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[ The Tai Chi of algebraic modeling

constructors destructors
& co/Horn clauses (£.AX) & co/Horn clauses
L:SetS>K B B L:K>Set®
Rk>SetS extends R:SetS>=K
algebra l coalgebra
F(R(B)) > R(B) op | recursive corecursive | op L(B) > G(L(B))
A (Z',AX")
algebra coalgebra
FA) =50 A F'(ni')  G'(Fin') opf A > GA)
fold . — Y unfold
L(Ini) - - R(Fin)
) 1 \
F(Ini) —= > Ini <o Ini Fin .« unfold = 5 G(Fin)
initial A Ini Z'-consistent Fin X'-observabel final
algebra & fold' mono & unfold' mono coalgebra
Ini X'-reachable Fin X'-complete
nat & fold' epi & unfold' epi inc
inc = id nat = id
Ini/~ \} inv
~ X-congruence inv = Ini Fin/~ = Fin 2-invariant
object is the only Z-invariant ~ is the only X-congruence behavior
abstraction Uinducﬂon coinduc’rionU restriction
VBCIni: V a,b € Fin :
B=Ini iff 3 Z-invariant inv : inv CB a=b iff 3 Z-congruence ~ : a~b
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[ Preliminaries }

Set denotes the category of sets with functions as morphisms.
Let I be a set of indices and for all ¢ € I, A; be a set.

| [..; A; denotes the product of all A;.

Foralln > 1, A; x - x A, =], A

[ 1., A; denotes the coproduct (— disjoint union) of all A;.
Forallm>1, Ay +---+ A, =[], A

Forallie I, m:[]..; Ai — A, denotes the i-th projection:
For all a = (a;)icr € [[,c; Air mila) = a;.

Forallie I, A — []..; A denotes the i-th injection:
Foralli € I and a € A, ti(a) = (a,1).

Given functions f; : A — A; for all ¢ € I, (fi)ier : A — []..; Ai denotes the product
extension of { fi}ier: For all a € A, (fi)icr(a) = (fi(a))ier.

[, fi=(fiom)and forallm > 1, fi x--- x f, =[[_; fi-
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(Preliminaries)

Given functions ¢; : A; — A for all ¢ € I, [gilics : [[..; Ai — A denotes the coproduct
extension of { fi}ier: Forall i € I and a € A;, [gi](a, i) = gi(a).

[l.c;09i=lniog]andforalln>1 g+ +g,=1["_, g
b ifi=k,

For all a € ] mi(a) otherwise.

A;and ik € I, mi(alb/k]) =g {

el

1 denotes the singleton {x}.
2 denotes the two-element set {0,1}. The elements of 2 are regarded as truth values.
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(Preliminaries)

Let A be a set.

The function idy : A — A, defined by ids = Aa.a, is the identity on A.

The relation Ay C A x A, defined by Ay ={(a,a) | a € A} is the diagonal of A.
A" ={a € A" | n € N} is the set of finite words or lists of elements of A.

Bin(A) = {f : A = N | |supp(f)| < w} is the set of finite bags or multisets of
elements of A where supp(f) ={a € A | f(a) # 0}.

PunA)={f: A— 2| |supp(f)| < w} is the set of finite sets of elements of A.
AN is the set of infinite words or lists of elements of A.

A> = A* U AN denotes the set of finite or infinite words of elements of A.
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[ CPOs, lattices and fixpoints }

Let A be a set and R be a binary relation on A such that R is transitive, i.e., for all
a,b,c € A, aRb and bRc implies aRc, and antisymmetric, i.e., for all a,b € A, aRb and
bRa implies a = .

R is a partial order and A is a partially ordered set or poset if R is reflexive, i.e.,
for all a € A, aRa. R is a total order and A is a chain if for all a,b € A, aRb or bRa.
If, in addition, R is irreflexive, i.e., for all a € A, ~aRa, then R is a strict total order.

R is well-founded if each nonempty subset of A has a minimal element w.r.t. R. If,
in addition, R is a strict total order, then R is a well-order and, consequently, each
nonempty subset of A has a least element w.r.t. R.

Let A be a poset with partial order <, >=<~1 and )\ be an ordinal number.
B={a; | i< A} CAisa A-chain of A if for all ordinals i < j < X, a; < a;.

B ={a;|i< A} CAisa Acochain of A if for all ordinals ¢ < j < X, a; > aj;.
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[CPOS, lattices and ﬁ:)tp()?lnt{s]

Remember that an ordinal number is either

e ()or
e a successor ordinal n+1=mnU {n} for some ordinal n,

e a limit ordinal, i.e.; an infinite set {0, 1,2,3,4,...} of ordinals.

A is A-complete or a A\-CPO if A has a least element | w.r.t. < and for each A-chain
B of A, A contains the supremum I3 of B.

A is A-cocomplete or a A-coCPO if A has a greatest element T w.r.t. < and for each
A-cochain B of A, A contains the infimum M5B of B.

Note that > is a partial order ift < is so, but cocompleteness w.r.t. < usually does not
agree with completeness w.r.t. >.

A product of n CPOs is also a CPO. Partial order, least element and suprema are defined
componentwise.
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[CPOS, lattices and ﬁxpoints}

The set of functions from a set A to a CPO B is a CPO. The partial order is defined
argumentwise: For all f,g: A — B,

[<g “ur YaecA: fla) <gla). (1)

The least element of A — B is given by () = Ax.L. Suprema are also defined argument-
wise: For all A-chains {f; : A — B},ey and a € A,

(Wienfi)(a) =g Uien fi(a). (2)

A is directed if each finite subset of A has a least upper bound w.r.t. R.

Proposition DIR (]|43], Cor. 1) Let A be A-CPO with partial order <. For all directed
subsets B of A with |B| < A, A contains the supremum LB of B.

Proof. We show the conjecture only for A = w and refer to the proof of [43], Thm. 1, for
the generalization to arbitrary ordinal numbers.

Let B be a countable directed subset of A. If B is a chain, then LB exists because A
is w-complete. Otherwise B is infinite: If B were finite, B would contain two different
maximal elements w.r.t. R, which contradicts the directedness of B.
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[OPOS, lattices and ﬁ.’rpomt{s]

Since B is infinite, there is a bijection f : N — B. We define subsets B;, 1 € N, of B
inductively as follows: By = {f(0)} and B;11 = B; U {f(i),b;} where i = min(f~1(B\
B;)) and b; is an upper bound of f(i) and (all elements of) B;. b; exists because B is
directed and B; U {f(7)} is a finite subset of B.

For all ¢ € N, B; is finite and directed and thus a (countable) chain. Since A is w-
complete, B; contains the supremum UB; of B;. Since B; C B;,1, {UB; | i € N} is also
a countable chain and thus has a supremum c in A. c is the supremum of C' = U;enB;:
Forall? € Nand b € B;, b < LUB; < c¢. Hence c is an upper bound of C. Let d be an
upper bound of C. Then for all 2 € N, LUB; < d and thus ¢ < d.

Of course, U;enB; € B. Conversely, let b € B. Since for all i € N, |B;| > i, there is
k € N with b € B;.. Hence B = C' and thus ¢ = UB. l:I

Let A, B be posets.
f: A — B is monotone if for all a,b € A, a < b implies f(a) < f(b).
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[CPOS, lattices and ﬁxpoz’ntsj

Let A, B be A-CPOs.
f: A — B is A-continuous if for all A-chains B of A,
f(UB) ={f(b) | b€ B}.

f: A — B is A-cocontinuous if for all A-cochains B of A,

f(MB) =n{f(b) | b e B}.

If f is A-co/continuous, then f is monotone.

[f f is monotone, then f is A-continuous iff for all A-chains B of A,
F(UB) < ULF(D) | be B

If fis monotone, then f is A-cocontinuous iff for all A-cochains B of A,
{f(0) [ be B} < f(MB).

If f is monotone and all A-co/chains of A are finite, then f is A-co/continuous.

Given \-CPOs A and B, A —_. B denotes the set of A-continuous functions from A to B.
Since () and suprema of A-chains of A-continuous functions are A-continuous, A —. B is
a \-CPO.
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[CPOS, lattices and ﬁxpoints}

Kleene’s Fixpoint Theorem [37| (also known as Kleene’s first recursion theorem)
(1) Let A be an w-CPO and f: A — A be w-continuous.

fp(f) = Upenf"(L) is the least fixpoint of f.

(2) Let A be an w-coCPO and f: A — A be w-cocontinuous.

gfp(f) = Muenf™(T) is the greatest fixpoint of f.

Proof.

(1) Since f is w-continuous, f is monotone and thus L < f(L1) < f%(L) < ... is an
w-chain. Since f(Upen/™(L)) = UpenS" (L) = Unenf™(L), Ifp(f) is a fixpoint of f.

Let a be a fixpoint of f. We show f"(L) < a for all n € N by induction on n: fY(L) =
1L <a If ff(L) < a, then f"(1L) < f(a) = a because f is monotone. Hence
ifp(f) < a,ie., lifp(f) is the least fixpoint of f.

(2) Analogously. l:l
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[CPOS, lattices and ﬁ:)tp()?lnt{s]

A poset A is a complete lattice if each subset B of A has a supremum LIB and an
infimum MB in A.

1 = 10 is the least element and T = M is the greatest element of A.
Let A, B be complete lattices.

f: A — Bis continuous if for all C' C A, f(UC) = Ueec f(c).

f A — B is cocontinuous if for all C C A, f(MC) = Meecf(c).

[f f is continuous or cocontinuous, then f is monotone.

Proof. Let a <b. Then aMb=a and a LUb =10 and thus f(a) M f(b) = f(aMb) = f(a)
or f(a)U f(b) = f(aUb) = f(b). Hence f(a) < f(b). a

Let A be a poset and f: A — A.
a € Ais f-closed if f(a) < a. ais f-denseif a < F(a). ais a fixpoint of f if f(a) = a.
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[CPOS, lattices and ﬁxpoints}

Fixpoint Theorem of Knaster and Tarski [62]

Let A be a complete lattice and f: A — A be monotone.

(1) Ifp(f) =T{a € A ] ais f-closed} is the least fixpoint of f.
(2) gfp(f) =U{a € A| ais f-dense} is the greatest fixpoint of f.
Proof.

(1) Let a be f-closed. Then Ifp(f) < a and thus f(ifp(f)) < f(a)
is a lower bound of all f-closed elements of A. Hence (3) f(ifp(f))
monotone, (3) implies that f(Ifp(f)) is f-closed and thus (4) Ifp(f)
and (4), ifp(f) is a fixpoint of f.

Let a be a fixpoint of f. Then a is f-closed and thus Iifp(f) < a

a, ie, f(lfp(f))

<
< Ifp(f). Since f is
<

f(ifp(f)). By (3)

(2) Analogously. a
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[CPOS, lattices and ﬁxpoints}

Zermelo’s Fixpoint Theorem ([1], Prop. 1.3.1; [40], Ext. Folk Thm. 6; [9], Thm.
4.1.1)

(1) Let A be a A-CPO with |A] < A\, f: A — A be monotone and B = {a; | # < A} be
the A-chain of A that is defined as follows: ag = L, for all ordinals i < A, a;+1 = f(a;),
and for all limit ordinals ¢ < A, a; = Up-;ax. For some ¢ < A, a; is the least fixpoint f,

Le., ifp(f) = fA(L).

(2) Let A be a A-coCPO with |A| < A, f: A — A be monotone and B = {a; | i < A} be
the A-cochain of A that is defined as follows: ag = T, for all ordinals i < A, a;41 = f(a;),
and for all limit ordinals ¢ < A, a; = IMp—;a;. For some ¢ < A, a; is the greatest fixpoint

f,ie, afp(f) = FAT).
Proof.

(1) First we show by transfinite induction on ¢ that

for all ¢ < A, a; is defined and for all £ < i, a;, < a;. (3)
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[OPOS, lattices and ﬁ.’rpomt{s]

Of course, ag = L is defined. Let ¢ > 0. If 7 is a successor ordinal, then : = j+1 for some
j. By induction hypothesis, a; is defined and for all £ < 7, ar < a;. Hence a; = f(a;)
is defined. Since f is monotone, ar = ap+1 = f(ar) < f(aj) = a;. If i is a limit ordinal,
then by induction hypothesis, for all & < j <4, a; is defined and a;, < a;.

Hence C' = {a; | k < i} is a A-chain and thus a; = UC exists. Hence for all & < 1,
ar < a;.

We conclude from (3) that B is a A-chain.

Assume that for all @ < A\, a; # a;41. Then {a; | i < A} were a subset of A with
cardinality A, which contradicts the assumption that the cardinality of A is less than A.
Hence a; = a;11 = f(a;) for some ¢ < A, i.e., a; is a fixpoint of f.

Let b be a fixpoint of f. We show by transfinite induction on ¢ that
for all i < A, a; <b. (4)

Of course, ag = L. < b. Let ¢ > 0. If 7 is a successor ordinal, then ¢+ = 7 + 1 for some
j. By induction hypothesis, a; < b and thus a; = aj41 = f(a;) < f(b) = b because f
is monotone. If ¢ is a limit ordinal, then a; = U,-;a;. By induction hypothesis, for all
k<1, a. <b. Hence a; <.
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[CPOS, lattices and ﬁxpoints}

We conclude from (4) that a; is the least fixpoint of f.
(2) Analogously. -

Fixpoint induction
Let

(a) A be a complete lattice or a A-CPO with |A| < A and f: A — A be monotone or
(b) A be an w-CPO and f be w-continuous.

(1) For all f-closed a € A, Ifp(f) < a.
(2) For all n > 0 and f"-closed a € A, Ifp(f) < a.

