, two processors A and B
can write at the same address in the shared memory of a third processor C . Neither B nor C knows that A
has written or is about to write there.

Concurrent memory accesses can lead to race conditions if they are performed in a totally anarchic
way (although some authors precise data race conditions, we will use only "race conditions" throughout
this paper). A race condition is observed when the result of a computation differs between executions of
this computation. Race condition makes, at least, hard to reason about a program and therefore is usually
considered as a bug or at least as a design flaw.

In figure 4 we present a very simple case of race condition. The order of the execution (due for example
to differences between the relative speeds of the processes) generate two different results.

5

Data Coherency in Distributed Shared Memory

P0 P1 P2

put
a := A

a := A

put

a := B

a := B

P0 P1 P2

put

a := A

a := A

put a := B

a := B

Figure 4: Example of race condition

In the kind of systems we are considering here, a race condition can occur when several operations are
performed by different processors on a given area of shared memory, and at least one of these operations
is a write.

For instance, if a piece of data located in the shared memory is initialized at a given value v0 and is
accessed concurrently by a process A that reads this data and a process B that writes the value v1. If A
reads it before B writes, it will read the value v0. If B writes before A reads, A will read v1.

More formally, we can consider read and write operations as events in the distributed system formed
by the set of processors and the communication channels that interconnects them.

Two events e1 and e2 are causally ordered iff there exists an happens before (as defined by [17] and
denoted →) relationship between them such that e1→e2 or e2→e1. Race conditions are defined in [13] by
the fact that there exists no causal order between e1 and e2 (further denoted by e1 ×e2).

3.4 A parallel pseudo-language

In this section, we describe a parallel pseudo-language. This language is meant to describe parallel al-
gorithms using a parallel global address space in the same way as pseudo-code describes sequential al-
gorithms. Its purpose is not to replace UPC nor any parallel programming language (Titanium, Co-Array
Fortran...) but to describe algorithms with a language-agnostic description language.

Variables have a visibility. They can be either private or shared. Private means that the variable is
visible by the current process only, and is physically located in its memory. Shared means that the variable
is in the distributed public memory space. It can be physically located in any process’s memory. Each
process is assigned a unique number, called its rank. If the total number of processes in the system is N ,
ranks are consecutive and range from 0 to (N −1). The physical location of this variable (i.e., the rank of
the process that maps the chunk of memory where it is physically located) is called its affinity.

The compiler and the underlying run-time system translate accesses to shared variables that do not
have affinity to the current process into remote data accesses. Accesses to the local area of shared memory
are performed using the local memory controller.

An example using this parallel pseudo-language is given in algorithm 1. This algorithm defines two
variables of type Integer: a and b; a is shared (line 2) and b is private (line 3). We put the value of the
process rank into this private variable b (line 4). Then the value of b is put into the shared variable a (line
5). A global synchronization (i.e., a barrier, line 6) waits until all the processes have reached this point of
the program. Then one process prints the value of a (line 8).

The equivalent code in UPC (Unified Parallel C) is given by algorithm 2. UPC calls threads its parallel
processes. It predefines some identifiers, such as MY T HRE AD , which provides the rank of the current
thread (line 4 and line 7). Shared variables are declared using the qualifier shared (line 2). By default,
variables are private: hence, if nothing is specified, a variable is private (line 3).

6

International Journal of Networking and Computing

Algorithm 1: Example using our par-
allel pseudo-language

begin1

shared a: Integer ;2

private b: Integer ;3

b ←− myr ank ;4

a ←− b ;5

barrier() ;6

if myr ank == 0 then7

print a ;8

end9

Algorithm 2: Equivalent program in
UPC

begin1

shared int a ;2

int b ;3

b = MYTHREAD ;4

a = b ;5

upc_barrier();6

if 0 == MYTHREAD then7

printf(“%d\n", a) ;8

end9

The compiler chooses where the shared variables are physically located. In our example, we assume
without loss of generality that process rank 0 has been chosen to store integer a in its local memory. Al-
gorithm 3 describes the sequence of instructions executed by each process with explicit communications
(remote data accesses). The shared variable is actually declared on process 0 only (line 2-3). Access to this
shared variable is done between lines 6 and 9. If the local process is the process that holds the data (lines
6-7), it corresponds to a simple local variable. If the shared variable does not have affinity to the local pro-
cess, it must be accessed using a remote data access. Since our algorithm is writing into this variable, it
corresponds to a put(localaddr, rank, remoteaddr) operation. A reading will be denoted by get(localaddr,
rank, remoteaddr) (r ank will always be the rank of the process owning r emoteaddr variable physically).