Proof. (1) Let (a) hold true. If A is a complete lattice, then by the Fixpoint Theorem
of Knaster and Tarski, Ifp(f) =Ma € A | f(a) < a} < a. If Aisa A\-CPO, then by
transfinite induction on 4, for all i < A\, f'(L) < a because f is monotone and a is f-
closed. Hence by Zermelo's Fixpoint Theorem, Ifp(f) = fI4(L) < a. Let (b) hold true.
By induction on n, for all i € N, f/(L) < a because f is monotone and a is f-closed.
Hence by Kleene’s Fixpoint Theorem (1), Ifp(f) = Uienf (L) < a.
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[CPOS, lattices and ﬁxpoints}

(2) Let (a) hold true. If A is a complete lattice, then

b =aes Nizof'(a) < f(a) < a= f(a). (4)

By (3), for all 4 > 0, b < f""!(a) and thus f(b) < f'(a) because f is monotone. Hence
f(b) is a lower bound of {f'(a) | i > 0} and thus f(b) < b, ie., bis f-closed. By
the Fixpoint Theorem of Knaster and Tarski, Iifp(f) = M{c € A | f(c¢) < ¢}. Hence
(3) implies Ifp(f) < b < a. If Ais a A-CPO, then by transfinite induction on 4, for
all i < A, f™(L) < a because f is monotone and a is f-closed. Hence by Zermelo’s
Fixpoint Theorem, Ifp(f) = fI4(L) < a. Let (b) hold true. By induction on n, for all
i € N, f(L) < a because f is monotone and a is f-closed. Hence by Kleene’s Fixpoint
Theorem (1), Ifp(f) = UienfY(L) = Wien f™(L) < a. A
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[CPOS, lattices and ﬁxpoints}

Fixpoint coinduction
Let

(a) A be a complete lattice or a \-coCPO with |A| < A and f: A — A be monotone or
(b) A be an w-coCPO and f be w-cocontinuous.

(1) For all f-dense a € A, a < gfp(f).
(2) For all n > 0 and f"-dense a € A, a < gfp(f).

Proof. Analogously. EI

Computational induction

Let A be an w-CPO, f: A — A be w-continuous and B be an admissible subset of A,
i.e., for all w-chains C' of A, C' C B implies UC' € B.

If 1 € Bandforallbe B, f(b) € B, then Ifp(f) € B. (1)

Proof. (1) provides the induction base and the induction step of a proof by induction
on n that for all n € N, f*(L) € B. Since B is admissable, we conclude Ifp(f) =
Lnenf™(L) € B by Kleene’s Fixpoint Theorem (1). l:l
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[CPOS, lattices and ﬁxpoints}

Computational coinduction

Let A be an w-coCPO, f: A — A be w-cocontinuous and B be an co-admissible subset
of A, i.e., for all w-cochains C' of A, C' C B implies NC' € B.

If T € Bandforall be B, f(b) € B, then gfp(f) € B.
Proof. Analogously. EI

Noetherian induction
Let A be a class, R be a well-founded relation on A and B be a subset of A.
Ifforalla e A, (Vb€ A:bRa = b€ B) implies a € B, then B = A.

Proof. Assume that the premise holds true, but there is a € A\ B. Then the premise
implies bRa and b & B for some b € A, ie., b€ A\ B. We may repeat this conclusion
(with b instead of a) infinitely often and thus obtain a subset of A without a least element

w.r.t. R. O

If R is a well-order, then Noetherian induction is also called transfinite induction.

25 of 373



[ Categories j

poset notion categorical notion
element object

a A

ordered pair morphism

a<b f:A— B

least element initial object
greatest element final object
upper bound cocone

lower bound cone

supremum (least upper bound) colimit
infimum (greatest lower bound) limit

A-complete poset (CPO) A-cocomplete category IC
A-cocomplete poset A-complete category K
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complete lattice

monotone function

a<b = fla) < f(b)

f-closed element a: f(a) < a
f-dense element a: a < f(a)

A-continuous function

Jf(Uicaai) = Uicjcnf(a;)

A-cocontinuous function
f(l_li</\ai) - |_|i<)\f(ai)

Galois connection

fla) < b a<gb)

complete and cocomplete category

functor

AL B = ra) ™ peB)

o F-algebra: F(A) —— A
o F-coalgebra: A = F(A)

A-cocontinuous functor
F(colim{f;;: Ai — Aj}ic))
= colim{F(fi;): F(Ai) — F(A;)}icix

A-continuous functor
F(Zim{fﬂ : Aj - Az‘}z’<j<)\)
= lzm{F(fN) : F(Aj) — F(Ai)}z'<j<)\

adjunction F 4 G
A — G(B)
F(A)— B
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Categories

A (locally small) category K consists of

e a class of objects, also denoted by £,
o for all A, B € K aset (A, B) of K-morphisms,
e an associative composition
o:K(A,B)x K(B,C) — K(A,C)
(f,9) —gof,
o for all A € IC an identity idy € KC(A, A) such that for all B € K und f € (A, B),
foida= f=1dpo f. idy is also written as just A.
If the class of all objects of K is a set, then K is small.

Mor(K) denotes the class of all sets (A, B) with A, B € K.
f € K(A, B) is usually written as f: A — B. A is the source und B the target of f.

A category L is a subcategory of K if all objects of £ are objects of IC and all L-
morphisms are K-morphisms. L is full if all K-morphisms between objects of L are
L-morphisms.
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Categories

f € K(A, B) is (an) epi(morphismus) if for all g,h € K(B,C), go f = ho f implies
g=h.

f € K(A, B) is (a) mono(morphismus) if for all g,h € K(C, A), fog= foh implies
g =h.

g € K(B, A) is a retraction or split epi if g o f = id, for some f € IC(A, B).

f € K(A, B) is a coretraction, section or split mono if g o f = idy for some g €
K(B,A).

f € K(A, B) is (an) iso(morphismus) and A and B are isomorphic, written as A = B,
if f is a retraction and a coretraction.

If fe (A, B)isiso, then g € K(B, A) with go f =id4 and f o g = idp is unique.

Isomorphism is the equality of category theory:
Isomorphic objects have the same categorical properties.
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Categories

Lemma EPIMON Let f € K(A, B) and g € K(B, C).

e If go f is epi, then ¢ is epi.

e If go f is mono, then f is mono.

The dual category K of K is constructed from IC by keeping the objects, but reversing
the arrows, i.e., for all A, B € K, K?(A,B) = K(B, A).

The product category K x L has pairs (A, B) of objects A € K and B € L as objects
and pairs (f, g) of -morphisms f : A — C and L-morphisms f : B — D as morphisms.

Let IC be a category. A K-object I is initial in /C if for all IC-objects A there is a unique
JC-morphism ini: I — A.

A K-object F' is final or terminal in /C if for all C-objects A there is a unique K-
morphism fin: A — F.

All initial K-objects are isomorphic.

All final KC-objects are isomorphic.
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Categories

The S-sorted set A with A, = () for all s € S is initial in Set”.
Any S-sorted set A with |A,| =1 for all s € S is final in Set”.

Lemma MINMAX

(1) If I is initial in I, then all -monomorphisms f : A — [ are isomorphisms.
(2) If F is final in IC, then all XC-epimorphisms g : F© — A are isomorphisms.
Proof.

(1) Let I be initial in . Then foini? = id;. Hence foini‘o f =idjof = f = foidy
and thus ini? o f = idy because f is mono. Hence f is iso.

(2) Let F be final in K. Then fin® o g = idp. Hence go fin o g = goidp=g=idyog
and thus g o ﬁnA = 1d4 because g is epi. Hence g is iso. l:l
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Categories

Let K be a category with final object 1x. X € K has the fixpoint property if for all
JC-morphisms f: X — X thereisz: 1x — X with fox ==,

A K-morphism f : A — X is ubiquitous if for all -morphisms g : A — X there is
a:lx — Awith foa=goa.

Lawvere’s Fixpoint Theorem (|59], Thms. 1 quarto and 5; [70]|, Thm. 1)
Let IC be a category with final object 1.
(1) X € K has the fixpoint property iff there is an ubiquitous JC-morphism f: A — X

(2) Let K be Cartesian closed (see Adjunctions) and f : A — X% be a surjective
morphism, i.e., for all g : 1x — X there is a, : 1x — A such that foa, =¢. Then X
has the fixpoint property.
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Categories

Proof.

(1) Let f : A — X be ubiquitous and g : X — X be a K-morphism. Then foa, =
go foa,for some a,: 1x — A, ie., foa,isafixpoint of g. Conversely, suppose that
X € K has the fixpoint property. Let g : X — X be a K-morphism with fixpoint z,.
Then idx(x,) =z, = g(z,). Hence the identity on X is ubiquitous.

(2) By (1), it is sufficient to find an ubiquitous JC-morphism h : A — X. Define h as
f*o(idy,idy) and let g : A — X. Then

hoay,= "o (ida,ida) 0oa, = f"o(ay,a,) = fomaya,) = foay,.

Hence h is ubiquitous. EI

Corollaries
(1) Cantor: The set 2N of infinite bit streams is uncountable.

Proof. Let IC = Set. g : 2 — 2 with g(0) = 1 and ¢(1) = 0 does not have a fixpoint.
Hence by Lawvere’s Fixpoint Theorem (2), there is no surjective morphism f : N — 2N
and thus 2% is uncountable. l:l
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Categories

(2) For all sets A with |A| # 2, |A| < |24].
Proof. Same argument as in the proof of (1). a
(3) Russell: The collection C of all sets that do not contain themselves is not a set.

Proof. Let K be the category of classes, A be the class of all sets and f : A — 24 be the
function that maps each set B to its characteristic function yg : B — 2, i.e., for all sets
C, xp(C)=1if C € B. Let g: 2 — 2 with g(0) =1 and g(1) = 0. Assume that C' is a
set. Then C is the pre-image of h = go f*o (id4,id4) in A under f,ie., f(C) = xc = h.
This leads to a contradiction:

FONC) = n(C) = g(f*(C,C)) = g(F(C)(C)).

Hence C' ¢ A, ie., C'is not a set (and thus f is not surjective). This proof uses Lawvere’s
Fixpoint Theorem (2) only insofar as its conjecture is derived from the fact that 2 does
not have the fixpoint property. l:I

159], Section 3.1, and |70], §3 and §5, employ the same line of argument for re-establishing
well-known “negative” results, such as the unsolvability of the halting problem (Turing),
the incompleteness of arithmetic theories (Godel) or the undefinability of truth (Tarski).
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{ Functors and natural transformations }

Functors are mappings between categories.

Natural transformations are mappings between functors.

Let I and £ be two categories. A functor F : I — £ maps each K-Objekt to an
L-object and each K-morphism f:A — B to an L-morphism F(f): F(A) — F(B) such
that

o for all K-objects A, F(idy) = idp(a),
e for all C-morphisms f:A — Band g:B — C, F(go f) = F(g) o F(f).

If =L, then F'is called an endofunctor.
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Functors

Example

The Haskell function map:(a — b) — [a] — [b] is a functor from Set to the category of
monoids and monoid homomorphisms: for all A € Set and all functions f: A — B,

map(A) - <A*7+h H)v
map(f)(lar, ..., an]) = [fla1),..., flan)]

Idi I — K denotes the identity functor that maps each object or morphism of C to
itself.

The Hom functor Hom : K7 x JC — Set maps (A, B) € K? x K to K(A, B)
and (f :C — A,g: B— D) e K?(A,C)xK(B,D)toAh: A— B.(gohof:C — D).

The category Cat has categories K as objects and functors F': IC — £ as morphisms.
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Functors

Given two functors F. G : K — L, a natural transformation 7 : F' — (' assigns to
each object A € K an L-morphism 74 : F(A) — G(A) such that for all -morphisms
f : A — B the following diagram commutes:
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Functors

If for all A € K, 74 is an isomorphism, then 7 : F' — G is a natural equivalence and
F and G are naturally equivalent.

Compositions of functors and/or natural transformations

olet F: KX —Land G: L — M.

Then FG: I — M and for all A € I, GF(A) = G(F(A)).
oelet FG:K—=L, 7 F—Gand H: L— M.

Then H7 : HF — HG and for all A € K, (H7)4 = HT7a.

oelet ' ' X —-L GH:L-Mand7t:G— H.
Then 7/ : GF — HI and for all A € K, (TF)4 = Tra).-

o Vertical Composition. Let F,G,H . K — L, 7: F —-Gandn:G — H.
Then n7: ' — H and for all A € K, (n7)a =na0 Ta.

e Horizontal Composition. Let F,.G : K — L, 7 : F — G, F',G' : L - M and
7 F' — G’ Then

Fr Lo = FRFEL e 7% aa = PR oF S5 o
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Functors

Given two categories I and L, the category Fun(/C,£) has all functors F' : K — L as
objects and all natural transformations between such functors and their vertical compo-
sitions as morphisms.

Let T : Set — Set be a functor and A be a set.

The strength
sthd 1= = (=)AT

of T and A is defined as follows (see [32], p. 380): For all sets B, g € T(B%) and a € A,
sty (9)(a) = T((Af: BY.f(a)): B* = B)(g): T(B).

st is a natural transformation, i.e., for all h : B — C, the following diagram commutes:

stT’A
T(BY —L+1(B)4
T(h?) T(h)*
TA
Sto
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Functors

Proof. For all g € T(B*) and a € A,

(T(h)* o st (9))(a) = (T(R)* 0 Aa.T(Af. f
=T )OT(Af fla)(g) = T(hoAf.fla)) )
st (T(h)(9))(a) = TS f@)T(h*)(9) = (T(Af.f(a) o T(h))(9)

)
T((Mf-F(a) o W) (g) 2 TOLA(f(a))(g) m

(@))(9)(a) = T(R)X(T(Af.f(a))(g))
(9) = T(Af-h(f(a))(9),

Lemma

(Af-f(a)) o W = Af.h(f(a)). (%)
Proof of (x). For alla € A and g € B4,
(Af-f(a) (R (g)) = (Mf-f(a))(h o g) = h(g(a)) = (Af-h(f(a))(g)- .

40 of 373



[ Limits and colimits }

Given two categories Z and K, a diagram of type Z in K is a functor D : Z — K.

The actual objects and morphisms in Z are irrelevant, only the way in which they are
interrelated matters. D is thought of as indexing a collection of objects and morphisms
in IC patterned on Z. One may also view D as the node- resp. edge-labelling function of
a labelled graph whose nodes and edges are the objects resp. morphisms of Z.
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colimit
object

A diagram, its colimit and a further cocone
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Aset p = {u, : D(n) — C | n € Z}) of K-morphisms is a cocone of D if for all
e € Z(m,n), iy = pn o D(e). C is called the target of p.

A cocone v of D with target C' is a colimit of D if for all D € K and cocones u of D
there is a unique -morphism col”:C — D such that for all n € Z, col” o v,, = p,.

All colimits of D are isomorphic.

An object is initial in K if it is the target object of a colimit of the empty diagram () — IC.
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A diagram, its limit and a further cone
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Aset p={p,: C — D(n)|n e I} of K-morphisms is a cone of D if for all e € Z(m, n),
D(e) o iy, = pn. C'is called the source of p.

A cone v of D with source C' is a limit of D if for all D € K and cones i of D there is
a unique K-morphism lim”: D — C such that for all n € Z, v, o lim"” = p,.

All limits of D are isomorphic.

An object is final in IC if it is the source object of a limit of the empty diagram () — K.

IC is cocomplete if each diagram in /C has a colimit.

IC is complete if each diagram in K has a limit.
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C
coproduct coequalizer /O\
object ] object f 8
A A+B B coeq(f,g) A \ B
L —>< nat ———>

g pushout
object

f
col po(tg)

col
O J

The coproduct A + B, the coequalizer coeq(f, g)
and the pushout po(f,g) = coeq(tao f,ip 0 g) are colimits.

If C' is initial in KC, then po(f,g) = A+ B.

Coequalizers are epimorphisms.
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Co/limits

Let A+ B be a coproduct (object) of A and B and I be initial in .

Since all coproducts with the same summands are isomorphic,

A+(B+(C)=(A+B)+C=A+B+C, A+ B=B+Aand I +A= A

Let IC = Set”.

The coequalizer of f,g : A — B is the quotient of B by the equivalence closure of
R={(f(a),g(a)) € B x B | a¢& A} together with the corresponding natural map that
sends an element of B to its equivalence class.

The pushout of f: A — B and g : A — (' is the quotient of B U C by the equivalence
closure of R = {(f(a),g(a)) € B x C' | a € A} together with the corresponding natural
maps that send an element of B resp. C' to its equivalence class.

If f and ¢ are inclusion maps, then the pushout object is isomorphic to B U C'.
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C
product equalizer /O\
object . object § g
A AxB B eq(f,g)
g pullback
object
pb(f,g)

l[im

The product A x B, the equalizer eq(f, g)
and the pullback pb(f,g) = eq(f oma,gompg) are limits.

If C'is final in IC, then pb(f,g) = A x B.

Equalizers are monomorphisms.
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Let A x B be a product (object) of A and B, F be final in IC and I be initial in .

Since all products with the same factors are isomorphic,

AX(BxCO)=Z2(AXxB)xC=ZAXxBXC, AXB=EBxA AxF=Aand AxI=1.

Let IC = Set”.

The equalizer of f,g: A — B is the set of all a € A such that f(a) = g(a) together with
the corresponding inclusion map.

The pullback of f : A — C and g : B — C is the set of all (a,b) € A x B such that
f(a) = g(b) together with the corresponding projections.

If f and g are inclusion maps, then the pullback object is isomorphic to A N B.

49 of 373



Quotient Theorem (construction of colimits in Set)

A cocone v of a diagram D : Z — K in Set is the colimit of D iff the target C of v is
isomorphic to the quotient

(1 2m)/~
nel
of the disjunct union over N of all node labels of D by the equivalence closure ~ of

{(a,D(e)(a)) € (H D(n))? | a € D(m), e € Z(m,n), m,n € T}.

nel

Forallm € Z, v, : D(n) — C'is the composition of the injection

ta : D(n) — [ D(n)

nel

with the natural map nat : [[,., D(n) — C.
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Subset Theorem (construction of limits in Set)

A cone v of a diagram D : Z — K in Set is the limit of D iff the source C of v is
isomorphic to the subset

{ae][Dm) |V mneI, e€I(mn): De)(mmla) =m(a)}

of the product over Z of the images under D.

Forallm € Z, v, : C' — D(n) is the composition of the inclusion

inc: C — HD(n)

ne’l

with the projection m, : [[,.7 P(n) — D(n).
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Colimit Theorem
(generalizes the Quotient Theorem to cocomplete categories)

Let IC be a category such that each family of /C-objects has a coproduct and each pair
f,g: A — B of K-morphisms has a coequalizer.

A cocone v of a K-diagram D : Z — K is the colimit of D if the target C of v is
isomorphic to the coequalizer object of the pair of K-morphisms

Y1, H{D(m) |le€Z(m,n)} — HD(n)

mel nel

where 107 and 1)y are the coproduct extensions of

{tm : D(m) = [[D(n) | m € T}

nel
and
{tnoD(e) : D(m) — [ [ D(n) | e € Z(m,n)},
nel
respectively.
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colimit(D)

L Dm

e€1(m,n)

colimit(D) coequalizes the coproduct extensions ¥y and ;.
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Limit Theorem
(generalizes the Subset Theorem to complete categories)

Let IC be a category such that each family of K-objects has a product and each pair
f,g: A — B of K-morphisms has an equalizer.

A cone v of a K-diagram D : Z — IC is the limit of D if the source C' of v is isomorphic
to the equalizer object of the pair of K-morphisms

Y, [ Dm) = [[{D(n) | e € Z(m,n)}
mel nel

where 17 and 1)y are the product extensions of

{mo: [ D(m) = D(n) | n € I}

mel
and
{D(e)omy,: H D(m) — D(n) | e € I(m,n)},
mel
respectively.
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limit(D)

TT D(n)
eeq(m,n) K L|)2 -I—I- @(m)

me’]

‘(— D(e) 4‘/
D(n) D(m)

limit(D) equalizes the product extensions ¥y and 1.
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( Sorted sets, functions and relations }
N

Let S be a finite set of sorts.

An S-sorted or S-indexed set is a tuple A = (Ay)ses of sets. A is nonempty if for all
se S, A, #0.

An S-sorted subset B of A, written as B C A, is an S-sorted set with B, C A, for all
ses.

Given S-sorted sets A;, ..., A,, an S-sorted relation » C A; x --- x A,, is an S-sorted
set with 7y C Ao x ... x A, sforall s € S. If n =2 and A; = Ay, then r is a binary
relation on A;.

Given S-sorted sets A, B, an S-sorted function f : A — B is an S-sorted set such
that for all s € S, f, is a function from Ay to By.

B4 denotes the set of S-sorted functions from A to B.

Set” denotes the product category of S-sorted sets as objects and S-sorted functions as
morphisms.

Let f be an S-sorted function.

fis epi iff f is surjective. f is mono iff f is injective. f isiso iff f is bijective.
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Sorted sets

The diagonal of A? is the S-sorted binary relation Ay with Axs = Ay,.

Let BS be a finite set of sets. T(S, BS) denotes the inductively defined set of types
over S and BS:

se s = seT(S,BS), (set variables)

X € BS = X e T(S,BS), (constant types are sets)
er,...,en €ET(S,BS) = e x---Xxeye1+---+e, €T(S,BS),

e € T(S,BS) = word(e),bag(e), set(e) € T(S, BS),

(word, bag and set types)
XeBSNeeS = X € T(S, BS). (power types)

We regard e € T(S, BS) as a finite tree: FEach inner node of e is labelled with a type
constructor (x, +, word, bag, set or _* for some X € BS) and each leaf is labelled
with an element of S or BS.

e € T(S,BS) is flat if e € SU BS or e € {word(s),bag(s), set(s)} for some s € S.
[FT(S, BS) denotes the set of flat types over .S and BS.

A collection type is a word, bag or set type. A type is polynomial if it does not
contain set types.
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Sorted sets

The semantics of e is a functor [, : Set® — Set (also called predicate lifting; see
129, 30|) that is inductively defined as follows:

Let A, B be S-sorted sets, h : A — B be an S-sorted function, s € S, X € BS,
e,er,....,e, € T(S,BS), ai,...,a, € Fe(A), [ € Bun(FL.(A)), g € Prn(Fe(A)), b €
F.(B)and ¢ : X — F.(A).

F5<A) = Ay, Fs(h) =h

Fx(A) =X, Fx(h)=1idy, (constant functors)
Forone (A) = For(A) X ... X For(A), Forrer(B) = Foy(h) % ...  Fo (R),
Fe1+ --—i—en(A) - Fe1 (A> +oeee F€n<A>7 Fe1+---+en(h) — Fel(h’) + -+ Fe (h)
Fword(e)(A) - e( )*7 Fword(e)(h>(a1 -an) = Fe(h) (al) . Fe (h) (an)
Frage)(A) = Bpin(Fe(A)),  Frag(e)(R)(f)(0) = 2_{f(a) | a € Fe(A), Fe(h)(a) = b},
Fiey(e)(A) = Prin(Fe(A)), Foey(e)(R)(g)(b) = \/{9( ) | a € F.(A), Fi(h)(a) = b},

Fix(A) = Fo(A)", Fox(h)(g') = Fe(h) o g
Hence predicate lifting extends S-sorted sets to T(S, B.S)-sorted sets.
We often write A, for the set F.(A) and h. for the function F.(h).

Every function £ : S — T(S, BS) induces an endofunctor Fj : Set® — Set”: For all
s €S, Fp(A)(s) = Fs)(A) and Fg(h)(s) = Frs(h).
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Sorted sets

Given an S-sorted relation » C A x B, r is extended to an T(S, BS)-sorted relation (also
called relation lifting; see |29, 30|) inductively as follows:

Let s € S, e,eq,...

,en € T(S,BS) and X € BS.

ry = Ax,

Teiscxer
Tej+-+ey
Tword(e)
Tbag(e)
Tset(e)
reXx

Proposition

For all S-sorted sets A, e € T(S, BS) and a € A,, (a,a) € A,

{((a1,...,an), (b1,...,by)) | V1I<i<n:(a;,b)€r)},
{((a,i),(b,1)) | (a b)€r€, 1 <i<n},

{(ay...anb;.. b)\V1<z<n (a;,b;) € 7y, n € N},

{( ) = Supp( ) (a,h(a)) € e A fla) = g(h(a))},
}E - :(a, h(a)) € re A fla) = g(h(a))},

Proof. Analogously to the proof of |30, Lemma 4.1.2, or the proposition on page 5 of

[66].

3
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( Signatures }
N

A signature > = (S, BS, I, P) consists of

e a finite set S (of sorts),
e a finite set BS (of base sets),
e a (finite) set F' of function symbols f:e — ¢/

e a (finite) set P of predicates p : e,
where e, e’ € T(S, BS).

Given s € S, particular predicates are the binary s-equality =,: s X s and the unary
s-membership <, s.

Forall f:e — e € F, dom(f)= e is the domain of f and ran(f) = ¢’ is the range of
f. Forallp:e e P, dom(p) = e is the domain of p.

Forall se€ S, f:e— s € Fis an s-constructor and ¢g : s — ¢ is an s-destructor.

Y. 1s constructive resp. destructive if F' consists of constructors resp. destructors.
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Signatures

>} is polynomial if for all f:e — € € F, e and €' are polynomial.
Let X = (S', BS', F', P') be a further signature.

A signature morphism o : ¥ — ¥/ is a quadruple of maps o1 : SU BS — T(S’, BS'),
o9 : FF' — F' and 03 : P — P’ such that forall f : e - ¢ € andp : ¢ € P,
oo f) - of(e) — oj(€e') and o3(p) : of(e), where of(e) denotes the type obtained from e
by replacing s € S with oy(s).

If o is an inclusion, then ¥ is a subsignature of >/ ie., S C S’ BS C BS', F C F'
and P C P'.
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Signatures

Let X and Y be sets.