The corresponding inter-process communications and the state of the shared variable a through the
execution of this algorithm are depicted on figure 5 and figure 6 on an execution involving three processes
P0, P1 and P2. As we can see here, all the processes write into the variable a without coordination. These
two figures show two possible executions of the algorithm. Figure 5 depicts a situation where P0 writes
first into a (upon this point, a = 0), then P1 performs a put into a (a = 1) and last, P2 performs a put into
a (the value of a at the end is a = 2). Another possible execution is depicted in figure 6. In this case, P2’s
put operation is executed before P1’s one. As a consequence, the final value for a is a = 1. This example
contains a race condition.

Algorithm 3: Algorithm 1
as executed by the run-
time system

begin1

if myr ank == 0 then2

a: Integer ;3

b: Integer ;4

b ←− myr ank ;5

if myr ank == 0 then6

a ←− b ;7

else8

put(b, 0, a) ;9

barrier() ;10

if myr ank == 0 then11

print a ;12

end13

P0 P1 P2

b=0 b=1 b=2

a=0
put

a=1
put

a=2

Figure 5: Communications per-
formed by algorithm 1: first situa-
tion

P0 P1 P2

b=0 b=1 b=2

a=0
put

a=2 put

a=1

Figure 6: Communications per-
formed by algorithm 1: second sit-
uation

7

Data Coherency in Distributed Shared Memory

4 Detecting race conditions

In this section, we present an algorithm for detecting race conditions in parallel applications that follow
the distributed shared memory model presented in section 3.

As stated in section 2, previous works on race condition detection has focused on specific commu-
nication models. Here we present a new algorithm designed specifically for the model presented in the
previous section, and how our algorithm takes specific advantage of one-sided communications and re-
mote memory access.

4.1 Causal ordering of events

In section 3.3, we stated that there exists a race condition between a set of inter-process events when
there exists no causal order between these events. In practice, this definition must be refined: concurrent
accesses that do not modify the data are not problematic. Hence, when an event occurs between two
processes, we need to determine whether it is causally ordered with the latest write on this data.

Lamport clocks [17] keep track of the logical time on a process; vector clocks (introduced by [20]) allow
for the partial causal ordering of events. A vector clock on a given process contains the logical time of each
other process at the moment when the other process had an influence on the process (i.e., last time it had
a causal influence on this process).

When the causality relationship between a set of events that contains at least a write event cannot be
established, we can conclude that there exists a race condition between them. More specifically, when we
compare the vector clocks that are associated with these events and the latest write.

Lemma 1 (See [20], theorem 10) ∀e,e ′ ∈ E : e < e ′ iff H(e) < H(e ′) and e ∥ e ′ iff C (e) ∥C (e ′)

Corollary 1 Consider two events denoted e1 and e2 and their respective clocks H1 and H2. If no ordering
can be determined between H1 and H2, there exists a race condition between e1 and e2 (e1 ×e2).

In the following algorithms, we detail the put and get commands. Algorithm 4 describes a
put(sr c, j ,d st) performed from P0 by the library to write the content of sr c address into process j ’s mem-
ory at address d st . Algorithm 5 describes a get(d st , j , sr c) performed by the library to retreive content of
sr c address from process P j ’s memory to process P0’s memory at address d st . Each process associates
two clocks to areas of shared memory: a general-purpose clock V and a write clock W that keeps track of
the latest write operation.

Figure 7 shows an example of two concurrent remote read operations (i.e., get operations) on a variable
a. This variable is initialized at a given value A before the remote accesses. Since none of the concurrent
operations modifies its value, this is not a race condition. As stated in section 3.3, there exists a race
condition between concurrent data accesses iff at least one access modifies the value of the data. As a
consequence, concurrent read-only accesses must not be considered as race conditions.

P0 P1 P2

a = ? a = A a = ?

get

a = A

get

a = A

Figure 7: Two concurrent get operations

The lock (resp. lock_local) primitive takes care of mutual exclusion if the addressed value is in pub-
lic space or not. If the address is in private space, there is no need of a real lock (except in multithread-
ing). The l ock(j , addr) command locks an area of memory located at address addr on process j . The
local _lock(addr) command locks an area of memory located at address addr on the local process.