Constructive signatures

e Nat < natural numbers
S =A{nat}, BS ={1}, F ={0:1 — nat, succ: nat — nat}.

e Reg(X) = regular operators
S ={reg}, BS = {1, X},

F={ 0, e:1—reg, :X —reg,
, - _.reg Xreg— reg, star:reqg — reg }.

o List(X) = finite sequences of elements of X
S =Alist}, BS ={1,X}, F={nil : 1 — list, cons : X X list — list}.

e Bintree(X) = binary trees of finite depth with node labels from X
S = {btree}, BS ={1, X},
F = {empty : 1 — btree, bjoin : btree x X X btree — btree}.
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Signatures

o Tree(X,Y) = finitely branching trees of finite depth with node labels from X and

edge labels from Y
S = {tree,trees}, BS = {1, X,Y},

F ={ join: X X trees — tree, nil : 1 — trees,
cons : Y X tree X trees — trees }

or: S ={tree}, BS ={X,Y}, F = {join: X x word(Y X tree) — tree}.

e BagTree(X,Y) e finitely branching unordered trees of finite depth with node labels

from X and edge labels from Y
S =A{tree}, BS ={X,Y}, F ={join: X x bag(Y X tree) — tree}.

o F'DTree(X,Y) = finitely or infinitely branching trees of finite depth with node labels
from X and edge labels from Y

S = {tree}, BS ={X,Y},
F = {join: X x (Y x tree) +word(Y x tree)) — tree}.
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Signatures

Destructive signatures

e coNat = natural numbers with infinity
S =A{nat}, BS ={1}, F = {pred : nat — 1+ nat}.

e Stream(X) = infinite sequences of elements of X

S =Alist}, BS ={X}, F = {head : list — X, tail : list — list}.

e coList(X) =® finite or infinite sequences of elements of X coList(1) ~ coNat

S =A{list}, BS ={1, X}, F = {split : list — 1+ (X x list)}.

o Infbintree(X) = binary trees of infinite depth with node labels from X
S ={btree}, BS = {X}, F ={root : btree — X, left, right : btree — btree}.

e coBintree(X) = binary trees of finite or infinite depth with node labels from X
S ={btree}, BS = {1, X}, F = {split : btree — 1 + (btree x X X btree)}.
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Signatures

o coTree(X,Y) = finitely or infinitely branching trees of finite or infinite depth with
node labels from X and edge labels from Y

S = {tree,trees}, BS = {1, X,Y},

F ={ root : tree — X, subtrees : tree — trees,
split . trees — 1+ (Y X tree x trees) }.

e ['BTree(X,Y) = finitely branching trees of finite or infinite depth with node labels

from X and edge labels from Y
S ={tree}, BS ={X,Y},
F ={root : tree — X, subtrees : tree — word(Y X tree)}.

o DAut(X,Y) e deterministic Moore automata DAut(1,Y) ~ Stream(Y)
S = {state}, BS = {X, Y}, F = {0 : state — state™, 3 : state — Y'}.

e NDAut(X,Y) = non-deterministic Moore automata, image finite labelled transition

systems
S = {state}, BS = {X,Y}, F = {0 : state — set(state)*, 3 : state — Y}
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Signatures

e XML documents
<> finitely branching trees of finite or infinite depth with one of n element types

S1,...,S, such that each tree ¢ with element type s; has a node label from X; and a
tuple of subtrees of type s} = s;1 + -+ + 85, Le,, forall 1 <i<mand 1 < j <mny
there are s;j1, ..., Sijn,; € S U BS with sj; = s;51 X ... X Sijn,;

S = {sy,...,8} U
{sijp X oo X s [ 1< <in, 1< 5 <y, 1<k <nyf,

BS = {1,X,,...,X,},

F = {attributes; : s;, — X; | 1 <i<n} U {subtrees; : s;, — s. |1 <i<n} U
{mijr o siy = sije | 1 <i<n, 1 <75 <n;, 1<k <n b

Trees of infinite depth may result from unfolding XML documents by resolving its

link attributes.
Analogously, one may formalize object class diagrams, e.g. those developed as part of

an UML design.
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( > -algebras }
N

Let X = (S, BS, F, P) be a signature.
A Y-algebra A consists of

e for each s € S, a set A, the carrier of A,
o for cach f:e — ¢ € F, a function f4: A, — Ay,

e for each p : e € P, a subset p of A,.

Hence A is an S-sorted set, the carrier of A, together with interpretations of F' and
P.
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Examples

The regular expressions over X form the reg-carrier of the Reg(X)-algebra T, x) of
ground Reg(X)-terms.

The usual interpretation of regular expressions over X as languages (= sets of words)
over X yields the Reg(X)-algebra Lang:

Langye, = P(X*). For all x € X and L, L' € P(X"),
@Lang @ ELcmg {6} Lang(x) — {ZE},
Lty =L UL, L[ ={vw|velL, well,
star*®™(L) = {wy...w, |neN, V1 <i<n:w; € L}.
The Reg(X)-Algebra Bool interprets the regular operators as Boolean functions:
Bool,ey; = 2. For all x € X and b,V € 2,

@Bool _ O, GBool _ 1’ _Bool(x) — 07
bIBolY = b\ Y, b-BOlY = b AY, starPPUB) =1. QO
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Let A and B be X-algebras, h : A — B be an S-sorted function.
h is compatible with f :e — ¢ € Fif hyo f4 = fPoh,.

h is compatible with p : e € P if h.(p?) C pP.

h is cocompatible with p : e € P if h.(A, \ p*) C B, \ p®.

h reflects predicates if for all p: e € P, p® C h.(p?).

h is a Y-homomorphism or >-homomorphic if for all f € F'U P, h is compatible
with f.

h is a X-cohomomorphism or »-cohomomorphic if for all f € F. h is compatible
with f, and for all p € P, h is cocompatible with p.

Algy, denotes the category of Y-algebras and Y-homomorphisms.

h is a Y-isomorphism if A is iso in Algs.
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For all >-homomorphisms A,

h is epi in Algy, iff A is surjective.

h is mono in Algy, iff h is injective.

h is iso in Algs, iff A is bijective and reflects predicates.

Lemma EMH

Let g: A— Bandh: B — C be S-sorted functions such that hog is a >-homomorphism.
(1) If g is epi in Algy, and reflects predicates, then h is ¥-homomorphic.

(2) If A is mono in Algy, and reflects predicates, then g is 3-homomorphic.

Proof. (1) Compatibility of h with all f € F' can be shown by diagram chasing. Moreover,
for all p : e € P, pP C g.(p?) implies he(p?®) C he(g.(p?)) € p? because h o g is
homomorphic.

(2) Compatibility of g with all f € F' can be shown by diagram chasing. Moreover, for
all p: e € P, p¥ C h(p®) implies h.(ge.(p™?)) C p® C he(p®) and thus g.(p?) C p?
because h o g is homomorphic and h is injective. EI
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let Ug be the forgetful functor from Algs, to Set”.

Forall f:e —¢€ €F,
{fAZAeHAe"AEAng}

is a natural transformation from F.Ug to F.Ug because morphisms in Algy, are -
homomorphisms.

Conversely, we use a notion introduced in [54, 34| and call every natural transformation
from F.Ug to F..Ug an (implicit) Y-operation of type e — ¢’. We write ¢ : ¢ — ¢’ and
denote the set of X-operations by Opy..

In particular, given base sets X and Y, any function f : X — Y is a X-operation of type
X — Y because for all A € Algy, Fx(Us(A)) = X and Fy(Us(A)) =Y.
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Y -formulas

Let V' be a set of variables. The set Foy, of X-formulas is inductively defined as follows:

peP = p € Foy,
t:e—e €O0py, p:efe PUBS = pt:eé€ Foy, Y-atoms
p:e e € Foy = e pANYie, oV ie =19 e,

o<=1.e & Yiee Foy,
e=1l,cy € pie€ Foy, €V = Vap:e, Jxp:ec Fos.

A Y-algebra A interprets a X-formula ¢ : e € Fox, by the set of its solutions, i.e., o C A,
is inductively defined as follows:
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Forallp:ef e PUBS andt:e — e € Opy, 0,0 e € Foy and x € V,

(pt)* = {a € A | tY(a) € p},

()t = A\ @

(A = ANy,

(V) = Uyt

(=)t = (<o)t =(—p V)l

We et = (e=v)n(p<y)?

Vo)t = {ac A, |Vbe A, :alb/z] € '} ife= [Ley e
(Fzp)t = {ac A, |Ibc A, :ab/z] €t} ife= [Leveés

Lemma NEGFREE

Let ¢ be a negation-free >-formula.

(1) For all ¥-homomorphisms h : A — B, h(p?) C o,

(2) For all Y-cohomomorphisms h : A — B, h((—¢)?) C (—¢)?. -
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A satisfies ¢ : e € Foy, written as A |= ¢, if o = A,.

Given a set AX of X-formulas, A is a (X, AX)-algebra if A satisfies (all formulas of)
AX.

Algs ax denotes the full subcategory of Algs, whose objects are all (3, AX)-algebras.

Let o : ¥ — Y/ be a signature morphism, A be a YX'-algebra and h : A — B be a
>-homomorphism.

The o-reduct of A, Al,, is the X-algebra defined as follows:

e Forall s e S, (A,)s = Fa(s)<A>'
o Forall f € FUP, fAlo = g(f)4.

The o-reduct of h, h|,, is the ¥-homomorphism defined as follows:
o Forall s € S, (hls)s = ho(s).

o-reducts are the images of the reduct functor |, from Algsy to Algs.
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Let 3 be a subsignature of >, A be a ¥'-algebra and h : A — B be a X’-homomorphism.
The Y-reduct Aly of A is the X-algebra defined as follows:

e forall s € S, (Aly)s = As.
eforall fe FUP, fAt = f4

The Y-reduct /|y of h is the ¥-homomorphism defined as follows:
e Forall s € S5, (h’z)s = hg(s).

Y-reducts are the images of the forgetful functor Uy, from Algsy to Algs,.
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An institution (see [22|) consists of

e a category Sign of signatures,

e a functor
Sen : Sign — Set
Y. — set of Y-sentences
og:%— Y +— Sen(o): Sen(X) — Sen(X),
e o functor
Mod : Sign? — Set
Y, — set of 2-models

o:%— Y +— Mod(c): Mod(¥X) — Mod (%),
e for each X € Sign, a satisfaction relation
Ex C Mod(X) x Sen(X)
such that for all Sign-morphisms ¢ : ¥ — ¥/ A € Mod(Y') and ¢ € Sen(X).
Mod(o)(4) s ¢ <= Ay Sen(o)(9). (1)
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Suppose that

e Sign is the category of signatures and signature morphisms as defined above,
e for all signatures 2, Sen(X) is the set of X-formulas over a fixed set of co/variables,

e for all signature morphisms o : ¥ — ¥ and Y-formulas ¢, Sen(o) maps ¢ to o(p)
where () is obtained from ¢ by replacing all function symbols or predicates of ¥
by their o-images,

e for all signatures 2, Mod(2) = Algs,

e for all signature morphisms o : 3 — ¥ and ¥'-algebras A, Mod (o) maps A to Al,,

e |= is the satisfaction relation defined above.
(Sign, Sen, Mod, =) is an institution.

Proof. (1) amounts to:
A sy == Al oa(p) (2)
The proof of (2) is straightforward (induction on the size of ¢). -
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Horn and co-Horn clauses
Let X = (S, BS, F, P) and X' = (S, BS, F, P + P') be signatures and C' be a Y-algebra.
Algsy  denotes the full subcategory of Algs, consisting of all ¥'-algebras A with Aly, = C'.

Algsy ¢ 1s a complete lattice with the following partial order, suprema and infima:

For all A, B € Algsy ¢,

A<B <= VYpeP:p*Cp~

For all A C Algsycand p:e € P,

pr=0, pT=A, pM=]p" and p™M ="
AcA AeA
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Given a set AX of ¥'-formulas, Algsy 4y denotes the category of all ¥-algebras A that
satisfy AX.
Algsy coax = Algsy ax N Algsy ¢

A Horn clause for p € P’ is a X-formula of the form pt < ¢ such that Vv, A and V
are the only logical operators of ¢.

A co-Horn clause for p € P’ is a ¥/-formulas of the form pt = ¢ such that vV, A and
7 are the only logical operators of .

Let A, B € Algsy ¢ and pt <= ¢ resp. pt = ¢ be a Horn resp. co-Horn clause. Since ¢ is

negation-free,
A< B implies ¢? C P, (3)

A Y/-formula ¢ is membership compatible if for all subformulas Jzv : e and Vai) : e
of i there is a >'-formula p such that ¢ = (€, 7, A p) or b = (€. 1, = p), respectively.

A Y/-formula ¢ is finitely branching if for all subformulas 3z : e or Vai) : e of ¢,
A€ Algsy o and a € A, the set {b € A, | a[b/z] € ¥} is finite.
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Lemma FB

Let ¢ be a finitely branching negation-free ¥'-formula.

(i) For all w-chains {4; € Algsy ¢ | i < w} of Algs o, @ et C |,y 0"
(ii) For all w-cochains {A; € Algsy o | i < w} of Algsy o, (Niey @™ C e,

Proof by induction on the size of p. (i) For all ¥'-atoms pt : e,
(pt)“ehi = {a € C, | tY(a) € pPevhi} = | J{a € C. | t1(a) € p™} = | J(pt)"

ieN ieN
For all ¥-formulas o, : e,
ih.
(p v )i = hiendi g ytienti C (U e ) U (Uriew ) = Uien(9 U 9)
= Uienle V)4,

ih.
(o A p)tiendi = ghliendi gt C (| ey ™) N (Uien ¥7) = U, jen(e™ Np)
S Ui,jeN(@Amax(i’j) M gpfimasti)) = Uien(@ N ) = Uenl A 0)
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For all ¥'-formulas ¢ : e =] .y e, and z € V,

xeV
(Fzp)Hiendi = {a € A, | Fb € A, : ab/z] € pHiendi}

ClaeA [3be A, abfal € Ume™) —Uada € A | 3be A, - alb/al € o)
= Uien(3z0) ™,

(V) ievdi = {a € A, |V b e A, : a[b/x] € @Hiendi}

= (Vap)tiendi = {g € A, |V b€ B, : alby/z] € @Hiendi}

Zgh {a€ A, |VbeB,:ab/z] € Uy} ={a€ A. |V b€ B, :alb/x] € pina}

= (Yap)he C Uen(Vop)™

where the finiteness of B, = {b € A, | a[b/x] € ¢“iev4i} and thus the existence of n,
with {a[b/x] | b € B,} C @t follow from the assumption that Va is finitely branching.

(ii) Analogously. l:l
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For all p € P', let AX,, be a set of Horn clauses for p. Then AX = U,cprAX), is a Horn
specification for P’ and the elements of P’ are called least predicates.

The step function © = Oy yy + Algsy o — Algsy o is defined as follows: For all
Aec Algsycandp:e€ P,
p*™ = {t%a) | pt <= p € AX, a € o'},

By (3), ® is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, ® has

the least fixpoint
ifp(P) = M{A € Algwc | P(A) < A}

Lemma IND
Algsrcax ={A € Algsy o | P(A) < A} (4)

and thus for all A € Algyy ¢ ax,
Ifp(D) < A, (5)

Moreover, if C' is initial in Algs,, then [fp(P) is initial in Algsy o ax.
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Proof. Let A € Algsy c.ax and b € p®W. Then b = t4(a) for some pt < ¢ € AX and
a € ¢t Since A satisfies pt < ¢, a € (pt)? and thus b = t“(a) € p?. Hence A is
d-closed.

Conversely, let A be ®-closed, pt < ¢ € AX and a € . Then t“(a) € p*“¥). Since A
is d-closed, t“(a) € p and thus a € (pt)*. Hence A satisfies pt < .