8

International Journal of Networking and Computing

Algorithm 4: Put(l ocal addr = sr c,r ank = j ,r emoteaddr = d st) operation from local proc. to P j

begin1

lock_local(sr c);2

lock(j ,d st);3

V = update_local_clock(sr c);4

W = get_clock_W(j , sr c);5

if ¬ compare_clocks(V ,W)∧¬ compare_clocks(W,V) then6

signal_race_condition() ;7

put(sr c, j ,d st);8

update_clock_W(j ,d st);9

update_clock(j ,d st);10

unlock(j ,d st);11

unlock_local(sr c);12

end13

Algorithm 5: Get(l ocal addr = d st ,r ank = j ,r emoteaddr = sr c) operation from local proc. to P j

begin1

lock_local(d st);2

lock(j , sr c);3

W = update_local_clock_W(d st);4

V = get_clock(j , sr c);5

if ¬ compare_clocks(W,V)∧¬ compare_clocks(V ,W) then6

signal_race_condition() ;7

get(d st , j , sr c);8

update_clock(j , sr c);9

update_local_clock(d st);10

unlock(j , sr c);11

unlock_local(d st);12

end13

Algorithm 6: compare_clocks(V ,W) algorithm

begin1

return (∀n ∈ {0, . . . , N −1} : V [n] <W [n]) ;2

end3

In figure 8, we present three use-cases of our algorithm: two situations of race conditions and one
when the messages are causally ordered.

4.2 Clock update

The clock vector VPi (or simply V in the algorithms to denote the local one) is maintained by each process
Pi . This vector is a local view of the global time. It is initially set to zero. Before Pi performs an event,
it increments its local logical clock VPi [i , i] (upd ate_l ocal_clock). Clocks are updated by any event as
shown in algorithm 7, see [23].

The update_clock_W algorithm is similar to the update_clock algorithm, except that it updates the
value of the “write clock” W .

Since the shared memory area is locked, there cannot exist a race condition between the remote mem-
ory accesses induced by the race condition detection mechanism.

9

Data Coherency in Distributed Shared Memory

P0 P1 P2

000 000 000

m1(100)100

110

m2(001) 001

110×001

(a) Race condition detected on re-
ception of m1 (put) and m2 (put)

P0 P1 P2

000 000 000

get1(010)
010

010
110

m1(110)
120

130 m2(130)
131

m3(132) 132

132

(b) No race condition between m1
(get) and m3 (put)

P0 P1 P2 P3

m11000
1100

m22000

2010

m32020
2021

m4 2022

X

(c) Race condition detected between m1 (put) and
m4 (put)

Figure 8: Detecting race conditions with vector clocks

Algorithm 7: update_clock(r ank = j ,r emoteaddr = d st) algorithm

begin1

VP j = get_clock(j ,d st);2

V = get_local_clock(d st);3

V ′ = max_clock(V ,VP j);4

put_clock(V ′, j ,d st);5

end6

Algorithm 8: max_clock(V ,W) algorithm

begin1

∀l ,V ′[l] = max(V [l],W [l]);2

return V ′ ;3

end4

4.3 Discussion on the size of clocks

If n denotes the number of processes in the system, it has been shown that the size of the vector clocks
must be at least n [7]. As a consequence, the size of the clocks cannot be reduced.

4.4 Discussion on error signalisation

In the algorithm presented here, we refine the error detection by using two distinct clocks, a general-
purpose one and a “write clock”. The drawback of this approach is that it doubles the necessary amount
of memory. On the other hand, it offers more precision and eliminates numerous cases of false positives
(e.g., concurrent read-only accesses).

A race condition may not be fatal: some algorithms contain race conditions on purpose. For example,
parallel master-worker computation patterns induce a race condition between workers when the results
are sent to the master. Therefore, race conditions must be signaled to the user (e.g., by a message on the
standard output of the program), but they must not abort the execution of the program.

As an example where race conditions are not an issue, we can consider a distributed sum computation.
For instance, approximation of the Pi number using the sub-curve area method (it calculates the area
under the curve of a quarter of a circle) distributes computation between the available parallel processes
and computes a global sum of their partial results. Since the sum operation is commutative, this global
sum can be computed in any order.

Algorithm 9 gives a distributed algorithm that computes the value ofπ in the parallel pseudo-language

10

International Journal of Networking and Computing

we described in section 3.4. There exists a race condition on line 8, since the processes can write into the
shared variable sum in any order.

This race condition is depicted in figure 9, on which a possible execution of this algorithm is repre-
sented. In this execution, the relative computing and communication speeds of the four processes are
such that line 8 is first executed by process P0, then by process P2, followed by process P1 and finally by
process P3.

Algorithm 9: Distributed compu-
tation of π in a distributed shared
memory model

begin1

shared sum: Float ;2

private local : Float ;3

if myr ank == 0 then4

sum = 0 ;5

local = compute_local_area() ;6

memory_lock(sum) ;7

sum += local ;8

memory_unlock(sum) ;9

barrier() ;10

if myr ank == 0 then11

print sum ;12

end13

P0 P1 P2 P3

sum = 0

local=0.785473

sum=0.785473

put
local=0.785423

sum=2.356269

put
local=0.785373

sum=1.570846

put

local=0.785323

sum=3.141592

Figure 9: Possible communications performed by algorithm 9 on 4
processes

However, any other order would have given the correct result. As a consequence, this race condition
does not have any influence on the final result of the computation. Hence, it is not fatal, and the program
can be executed normally. A race condition detection system ought to notify the programmer about it but
not abort the execution.

5 Conclusion and perspective

In this paper, we presented a model for distributed shared memory. This model considers interactions
between processes and causal dependencies, while taking into account specific features from hardware
used to implement such systems.

In this model, we propose an algorithm for detecting race conditions caused by the absence of order-
ing between events in the distributed system. This algorithm can be implemented in the communication
library of the run-time support system that executes the program on a distributed system.

5.1 Discussion about overheads

As stated in section 4.3, the size of the clocks cannot be smaller than n, if n denotes the number of pro-
cesses in the system. Moreover, a clock must be used for each shared piece of data. As a consequence, our
algorithm has an overhead on data storage space (clocks associated with shared data) and with communi-
cation performance. Our algorithm is presented using additional messages (O(1) messages carrying O(n)
bytes) for clock update introducing an overhead on latency. Note that sometimes it can be implemented
by extending existing messages (by piggybacking techniques or extension of headers/enveloppe of active
messages) when the underlying communication network allow longer messages.

However, race condition detection is typically a debugging technique. It does not need to be enabled
on a parallel application that is actually running at full performance and large-scale systems. Parallel
programmes are typically debugged on small data sets and a few processes (typically, about 10 processes).

11

Data Coherency in Distributed Shared Memory

5.2 Future works

The model presented in this paper leads to new interpretations of distributed algorithms. New operations
can also be imagined, such as non-collective, global operations: for example, a process can perform a
reduction (i.e., a global operation on some data held by all the other processes) without any participation
of the other processes, by fetching the data remotely.

Our race condition detection algorithm can be implemented at two levels: in the communication
library of a parallel language, for automatic detection of conflictual accesses, or in the pre-compiler, as
wrappers around remote data accesses. It does not require any modification to the UPC language, since
our algorithms can be implemented in the implementation of the communication primitives called by
UPC.

It is also possible to extend this technique to perform trace analysis. When doing trace analysis, it is
necessary to keep all messages interactions (generally speaking it is done at the sender side) and label
them with a kind of "date". It is often hard (or impossible) to have a real physical global clock (for ba-
sic physics reasons, as stated in [17]). Some authors use some special counters available on processors
(for example Time Stamp Counter of Intel processors) to achieve this; however, there is no reason for the
timestamp counters of multiple CPUs to stay synchronized. We can use vector clocks as timestamps for
this purpose, which would be a better way to memorize a "date". It can also be used for the so-called "re-
play" debugging technique: it logs the causality information of the execution of deployed application pro-
cesses and replays them deterministically, reproducing race conditions faithfully and non-deterministic
failures, enabling careful offline analysis and failure confinement [5].

References

[1] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. IEEE Computers, 19:26–34,
August 1986.

[2] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations and advanced
topics. The McGraw-Hill Companies, March 1998.

[3] Jim Basney. A Distributed Implementation of the C-Linda Programming Language. PhD thesis, Ober-
lin College, Computer Science Program, May 1995.

[4] Dan Boachea. Gasnet specification, v1.1. Technical Report UCB/CSD-02-1207, U.C. Berkeley, 2002.