The initiality of {fp(P) in Algsy ¢ ax follows from the compatibility with P’ of id¢ as the
unique X-homomorphism from Ifp(®) to every A € Algsy ¢ 4x: For all p € P/,

ide(p? ™)) = p?® = n{p” | B € Algsscax, ®(B) < B}y Cpt Q.

For all p € P', let AX, be a set of co-Horn clauses for p. Then AX = U,cpAX, is a
co-Horn specification for P’ and the elements of P’ are called greatest predicates.

The step function © = Oy o yy + Algsy o — Algsy o is defined as follows: For all
Aec Algsycandp:ee P,

AW — (je\{tc(a) Ipt = p:e € AX, a € Oe’\SOA}~
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By (3), ® is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, ® has
the greatest fixpoint

gfp(®) = U{A € Algy o | A< (A}

Lemma COIND
Algsrcax ={A € Algs o | A< P(A)} (6)
and thus for all A € Algyy ¢ ax,
A < gfp(P). (7)
Moreover, if C'is final in Algy,, then gfp(CD) is final in Algsy o ax-
Proof. Let A € Algsy c.ax and b ¢ p®@. Then b = t%(a) for some pt = ¢ € AX and

a & o4 Since A satisfies pt = ¢, a Q (pt)* and thus b = t“(a) € p*. Hence A is
d-dense.

Conversely, let A be ®-dense, pt = ¢ € AX and a & ¢*. Then t(a) & p®“W. Since A
is d-dense, t(a) € p* and thus a & (pt)*. Hence A satisfies pt = .

The finality of gfp(®) in Algsy ¢ ax follows from the compatibility with P’ of id¢ as the
unique X-homomorphism from every A € Algsy ¢ ax to gfp(®): For all p € P/,

ido(p") = p* CU{P? | B € Algsycax, B< ®(B)}=p™™®. 0.
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Lemma MUPRED

Let C be a Y-algebra, ¥ = (S, BS, F, P+ P') be a signature, AX be a Horn specification
for P and A € Algsy 4x such that & = ®yy o 4x is w-continuous.

Every Y-homomorphism h : C — B = Aly is a X-homomorphism from the (3, AX)-
algebra Ifp(®) to A.

In particular, if C' is initial in Algs,, then Ifp(®) is initial in Algsy 4x.
Proof. It remains to show that for all p € P/,
h(p™®)) € p?. (1)

Let p: e € P and a € p"® . Hence by Kleene's Fixpoint Theorem (1), a € p? @ for
some 7 € N. Since pt =0, 7 > 0.

Case 1: a € p®Y). Then a = t9(c) for some pt <= ¢ : € € AX and ¢ € p*. Since
ot =0, ¢ = True. Since A satisfies pt < ¢,

B. = (pt < True)* = (pt)* = {b € B, | t%(b) € p}.

Hence for all b € By, t?(b) € p?, and thus h(a) = h(t%(c)) = tB(h(c)) € p*. We
conclude (1).
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Case 2: a € p? ) for some i > 1. Then a = ¢°(c) for some pt < ¢ : ¢ € AX and
c € gpq)z_l(l). By induction hypothesis, h is a ¥’-homomorphism from ®~1(L) to A.
Hence by Lemma NEGFREE (1),

i-1
(™ ) C ot (2)

Since ¢ € ® (L), (2) implies h(c) € . Since A satisfies pt < ¢, (pt <= ) = B,.
Hence h(c) € p? implies h(c) € (pt)* = {b € B, | t%(b) € p} and thus

h(a) = h(t®(c)) = t"(h(c)) € p.

Again, we conclude (1).
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Lemma NUPRED

Let C' be a X-algebra, ¥ = (S, BS, F, P + P’) be a signature, AX be a co-Horn specifi-
cation for P’ and A € Algsy 4x such that ® = Oy o 4x is w-cocontinuous.

Every Y-homomorphism A : C' — B = Aly is a X'-cohomomorphism from the (3, AX)-
algebra gfp(®) to A.

Proof. It remains to show that for all p € P’
A(C. A\ p®) C B, \ ()

Letp:e € P anda € C\p?'®) . Hence by Kleene's Fixpoint Theorem (2), a € C’e\pq’i(T)
for some ¢ € N. Since p' = C., i > 0.

Case 1: a € C, \ p®7). Then a = t%(c) for some pt = ¢ : ¢/ € AX andc € C.\ ¢'.
Since ¢! = Cu, ¢ = False. Since A satisfies pt = o,

B = (pt = ¢)* = (-pt)! = B\ {b € B | t*(b) € p™}.

Hence for all b € By, tP(b) € p?, and thus h(a) = h(t%(c)) = tP(h(c)) & p?*. We
conclude (1).
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Case 2: a € C, \p T) for some ¢ > 1. Then a = t%(c) for some pt = ¢ : ¢/ € AX and
c ¢ goq)z (), By induction hypothesis, h is a ¥'-cohomomorphism from A to ®~1(T).

Hence by Lemma NEGFREE (2),
MCA ") = h((=)* () € (=) = Be\ g 2)

Since ¢ & o (T, (2) implies h(c) € . Since A satisfies pt = ¢, (pt = ) = B,
Hence h(c) € ©* implies h(c) & (pt)* = {b € B, | t%(b) & p”} and thus

h(a) = h(t(c)) = t%(h(c)) & ™.

Again, we conclude (1).

88 of 373



A Horn specification is finitely branching if the premises of all Horn clauses of AX are
finitely branching.

A co-Horn specification is finitely branching if the conclusions of all co-Horn clauses
of AX are finitely branching.

Theorem CONSTEP

(i) Let AX be a finitely branching Horn specification. Then ® = ®yy ¢ 4x is w-continuous.

(ii) Let AX be a finitely branching co-Horn specification. Then & = &y o 4x is w-
cocontinuous.

Proof. (i) Let {A; € Algsy o | © < w} be an w-chain of Algsy . Since ® is monotone, it
remains to show:

O(UienA;) < Uien®(A4,). (8)
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Let p € P'. Then by Lemma FB,
pPUiendi) — 4C(a) | pt = p € AX, a € @Miendi}
C{t%a) | pt = ¢ € AX, a € Uien 9™} = Uien{t(a) | pt <= ¢ € AX, a € o}
= Uien p2Ai) — plien®(4i),

Hence (8) holds true.

(ii) Let {A; € Algsw ¢ | i < w} be an w-cochain of Algsy . Since ® is monotone, it
remains to show:
Mien @(A;) < O(MienA;). (9)

Let p: e € P'. Then by Lemma FB,
A = Mg p™™) = Mien(Ce \ {t%(a) | pt = ¢ 1 ' € AX, a € Cu\ p*})
= C\Uinlt(a) | pt = ¢ € AX, a € G\ o}
— C\{t%) | pt = ¢ ¢’ € AX, a € U,en(Cu \ ™)}
= C \{t%a) | pt =9 e € AX, a € Cu\ Mien i}
C CA\{t%a) | pt = ¢ ¢’ € AX, a € O\ pllentiy = pPThent)
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Hence (9) holds true. a

Theorem COMPLAX
Let coP'={p:e|p:e€ P}, coX = (S, F,P+ coP’) and
AX {pt =9 | pt <« p € AX} if AX is a Horn specification,
co =
{pt =9 | pt = p € AX} if AX is a co-Horn specification

where the formula © is obtained from —¢ by moving — to the atoms of ¢ and replacing
each literal —pt, p € P’, of the resulting formula with pt.

Let C be a X-algebra, ® = Oy o 4x and ¥ = Ppp5v ¢ coax-

(1) Let AX be a finitely branching Horn specification. Then coAX is a finitely branching
co-Horn specification and for all p : e € P,

pgfp(‘lf) = C, \plfp(@).
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(2) Let AX be a finitely branching co-Horn specification. Then coAX is a finitely branch-
ing Horn specification and for all p: e € P,

pP) = ¢\ pP(®),

Proof. (1) Suppose that for all negation-free Y-formulas ¢ : e and i € N,
gV = (mp) ™, (3)

By Theorem CONSTEP, ® is w-continuous and V¥ is w-cocontinuous. Hence by Kleene's
Fixpoint Theorem, (3) implies (1):

P = B = Miaw(0) ™ = M (Ce \ D) = Co\ Uy p
—C, \plfp@)_

[t remains to show (3). Let ¢ = 0. Then
F\DZ(T) = Z_QT = Ce = Ce \ @ = Ce \pJ_ = (ﬁp)l = (—lp>(I)Z(J_). (4)
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By induction on the size of ¢, (3) follows from (4). Let ¢ > 0. Then
VM =\ {t0) | pt =7 : ¢ € c0AX, a € Cu\p¥ (T
=C\{t%) | pt=p: e € AX, ac C,\P? (M}
= CA\{1) | pt =9 ¢ € AX, a € Cp\ (o)) (5)
=C\{t%a) | pt = e € AX, a € Cu\ (Cu\ ™ )}
=C\{t%) | pt= ¢ e € AX, a € p* W} =, \ p* ™)

By induction on the size of ¢, (3) follows from (5).

(2) Analogously. a
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Co/Resolution and narrowing in Ifp(®) resp. gfp(P)

e Resolution Let p #— be a least predicate. AX), is applied to an atom pt:

pt
\/,];:1 EIZ@ . (QOZUZ YA\ f = fO'Z)
where AXp = {71 = (pt1 < 901), N e (ptn < @n)};
(%) & is a list of the variables of ¢,
for all 1 <i <k, to; = t;0;, vio; F True and Z; = var(t;, ¢;),
for all &k < ¢ <mn, t is not unifiable with ¢;.

e Coresolution Let p be a greatest predicate. AX), is applied to a X-atom pt:

pt 1
NVZ; 2 (pioy V & £ To;)
where AX, = {m = (pt1 = ¢1),..., % = (ptn, = )} and (x) holds true.
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e Deterministic narrowing
Let f be a defined function. AX/ is applied to a X-operation ft:

r(..., ft,...)
\/lezlzii(T(...,Ui,...>0'i/\g0i0'i/\f:fo-i) \V
Vi (r(co s ft, . o AT = Tay)

where r is a predicate,

AXp={m= (fi=w <=p1),...,m = (ftn = u, <= )},

(%%) & is a list of the variables of ¢,
for all 1 <11 <k, to; = t;0;, vio; = True and Z; = var(t;, u;, p;),
for all k <1 <, o; is a partial unifier of ¢ and ¢;,
for all [ <+ <mn, t is not partially unifiable with ¢,.
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e Nondeterministic narrowing
Let — be a transition predicate. AX_, is applied to an atom ¢t v — ¢

t M —t

\/le HZZ . ((U,Z AU)O'Z' = t/O'Z' N\ Q0 ANT = fO'Z) V
\/izlﬁ—l((t M)o; — toi N T = Toy)
where AX , ={v = (t1 = u1 <= ¥1),..., 7 = (t, — u, <= @,)}, (*x) holds
true and o; is a unifier modulo associativity and commutativity of ™.

e Elimination of irreducible atoms and operations (“negation as failure”)

pt qt (..., ft,...) t—1t
False  True r(...,(),...) () —t
where p #£— is a least predicate, ¢ is a greatest predicate, f is a defined function and

pt, gt, ft and t — ¢’ are irreducible, i.e., none of the above rules is applicable.
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( Congruences and invariants }
N

Let X = (9, BS, F, P) be a signature, A be a Y-algebra and ~ be an S-sorted binary
relation on A.

~ is compatible with f:e — ¢ € F if for all a,b € A,,

a~.b implies fA(a) ~y fA(b).
By the definition of relation lifting, ~ is always compatible with f if e € BS because, in
this case, a ~, b implies a = b.

[f ~ is compatible with every f € F, then ~ is a Y-congruence on A. If X is destructive,
then a Y-congruence is also called a Y-bisimulation and the greatest one is called .-
bisimilarity.

Let ~ be a Y-congruence on A.
~“ denotes the equivalence closure of ~, which is also a Y-congruence.

A, denotes the X-algebra that agrees with A except for the interpretationof allp : e € R:
pla = {ac A, |Tbep?:a~“D}.
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LCongruences and mva,rmnts}

nat. : A — A/~ denotes the S-sorted natural function that maps a € A; to
lal. ={be As:a ~b}.

The Y-quotient of A by ~, A/~ is the Y-algebra defined as follows:

eforallse S, (A/~); ={la]~ | a € As}.
eForall f:e— ¢ € Fandac€ A, fA(nat..(a)) =4 nat.o(f(a)).
eForallp:ec P, p*™ =4 {nat..(a) | a € pe}.

nat. : A — A/~ is epi in Algs.

Let h: A — B be an S-sorted function. The S-sorted binary relation
ker(h) = {(a,b) € A* | h(a) = h(b)}

is called the kernel of h.

h is injective iff ker(h) = Aa.
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{Congruences and mmrmmﬂ

Lemma KER

(1) Let A be a Y-algebra. B is a Y-algebra and h is Y-homomorphic iff ker(h) is a
Y-congruence.

(2) h is X-homomorphic iff there is a unique X-monomorphism b’ : A/ker(h) — B with
h' o natker(h) = h.

Proof. (1) If h is X-homomorphic, then ker(h) is a X-congruence. Let ker(h) be a -
congruence. For all f : e — € € F, define f? : B, — B, such that for all a € A,,
fB(h(a)) = h(f*(a)) and for all p : e € P, define p” = h(p?). Then B is a Y-algebra
and A is X-homomorphic.

(2) K" is defined by B'([alger(n)) = h(a) for all a € A. Hence, if h is epi, then by Lemma
EPIMON, k' is epi and thus A/ker(h) and B are -isomorphic. l:l
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{Congruences and inmm’ants}

Lemma CONG

Let h be 3-homomorphic and ~ be a Y-congruence on A. Then ~= {(h(a), k(b)) | a ~ b}
is a X-congruence on B.

Proof. Let f:e — € € F and ¢ =, d. Then ¢ = h(a) and d = h(b) for some a,b € A,
with a ~ b. Hence f4(a) ~ f4(b). Since h is ¥-homomorphic, fZ(c) = fP(h(a)) =
h(fA(a)) and f2(d) = FP(A(b)) = h(fA()). Hence 2(c) ~ £7(d). .

Lemma MIN
Let C' be final in a full subcategory IC of Algs.

(1) A¢ is the only ¥-congruence on C',

(2) For all S-algebras A, ker(unfold”® : A — C) is the greatest Y-congruence on A ([57],
Prop. 2.7).

Proof. (1) A ¥-congruence ~ on C' induces the Y-epimorphism nat : C' — C'/~. Since
(' is final in C, unfoldC/N onat = idgy.. Hence by Lemma EPIMON, nat is mono and
thus iso in K.
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(2) Let ~ be a X-congruence on A. Since C'is final in I, the following diagram commutes:

unfold”

A — ('

nat unfoldA/N
Af~
Hence for all a,b € A,
a~b = [a.=[b. = unfold*(a) = unfold([a].) = unfold([b].) = unfold*(b).
We conclude that ker(unfold”) contains ~.
Alternative proof of (2):
Let ~ be a Y-congruence on A. By Lemma CONG,
~ = {(unfold”(a), unfold*(b)) | a ~ b}

is a Y-congruence on C. By Lemma MIN (1), A¢ is the only Y-congruence on C.
Hence ~= A¢ and thus for all a,b € A, a ~ b implies unfoldA(a) = unfoldA(b), ie.,
(a,b) € ker(unfold™). l:l
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Let ~ be an S-sorted binary relation on A and ~“ denote the equivalence closure of ~.

~ is a weak Y-congruence if for all f : e — ¢ € F and a,b € A,., a ~ b implies

fHa) ~ fA(D).

The equivalence closure ~“? of a weak Y-congruence ~ is a X-congruence.

Proof by induction on the structure of ~“. l:I

Let 3 = (S, F, P) be a destructive signature and ¥’ = (S, F + F’, P) be an extension
of ¥ such that I consists of constructors. Let A be a Y'-algebra and Nif], be the least
S-sorted binary relation on A such that the following conditions hold true:

o ~ UA, C N;q,.

o For all a,b € A, a ~%, b implies b ~%) a.
eq

o For all a,b,c € A, a ~% b and b ~% ¢ imply a ~%, c.
eforal f:e—s€F anda,be A, a~%bimplies f(a) ~% fA(D).
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~ is a weak (X, F')-congruence if for all f:s — e € F and a,b € A, a ~ b implies

fAa) ~5 fAD).
Let ~ be a weak (2, F')-congruence such that forall f:e - s€ F' . g:s— € € F and

a,be A,
Fo(g")(a) ~% Fo(gh)(b) implies g% (f*(a)) ~5% g™ (f(a)).

eq -
Then ~%, is a ¥-congruence.

Proof by induction on the structure of ~%. -
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Lemma NAT

Let e = [[,or €x € T(S,BS), ¢ : e € Fox, A be a X-algebra and ~ be a X-congruence
on A.

(1) For all X-operations ¢t : e — ¢’ and a,b € A,

a~b implies t(a) ~ t4(b).
(2) For all a,b € A,, a ~“ b and a € e imply b € e,
(3) ™ = nat. ().
(4) A E p implies A/~ = ¢.

Proof of (1). Let a ~¢4b. Then
natwjef(tA(a)) = tA/N(natN,e(a)) = tA/N(natN,e(b)) = natN’e/(tA(b)).

Hence t(a) ~ t4(d’).
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Proof of (2) by induction on the size of p. Let a ~% b.
Lett:e—¢€ € Opy and p: € € P. Since

(pt)tes = {c € A | t4(c) € pra} ={c e A, | Fd € p* : tH(c) ~T '}
and by (1), t4(a) ~F t4(b), a € (pt)*e implies b € (pt)ea.
Let e, 1) :e € Foy and x € V. Then
a € (gl s ac A\ p* B be A\ gt be (-p)t,
a € (p ANp)lea & a € planpla ey e plea N plea = b€ (o A ),
a € (Vop)la &V ee A, :alc/z] € ple tvee A, :ble/x] € o1 & b e (Vo).
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Proof of (3) by induction on the size of .
Lett:e—¢€ € Opyand p: € € P. Then
(pt)*~ = {b € (A/~). | t17(0) € p*}
={be€ (A/~). |3 d € plea: t4~(b) = nat. s(a')}
= {nat..(a) | a € A., Fd' € pea .t~ (nat. (a)) = nat. (a')}
= {nat..(a) | a € A., 3 d' € p*i:nat.(t*(a)) = nat.(a’)}
= {nat..(a) | a € A, Fd' € pa:tt(a) ~F a'}
= {nat..(a) | t'(a) € pe} = {nat_.(a) | a € (pt)*} = nat..((pt)*«).
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Let ¢, : e € Foy and x € V. Then

(m) P = (Af~)e \ @ 2 (A)r) \ mate () = nat (A \ )

= nat.((—e)t),

(5 A ¢)A/N = SOA/N M ¢A/N £ natw,e(QOAeq) A nat~,6(¢Aeq) = natN,e(SOAeq M ¢Aeq)
= natn((¢ A )"e),

(Vo) = {be (A)~). |V d € (A)~),  bld/x] € o7}

= {nat..(a) | a € A., V c € A,, : nat..(a)[nat. (c)/z] € "}

£l {nat..(a) | a € A., ¥V c € A, : alc/z] € plea}

= {nat..(a) | a € A, a € (Vop)ta} = nat.((Vzp)la).
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Proof of (4). Let A |= . Then ¢ = A, and thus by (3),
‘PA/N = natN,e(@Aeq> = nat.(Ac) = (A/~)e,
e, A/~ E . EI

Let X = (S, F, P) be a signature, A be a Y-algebra and inv be an S-sorted subset of A.
inv is compatible with f:e — ¢ € F if for all a € A,,

a €inv implies  f*(a) € inv.
By the definition of predicate lifting, inv is always compatible with f if ¢’ € BS because,
in this case, invy = Ay = ¢€'.

If env is compatible with every f € F', then tnv is a Y-invariant or >-subalgebra of

A.
Given an S-sorted subset B of A, the least Y-invariant including B is denoted by (B).

Let tnv be a X-invariant of A.
e - inv — A denotes the S-sorted inclusion that maps each a € inv to a.
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1w is extended to a X-algebra as follows:

efForal f:e—e€ €F andacinv, f™(a)=4s [a).

eforallp:ee P, p™ =4 p? N inv,.

INCiny - 1NV — A is mono in Algs.

Let h: A — B be an S-sorted function.
The S-sorted subset img(h) =45 {h(a) | a € A} of A is called the image of h.
h is surjective iff img(h) = B.

Lemma IMG

(1) Let B be a Y-algebra. A is a Y-algebra and h is ¥-homomorphic iff img(h) is a
>-invariant.

(2) h is Y-homomorphic iff there is a unique Y-epimorphism b’ : A — img(h) with
iNCiny © h' = h.
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Proof. (1) If h is X-homomorphic, then img(h) is a d-invariant. Let img(h) be a -
invariant. For all f : e — ¢ € F, define f4 : A, — A, such that for all a € A,,
fAa) € h"Y(fB(h(a)), and for all p € P, define p! = {a € A | h(a) € p”}. Then A is a
Y-algebra and h is Y-homomorphic.

(2) B’ is defined by h'(a) = h(a) for all @ € A. Hence, if h is mono, then by Lemma
EPIMON, A’ is mono and thus A and img(h) are X-isomorphic. l:l

Lemma INV
Let h be X-homomorphic and inv be a Y-invariant of B. Then

invg = {a € A| h(a) € inv}

s a Y-invariant of A.

Proof.
Let f:e — € € Fanda € invy,. Then h(a) € inv and thus h(f*(a)) = fB(h(a)) € inv
because h is ¥-homomorphic and inv is a Y-invariant. Hence f4(a) € invy. d
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Lemma MAX

Let C' be initial in a full subcategory KC of Algs,.

(1) C is the only X-invariant of C.

(2) For all Y-algebras A, img(fold® : C — A) is the least S-invariant of A.

Proof. (1) A Y-invariant inv of C' induces the Y-monomorphism inc : inv — C. Since
C is initial in IC, inco fold™" = idc. Hence by Lemma EPIMON, inc is epi and thus iso
in /C.

(2) Let inv be a Y-invariant of A. Since C'is initial in IC, the following diagram commutes:

fold”

C - A

fold™ inc

v
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Alternative proof of (2):

Let inv be a S-invariant of A. By Lemma INV, invy = {¢ € C | fold*(c) € inv} is a
>-invariant of C'. By Lemma MAX (1), C' is the only Y-invariant of C'. Hence invy = C.
Let a € img(fold®). Then there is ¢ € C with fold”(¢) = a. Since C' = invy, ¢ € invy
and thus a = fold*(c) € inv. a
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Hence for all a € C,

fold®(a) = inc(fold™ (a)) = fold™(a) € inv.
We conclude that inv contains img(fold™). -
Lemma INC

Let e = [ [, €x € T(S, BS), ¢ : e € Foy, be membership compatible, A be a ¥-algebra
and inv be a Y-invariant of A such that for all s € S, €/'= inv,.

(1) For all t : e — €’ € Opy, and a € inv,, t"(a) = t*(a).
(2) "™ = 4 Ninv,.
(3) A E o implies inv = .
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Proof of (1). Let a € inv,. Then

t"(a) = Fa(incpm,) (™ (a)) = tY(F.(incin)(a)) = t*(a).
Proof of (2) by induction on the size of .
Lett:e— e € Opyand p: e € P. Then by (1),

(pt)™ = {a € inv, | t"™(a) € p*} = {a € inv, | t*(a) € p*}
={a € A, | t*(a) € p*} Ninv,.

Let ¢, : e € Foy and x € V. Then

(—)™ = inv, \ ™ £ inve \ (SOA Ninv,) = (Ae \ SOA) Ninv, = (_‘QO>A N inve,

(p A)m = o g 2 (o4 Mine,) N (W4 Ninee) = (4 Ny Nine,
= (p A)* Ninv,, (%)
(o V)™ = (~(~p A =)™ (2~ A =) i, = -+ = (p V) Ninw,.
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Let x € V', ¢ : e € Foy, such that ¢ =

(Fzp)™ = {a € inv. | ¥V b € inv,, :
L {a € inv, | 3 b € inv,, :
={a € inv, | 3b € inv,, :
={ac A, |3 beiny, :

={ac A |dbe A,
={ac A, |dbe A,
={ac A |dbe A,
={ac A |dbe A,
={ac A |dbe A,
={ac A |dbe A,
={acA. |dbe A,
= (Jzp)* Ninw,,

. a

)

- a

|
|
|
|
|

{Congruences and mmrmmﬂ

(€e,me NY) and ¢’ = (€. 1, = ¢'). Then
alb/z] € ™}
alb/z] € ! Ninv,}

alb/z] € ¢}
alb/x] € '} Ninv,

b € inv,, Aalb/x] € o1} Ninv,
b€ €l Aalp/z] € ) Ninvy,

calb/z] € (€., 7)) Aalb/x] € o1} Ninw,
b/z] € (€m0 A @)} Ninv,
b/x] € (€0, mp A YaTre A7)} Ninv,
b/x] € (€c,me A7)} Ninv,
)

()
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(vxSO/)mv —_ (_Elxﬁgpl)mv — (_|<E|33'ﬁ<")/x’ﬂ'x — 7/))2’711} — (ﬁ(ax_‘(ﬁmfvﬂ-x v ,y/)>z'mj

%k

= (=(3z(yymy A 7)) () (=(Fz (e A ﬁv’))A Nnv, = -+ = (Vazgp’)A N 1nv,.

Proof of (3). Let A |= . Then ¢ = A, and thus by (2),
P = gpA N v, = A, N inv, = v,

ie., inv = @ -

Examples

Given a behavior function f : X* — Y, the minimal realization of f coincides with
the invariant (f) of the DAut(X, Y )-algebra Beh(X,Y): Beh(X,Y )saue = (X* — Y);
forall f: X* =Y and x € X, 6%V (f)(2) = Mw. f(zw) and BPMEYI(F) = f(e).

Let Y = 2. Then behaviors f : X* — Y coincide with languages over X, i.e. subsets
L of X*: Beh(X,2)gue = P(X*); forall L € X* and z € X, §5M32(L) = {w €
X* | 2w € L} and pPME2([) =1 €€ L.
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Hence the state-carrier of Beh(X,2) agrees with the reg-carrier of Lang and for all
L C X* (L) is the minimal acceptor of L whose final states are the languages of (L)
that contain e.

T'reg(x) also provides acceptors of regular languages, i.e., T' = Tgeyx) 18 a DAut(X, 2)-
algebra. Its transition function 67 : T'— T is called the Brzozowski derivative |16, 36].
It has been shown that for all regular expressions R, (R) C Tgegyx) has only finitely
many states (|16], Thm. 4.3 (a); [56], Section 5; |32|, Lemma 8).

If combined with coinductive proofs of state equivalence (see Section 4), the stepwise
construction of the least invariant (R) of Tg.q(x) can be lifted to a direct construction of
the minimal acceptor (L(R)) of L(R), thus avoiding the traditional detour from a given
automaton, its determinization (powerset construction) and subsequent minimization (see
160], Section 4).

Beh(1,Y) represents the algebra of streams with elements from Y
Beh(1,Y )gare = Y 2 YN,
For all s € YN, B(s) = 5(0) and 6(s)(*) = An.s(n + 1).
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Beh(2,Y) represents the algebra of infinite binary trees with node labels from Y
B€h<27 Y)statfa - YQ*-
For all t € X% and b € 2, B(t) = s(e), 5(t)(b) = Mw.t(bw).