[5] Aurelien Bouteiller, George Bosilca, and Jack Dongarra. Retrospect: Deterministic replay of MPI
applications for interactive distributed debugging. In Franck Cappello, Thomas Hérault, and Jack
Dongarra, editors, PRecent Advances in Parallel Virtual Machine and Message Passing Interface, 14th
European PVM/MPI User’s Group Meeting, volume 4757 of Lecture Notes in Computer Science, pages
297–306. Springer, 2007.

[6] Ron Brightwell. A new MPI implementation for Cray SHMEM. In Dieter Kranzlmüller, Péter Kacsuk,
and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, Proceedings of 11th European PVM/MPI Users’ Group Meeting, volume 3241 of Lecture Notes in
Computer Science, pages 122–130. Springer, 2004.

[7] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems. Inf. Process.
Lett., 39:11–16, July 1991.

[8] UPC Consortium. UPC Language Specifications, v1.2. Technical Report LBNL-59208, Lawrence
Berkeley National, 2005.

[9] Shlomi Dolev. Self-Stabilization. MIT Press, March 2000.

[10] Message Passing Interface Forum. MPI: A message-passing interface standard. Technical Report
UT-CS-94-230, Department of Computer Science, University of Tennessee, April 1994.

12

International Journal of Networking and Computing

[11] Al Geist, William D. Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing L. Lusk, William
Saphir, Anthony Skjellum, and Marc Snir. MPI-2: Extending the message-passing interface. In Luc
Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, 1st European Conference on Par-
allel and Distributed Computing (EuroPar’96), volume 1123 of Lecture Notes in Computer Science,
pages 128–135. Springer, 1996.

[12] Petr Hanáček. Parallel simulation using the linda language. In 5th Moravo-Silesian
International Symposium on Modelling and Simulation of Systems, pages 263–267, 1993.
http://www.fit.vutbr.cz/ hanacek/papers/SISY93.pdf.

[13] D. P. Helmbold and C. E. McDowell. A taxonomy of race detection algorithms. Technical Report
UCSC-CRL-94-35, University of California, Santa Cruz, September 1994. (paper copy $6.00).

[14] Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hennessy. The effects
of latency, occupancy, and bandwidth in distributed shared memory multiprocessors. Technical
Report CSL-TR-95-660, Computer Systems Laboratory, Departments of Electrical Engineering and
Computer Science, Stanford University, Stanford, California 94305-4055, 1995.

[15] D. Bonachea K. Yelick and C. Wallace. A Proposal for a UPC Memory Consistency Model. Technical
Report LBNL-54983, Lawrence Berkeley National, 2004.

[16] Bettina Krammer and Michael M. Resch. Correctness checking of mpi one-sided communication
using marmot. In Bernd Mohr, Jesper Larsson Träff, Joachim Worringen, and Jack Dongarra, editors,
Recent Advances in Parallel Virtual Machine and Message Passing Interface, 13th European PVM/MPI
User’s Group Meeting, pages 105–114. Springer, 2006.

[17] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[18] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-
grams. IEEE Trans. Comput., 28(9):690–691, 1979.

[19] K. Li and P. R. Hudak. Memory coherence in shared virtual memory systems. In Proceedings 1986
5th Annual ACM Symposium on Principles of Distributed Computing, pages 229–239, New York, NY,
1986. ACM.

[20] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel and Dis-
tributed Algorithms, pages 215–226. North-Holland, 1988.

[21] Robert W. Numrich and John Reid. Co-array fortran for parallel programming. SIGPLAN Fortran
Forum, 17:1–31, August 1998.

[22] Mi-Young Park and Sang-Hwa Chung. Detecting Race Conditions in One-Sided Communication
of MPI Programs. In 2009 Eigth IEEE/ACIS International Conference on Computer and Information
Science (icis 2009), June 2009.

[23] Michel Raynal and Mukesh Singhal. Logical time: Capturing causality in distributed systems. Com-
puter, 29:49–56, 1996.

[24] Sun Microsystems. JavaSpaces Specification 1.0, 1999.

[25] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

[26] Katherine A. Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Krishna-
murthy, Paul N. Hilfinger, Susan L. Graham, David Gay, Phillip Colella, and Alexander Aiken. Tita-
nium: A high-performance java dialect. Concurrency - Practice and Experience, 10(11-13):825–836,
1998.

13