A set A with addition and multiplication is a semiring, if A contains a zero and a one
such that for all a, b, c € A the following equations hold true:

a+(b+c)=(a+b)+c Assoziativitat von +

a+b=b+a Kommutativitat von +
O+a=a=a-+0 Neutralitat von 0 bzgl. +
ax(bxc)=(axb)xc Assoziativitdt von
lxa=a=ax1 Neutralitat von 1 bzgl.
Oxa=0=ax*0 Annihilierung durch 0

a*x(b+c)=(axb)+ (axc)

(a+b)xc=(ax*xc)+ (bxc) Distribution von * iiber +
A semiring A is a ring if, in addition, A has additive inverses, i.e., for all a € A there is
a unique @’ € A such that for a +d = 0.

If Y is a semiring, then the elements of Beh(X,Y) are called power series (see |57|,
Section 9). a
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[ F-algebras and F'-coalgebras J

Let K be a category and F': K — K be a functor.

An F-algebra or F-dynamics is a -morphism a : FI(A) — A.
Algr denotes the category of F-algebras.

An Algp-morphism A from an F-algebra a: F(A) — A to an F-algebra 3: F(B) — B
is a C-morphism h: A — B with hoa = o F(h).
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An F-coalgebra or F-codynamics is a KC-morphism a : A — F(A).

coAlgr denotes the category of F-coalgebras.

A coAlgp-morphism h from an F-coalgebra a: A — F(A) to an F-coalgebra
B:B — F(B) is a KC-morphism h: A — B with F'(h)oa = [Foh.

AT F(a)

h = F(h)
Y Y
B —5> F(B)

A K-object A is a fixpoint of F'if F(A) = A.

Lambek’s Lemma (|39], Lemma 2.2; [14], Prop. 5.12; |6], Section 2; [55], Thm. 9.1)
(1) Suppose that Algp has an initial object av: F(uF) — pF.
a is iso and thus pF' is a fixpoint of F'.
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(2) Suppose that coAlgp has a final object §: vF — F(vF).
[ is iso and thus vF' is a fixpoint of F'.

Proof. (1) Since « is initial, there is a unique Algp-morphism f: A — F(A) from « to
F(«a). Hence avo f is an Algp-morphism from « to a:

aofoa=aoF(a)oF(f)=aoF(aof).
1d 4 is also an Algp-morphism from « nach «:
idjoa=a=aoidpy =ao F(idy).
Hence (3) id4 = oo f because « is initial in Algp. Since f is an Algp-morphism,
foa=Fla)oF(f) = Flao f) = Flids) = idr( ()
By (3) and (4), « is an isomorphism.
(2) Analogously. a
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Given F-algebras o : F(A) — A and 3 : F(B) — B such that « is initial in Algp, the
unique Algp-morphism from « to 3 is called a catamorphism and denoted by fold”.

Given F-coalgebras av: A — F(A) and §: B — F(B) such that [ is final in coAlgp,
the unique coAlgp-morphism from « to 3 is called an anamorphism and denoted by
unfold™,
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{ Co/complete categories and co/continuous functors }

Let @ be the category with ordinal numbers as objects and all pairs (7, 5) € Q? with
1 < 7 as morphisms.

Let @), be the full subcategory of @ with all ordinal numbers less than A\ as objects.

A chain of I is a diagram D : @ — K. A cochain of K is a diagram D : O — .
Let A be an ordinal number.

A A-chain of K is a diagram D : Oy, — K. A A-cochain of K is a diagram D : Q) — K.
IC is A-cocomplete if I has an initial object and all A-chains of I have colimits.

IC is A\-complete if K has a final object and all A-cochains of IC have limits.

Set® is A\-complete and \-cocomplete.
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[C’()/ complete categories and co/continuous functms}

Let I and £ be A-cocomplete. A functor F': I — L is A-cocontinuous if for all \-
chains D of IC, F preserves the colimit {p; : D(i) — C |i < A} of D, ie, {F(p;) | i < A}
is the colimit of F' o D.

Let IC and £ be A-complete. A functor F': K — L is A-continuous if for all A-cochains
D of K, F preserves the limit {r; : C — D(i) | i < A} of D, ie., {F(v;) | i < A} is the
limit of F o D.

Given index sets I and J, a functor F : Set! — Set’ is permutative if for all A € Set!
and j € J there is ¢ € I such that F'(A); = A;.
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[C’()/ complete categories and co/continuous functms}

Theorem CONTYPES
For all polynomial types e over S, F, : Set — Set is w-continuous.

Let e be a type over S, k be the cardinality of the greatest (base set) exponent occurring
in e and A be the first regular cardinal number > . F, is A-cocontinuous.

Proof. By [8|, Thms. 1 and 4, or [12], Prop. 2.2 (1) and (2), permutative and constant
functors are w-continuous and w-cocontinuous, w-continuous or A-cocontinuous functors
are closed under coproducts, w-continuous functors are closed under products (and thus
under exponentiation; see [55|, Thm. 10.1) and A-cocontinuous functors are closed under
finite products.

By [12], Prop. 2.2 (3), w-continuous or A-cocontinuous functors are closed under quotients
neN A" and Bﬁ”(A) =
[L,en A" /~n where a ~y, b iff a is a permutation of b, _* and Bp, are w-continuous and
w-cocontinuous (see 9], Exs. 2.3.14/15). By [9], Ex. 2.2.13, Pj, is w-cocontinuous. For
a proof of the fact that Pg, is not w-continuous, see |9, Ex. 2.3.11.

modulo finite equivalence relations. Since for all sets A, A* = []

Analogously to |9], Thm. 4.1.12, one may show that A-cocontinuous functors are closed
under exponentiation by exponents with a cardinality less than .
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[C’()/ complete categories and co/continuous functms}

Moreover, w-continuous or A-cocontinuous functors are closed under sequential composi-
tion.

Putting all this together, we conclude that for all polynomial types over S and BS,
F, : Set® — Set is w-continuous, and for all e € T(S, BS), F, is A-cocontinuous. H

CPO"” denotes the category of w-CPOs as objects and pairs
(f:A— B,g: B— A)

of w-continuous functions with g o f = id4 and f o g < idp as morphisms.

Theorem CPOE (see, e.g., [48], Section 11.3)

All endofunctors on CPO¥ built up from identity and constant functors, coproducts,
finite products and Hom functors are cocontinuous. l:l
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{ Construction of initial F-algebras and final F'-coalgebras }

Theorem LFIX (For A = w, see [6], Section 2; [42], Thm. 2.1; for any A, see |2]|, [3],
Thm. 3.19, or |9], Cor. 4.1.5.)

Let A be an infinite cardinal, Ins be initial in JC and IC be k-cocomplete for all K < .

Given a functor F': I — IC, define a A-chain D of K as follows:

D(0) = Ini,
Dk+1) = F(D(k)) forall k<A,
D(k) = Cy for all limit ordinals k& < A,
D(z, k) = pig for all limit ordinals £ < A and all 7 < k,
D(k,k+1) = coly for £ = 0 and all limit ordinals £ < A,
Di+1,j+1) = F(D(i,7)) foralli <j <A

where v = {pir : D(i) — Ci | © < k} is the colimit of the greatest subdiagram
Dy : O — K of D and coly, is the unique K-morphism from Cj to F(C}) such that for
all 1 < k,

coly, © plit1 ) = F(Mi,k) :D(i+1) — F(Cy).
coly, exists because {F(u; ) | ¢ < k} is a cocone of F' o Dy and i \ {pox} is the colimit
of FoD;.
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Let
p=Api: D) — C[i<A}

be the colimit of D and F be A-cocontinuous. Then
F(u) ={F(u): F(D(i)) — F(C) | i < A}

is the colimit of FloD. Since u\ {0} is a cocone of F oD, there is a unique K-morphism
col® . F(C') — C — and thus an F-algebra — such that for all i < ),

col® o F(u;) = piy1 - D +1) — C.

col® is initial in Algp.
Proof. Let a: F(A) — A be an F-algebra. Since A initial in IC, D has the cocone
v={v;, D) > A|i<A\}

with vy = ini® and v, = a o F(v;) for all ¢ < A. Hence there is a unique C-morphism
fold™ : €' — A with fold” o u; = v, for all i < A. We obtain

fold™ o col o F(u;) = fold® o pis1 = v;41 = a0 F(v;) = aco F(fold? o ;)
= a0 F(fold™) o F(;). (1)
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Since v\ {vy} is a cocone of FroD and p\ {po} is the colimit of F oD, there is only one
JC-morphism h : F(C) — A with h o F(u;) = v;,1 for all i < A. Hence (1) implies

fold™ o col® = a o F(fold™),
i.e., coly is an Algp-morphism from col® to a.
Let § : C — A be an Algp-morphism from col® to a.. Suppose that for all i < A,
0ou =v;: D) — A (2)
Since foldA o 1; = v; and there is only one C-morphism A : C' — A with h o u; = v;, we
conclude 6 = fold®. It remains to show (2) by transfinite induction on i.

Since D(0) = [ is initial in IC, 8 o pg = 1. Let 0 < k < A. If k is a successor ordinal,
then k =7+ 1 for some ordinal 7 and thus

B0 =00u =00colloF(u) Y a0 FB) o Flu) = ao F(Bow)
ind. hyp.
=" ao F(y) = Vi1 = 1.

Let £ be a limit ordinal. Since p and v are cocones of D, py 0 i, = p; and v o p; ), = v;
for all 1 < k.
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[[’rzitml/ﬁnal F-co/algebra const'ruction}

Hence by induction hypothesis,
0 ooy ==00pu =v=uv;0 . (3)

Since {v; | ¢ < k} is a cocone of Dy and {p;x | ¢ < k} is the colimit of Dy, there is
only one KC-morphism h : D(k) — A with ho u;;, = v; for all ¢ < k. Hence (3) implies
6 o i = vy, and the proof of (2) is complete. a

130 of 373



[[m'tial/ﬁnal F-co/algebra constructz’on]

%) Do
D(0) D(1) D(2) D(3 3 D(4)
coly —>() F(colg) > F=(colg) — > F~(coly) ) 0 0 O Dy,
colimit(D,)) | Fcolimit(D,))
col
o —>0
D(w) D(w+1)

The w + 2-chain of K induced by the initial object D(0) of K
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[[m'tial/ﬁnal F-co/algebra constructz’on]

%] Do
D(0) D(1) D(2) 5 D(3) 3 D(4)
colg —>() F(colo)_) F (colo) ) F (colo) >() 00 o D,
D
colimit(D) F(colimit(D,)) w2
Y / D(w+2) D(w+3)
F(col ) —>() F(col ) >() 00 0
D(w) ' D5
w
F(colimit(waZ))
colimit(D,») D(w2+2)
D(2) col o F(col ;o) —>()—>000

D(w2+1)

The (w2 + 2)-chain of IC induced by the initial object D(0) of K
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[[m’tial/ﬁnal F-co/algebra constructz’on]

%) Dy
D(0) D(3) D(4)
coly _) F(coly) coIO —>() F~(colg) >() o0 o Dy
D
colimit(D D) F(colimit(D ) w2
) \ (u)+2) ) D(w+3)
coI F(coI F (colw) ) 00 o
D(w+1) Diy3
F(colimit(Dwz))
colimit(D ») D(w2+2)
coly2 F(colyyo) —> 000
D(w2) w
D(w2+1) Dyya
F(colimit(@wS))
D(w3+1)

o O O

D(w3)

The (w3 4 2)-chain of KC induced by the initial object D(0) of K
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[[m’tial/ﬁnal F-co/algebra constructz’on]

%) Dy

D(0) D(1) D(2) DE) 4 D(4)
colg (O)— Flcoly) ) Fo(colg —>() F(coly) ) 00 o Dy,

‘ D
colimit(D, ) ‘ F(colimit(D, ) w2

w )
) \ D(w+2) D(w+3)

coly, F(colw) ) F2(colw) ® 00 o
D(w) .
D(w+1) D3
F(colimit(CDw2))
colimit(D;5) D(w2+2)
D(w2) colyo Flcolyo) —>() 000
D(w2+1) Dyya
F(colimit(D,
colimit(D o) (colimittDy3)
D(w3+1)
o O O
D(w3) Dy?
Q
Q
Q

The w?-chain of K induced by the initial object D(0) of K
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[[m’tial/ﬁnal F-co/algebra wnstructz’an}

%] Do
D(0) D(1) D), D(3) 3 D(4)
colg —>»(")— Fcolpy O F=(colg) ® F (colg) ® 00 o D,,

colimit(D, ) .

D
- w2
® ‘ F(collm[t(CDw))
, \ Dw+2) D(w+3)
col F(col ;) ) F(col ) —>(") 00 0o
D(w) . D
w3
F(colimit(’Dwz))
coIimit(CDw2> D(w2+2)
colyo F(col o) —>() 000
D(w2+1) Dyya
F(colimit(D, .4))
colimit(D, .4) w3
colimit(‘D(wz)) w3
D(w3+1)

A
o
o
o

2
D) D(w3) Dyy?
col u)2 Q

F(colimit(D(w?))) Q

D(w2+1)

The (w? + 2)-chain of K induced by the initial object D(0) of K
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[[’rz'étial/ﬁnal F-co/algebra constructwn}

Theorem GFIX
Let A be an infinite cardinal, Fin be final in K and K be s-complete for all K < A.
Given a functor F' : I — K, define a A-cochain D of K as follows:

D(0) = Fin,
Dk+1) = F(D(k)) forall k<A,
D(k) = Ly for all limit ordinals k < A,
D(k,i) = for all limit ordinals &£ < A and all © < k,
D(k+1,k) = limy for K = 0 and all limit ordinals k < A,

Di+1,74+1) = F(D(i,j)) foralli>j< A

where v, = {pg; : L — D(i) | © < k} is the limit of the greatest subdiagram Dy, : O —
IC of D and limy, is the unique KC-morphism from F(Ly) to Ly such that for all i < k,

fiiv1 o limy = F(ugq) : F(Ly) — D+ 1).

limy, exists because { F'(ug;) | ¢ < k} is a cone of F oDy, and i \ {pr0} is the colimit of
FoD,.
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[[m’tial/ﬁnal F-co/algebra const//'uctwn}

Let
p=1{pi:C—D@)|i<A}
be the limit of D and F' be F' be A-continuous. Then
F(p) ={F(u) : F(C) — F(D(i)) | i <A}

is the limit of F o D. Since u \ {10} is a cone of F o D, there is a unique C-morphism
lim© : O — F(C) — and thus an F-coalgebra — such that for all i < X,

F(u;) o lim® = pip, : C — D(i + 1).

lim® is final in coAlgp.

Proof. Let a: A — F(A) be an F-coalgebra. Since A final in I, D has the cone
v={v,: A—=D()|i<\}

with vy = fin” and vy = F(v;) o o for all i < A. Hence there is a unique KC-morphism
unfold” : A — L with [4; © unfold” = v; for all i < A. Proceed analogously to the proof
of Theorem LFIX. A
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[[ nitial/final F-co/algebra construction}

Corollary

Suppose that all co/chains of K have co/limits. Then the definition of the A-co/chain D
in Theorem LFIX resp. GFIX can be extended to the definition of a co/chain.

If FF: K — K is A\-co/continuous, then D converges in A steps, i.e., D(A) = D(A+1).

Proof. The conjecture follows immediately from Lambek’s Lemma and Theorem LFIX

resp. GFIX. EI
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[ Constructive-signature functors }

Let X = (S, BS, F, P) be a constructive signature.

Y} induces the functor Hy : Set” — Set”: For all A,B € Set®, h € Set’(A, B) and
seS,

HZ(‘A)S - Hf:e—>s€FA€?
HE(h)S - Hf:e—>8€F he

A Hy-algebra (see F-algebras and F-coalgebras) a @ Hy(A) — A uniquely corresponds
to a X-algebra A and vice versa:

Foralls€ Sand f:e — s € F,

Hence o is the coproduct extension of the interpretations of all constructors of X in A.
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LConstmctme—S?ﬁgnature functom}

Moreover, given Y-algebras A and B and corresponding Hy-algebras « resp. 3, an S-
sorted function h: A — B is X-homomorphic iff & is an Algg,-morphism from « to 3.

Examples

Let A be an S-sorted set.

H ot (A)pat = 1+ Anat,

Hpeg(x)(A)reg = 1+1+ X+ A7, + A7 + Ay,
H s (x) (A)tist = 1+ (X X Aug),

H gintree(x)(A)tree = 1+ Aptree X X X Apree,

H gice(x,v) (A tree = X X Aprees,

H fee(x v)(A) trees = 1+ (Y X Apee X Aprees);
Hpogtree(x,v)(A)irees = X X Bpn(Y X Appee),

HFDTree(X,Y)(A)trees = X X ((Y X Atree)N + (Y X Atree)*>- H
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[Constmctz’ve-sz’gnature functors}

Let k be the cardinality of the greatest (base set) exponent occurring in the domain of
some f € F and A be the first regular cardinal number > k.

By Theorem CONTYPES, Hy, is A-cocontinuous and thus by Theorem LEFIX, Algp,, has
an initial object a: Hy () — p2. In other words, pX is the initial 3-algebra (see (1)).

Since pY is the colimit of the A-chain D of Set” defined in Theorem LFIX, the Quotient
Theorem implies that for all s € S,

uZs = (][ D0)s)/~

<A
where ~ is the equivalence closure of

{(a,D(i,i +1)(a)) | a € D(i)s, i < A}.
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[Constmctz‘ve-Ségnature functors}

Let A be a Y-algebra. The unique Y-homomorphism fold” : 1> — A is the unique
S-sorted function such that

H D %34 2</\ H D nat foldA A

1<\ <\

where [ is the unique S-sorted function from D(0) to A and for all t < X and s € S,
ﬁi—l—LS - [fA o Fe(ﬁi,s)]f:e—nseF : D(Z + 1)5 — As-
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[Constmctive—S?Jgna,ture f?mctors}

Flat constructive signatures

Y2 1s flat if the domain of each function symbol of X is a finite product of flat types.

[f > is not flat, 22 can often be transformed into an equivalent flat signature
¥ =(S,BS,F', P), ie., Algs = Algss. For instance,

e a constructor f e x (e;+---+e,) — s is flattened by adding e; + - - - + ¢, as a new
sort to S and the injections ¢; : ¢; — e1 + -+ -+ ¢,, 1 <1 <n, as new constructors to
F;

e a constructor f : e x /¥ — s with finite B € BS is flattened by adding ¢'” as a new

sort to S and B-tupling (...,...,...): [[,cp€¢ — € as a new constructor to F.
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[Constructz‘ve-signature functorsj

The initial model of a flat constructive signature

Let ¥ = (S5, BS, F, P) be flat.

Hy is w-cocontinuous and its object mapping reads as follows: For all S-sorted sets A
and s € S,

HZ(A)S - Hf:elx---xen—n@eF H?:l Aez
- {<(a17"'>an>7f) | Jreg X - Xe, = s€EF, CLZ'EAei, 1§Z§TL}

Moreover, for all s € S, k € N and t € D(k),
D<O)S — ®7
D(k+1)s = Hx(D(k))s
= {((t1, - t), [) | freax - xe, = s€eF, tye D(k),, 1 <i<n},
Dk, k+1)(t) =t
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[Constmctz’ve-Ségnature functors}

and thus by the Quotient Theorem,

p2s = (quD(MS)/NS = UD<k>8
keN keN

where ~ is the equivalence closure of {(t, D(k,k+1)(t)) | t € D(k)s, k € N} = Appy 5.

By Lambek’s Lemma, the Hy-algebra o (see (1)) is an isomorphism and thus for all
fiegx- - xXe,—se€Fandt;€pX, 1<i<n,

) =t t) = (B, ), f).

Since ((t1,...,tn), f) is represented by a tree with root label f and maximal proper
subtrees, we write f(t1,...,%,) for ((t1,...,t,), f).

Hence for all -algebras A,
fold™(f(ty, ... t,)) = fold™ (f"™(t1,. .. t,)) = f(fold2 (t1), ..., foldl ().
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LConstmctme—S?ﬁgnature functom}

The carriers of uX can be represented as equivalence classes of trees:

Let T be the least FT(S, BS)-sorted set of finite trees ¢ such that

o for all X € BS, t € T if t is a leaf labelled with some element of X,

o for all s € S, t € T if the root of t is labelled with some f :e; X --- X e, — s € F
and the tuple of maximal proper subtrees of ¢ isin T, x ... x T|

e for all collection types c(s) € FT(S, BS), t € Ty if the root of ¢ is labelled with ¢
and the tuple of maximal proper subtrees of ¢ is in T7.

Hence for all t € T,

e a node n is a leaf of ¢ iff n is labelled with an element of some X € BS,

e 1 is an inner node iff n is labelled with a constructor of X, word, bag or set.
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LConstmctme—S?ﬁgnature functom}

Let ~ be the least equivalence relation on 7" such that for all e € FT(S, BS), t,u € T,
and the lists ¢1,...,¢,, and uq, ..., u, of maximal proper subtrees of ¢ resp. u, t ~ u if

ecce SUBS m=nandforalll <i:<mn,t; ~u; or

e cis a word type, m =n and for all 1 < i <mn, t; ~ u,;, or

e ¢ is a bag type, m = n and there is a bijection h on {1,...,n} such that for all
L <1< n,t;~upg,or

e cisaset type, forall 1 <7 < mthereis1 <j <mnwitht; ~u;andforalll <j<mn
there is 1 <1¢ < n with ¢; ~ u;.

For all e € FT(S, BS), uX. =T, /~.
If F' does not contain bag or set types, then u¥, = T, /~=T..
The elements of X are called finite ground >-terms.

For all £k € N, D(k) is represented by the (equivalence classes of) finite ground >-terms
t with depth(t) < k.
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LConstmctme—S?ﬁgnature functom}

o

AR
(e
£4odn

@@@@@

A finite ground X-term with constructors fi, ..., fs and base elements a, b, c, d, *.
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LConstmctme—S?ﬁgnature functom}

Examples
N is an initial Nat-algebra: 0N = 0 and for all n € N, succ(n) = n + 1.

T'reg(x) is an initial Reg(X)-algebra. Hence TReg(x),reg 18 the set of regular expressions
over X. For all such expressions R, fold*(R) is the language of R and fold”(R)
checks it for inclusion of the empty word.

For >3 € {List(X), Tree(X,Y), BagTree(X,Y), FDTree(X,Y)}, the elements of the list-
resp. tree-carrier of an initial X-algebra can be represented by the sequences resp. trees
that we associated in Signatures with . EI
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[ Predicate induction }

Let X = (S, BS, F, P) be a signature and C' be a Y-algebra.

Predicate induction is an (analytical, top-down) inference rule that allows us to prove
properties of the interpretation of P in Ifp(®sy ax). The properties are given by -
formulas 1, : e, one for each p : e € P'. The goals p = 1, p € P’, are replaced by the
axioms for P’, which are then coresolved upon the goals:

p = 1,
1
b R pe PI= 0

If further top-down rules (e.g. resolution and narrowing) transform the succedent of (1)
to True, then by Lemma IND, C' satisfies the antecedent of (1).

Goals can often be proved by induction only after they have been generalized: Some for-
mula 0, must be found such that C' satisfies p = 1), A 0,. The generalization strengthens
the induction hypothesis in the succedent of (1) from @[, /p| to [, Ad,/pl.
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(Predicate induction)

In order to find §,, ¢, and ¢, = 1, are added to ¥ resp. AX when (1) is applied. The
succedent of (1) is modified accordingly:

2) G
Nprepeax(Plan/p | p € P = Upt)

The demand for generalizing the goal p = 1, becomes apparent in the course of proving
the succedent of (2) when a subgoal of the form ¢, = ¢, is encountered:

It 9, = 1, then the subgoal ¢, = 0, agrees with the added axiom and thus reduces to
True. Otherwise ¢, = 0, is added to AX and the proof proceeds with an application of
the following rule:

qp = 0y

/\pt<:gpeAX(90[QP/p | p€P|=0)

(3)

Between the applications of (2) resp. (3), coresolution steps upon the added axiom

gy = 1, must be confined to redex positions with negative polarity, i.e., the number
of preceding negation symbols in the entire formula must be odd. Otherwise the axiom
added when (3) is applied might violate the soundness of the coresolution steps.
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(Predicate induction)

Coresolution upon g, at any redex position becomes sound as soon as the set of axioms
for g, is not extended any more.

By inferring True from the conclusions of (2) and (3) one shows, roughly speaking, that
the predicate ¢, A 9, solves the axioms for p. Since p itself represents the least solution,
we conclude p = 1, A 0,, in particular the original goal p = ,,.

Predicate induction allows us to prove properties of least predicates. If, however, P’ con-
sists of greatest predicates, then proving goals of the form p = 4, amounts to coresolving
them upon p.
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(Predicate induction)

Induction for proving membership
Let P ={invs:s|se S} X =(S,F,P+ P,
AX = {inva(fz) < inv(x) | f:e— € € F},

C be initial in a full subcategory of Algy, R be an S-sorted subset of C' and v be an
S-sorted set of Y-formulas such that for all s € S, ¢ = R,. By Lemma MAX (1),

C C R <= R contains some Y-invariant of C'
<= R contains the least Y-invariant of C

<= the succedent of predicate induction is valid

for P, AX and 1 defined as above.
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(Predicate induction)

KRRk Rk

Suppose that for all s € .S, s-membership €,: s belongs to P, and AX is a set of Horn
clauses such that for all ¥-algebras A satisfying AX, €= {€? | s € S} is a Y-invariant.

Let 3 be initial in Algs; 4y or obs(Algs 4y ) (see Thm. ABSINI resp. RESINI). Then
cM* is the least Y-invariant of uY that satisfies AX.

Let R be an S-sorted subset of > and for all s € S, 95 : s be a Y-formula that describes
R, ie., Ry coincides with wsz. By algebraic induction, pu> C R if for all s € 5|,
SRS
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( Context-free languages and their compilers }
\

A context-free grammar G = (N, BS, X, R) consists of finite sets S of nonterminals,
BS of base sets, X of terminals, and R C N x (N U BS U X)* of rules.

The constructive signature ¥(G) = (N, BS, F, ()) with

r = (s,wperws . ..e wy,) € R,

F ={f:e1x---xe, —>s]|
' " e1,...,e, € NUBS, wy,...,w, € X*

is called the abstract syntax of G (see [23], Section 3.1).

> (G)-terms are called syntax trees of G.

KRR KKK

The word algebra of G, Word((G), is the ¥(G)-algebra defined as follows:

e forall s € S, Word(G), = X*.
o For all wy,...,w, € Z* e1,...,e, € SUBS, r = (s,wys1wy . .. s,w,) € R and
v € Word(G)e, x..-xe,; fTWOTd(G)(U) = WU W] . . . UpWy,.
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[Context—free languages and their 60777,]?7;167"5}

L(G) = fold Wer & (T () is called the language of G.

L(G) is also the least solution in S of the set F/((G) of equations between the left- and
right-hand sides of R. If G is not left-recursive (Vv A € N,w € B* : A £og Aw),

then the solution is unique [49]. This provides a simple method for proving that a given
language L agrees with L(G):

L=L(G) <= Lsolves E(G)in S.
Let B=Z U (UBS). Every parser for G can be presented as a function
parse : B* — M (T )

where (M, 7,¢€) is a monad that embeds T% ) into a larger set of possible results like
syntax errors or sets of syntax trees instead of a single one [49].

parse is correct if

(@)

~
—_
~—

e parse o fold Vori&) = Ny

o for all w € B*\ L(G), parse(w) is an error message.

—~
N
~—7
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[Context—fme languages and their compilers}

If the target language of a compiler comp for G is presented as a %(G)-algebra Target,

comp : B* — M (Target) is the composition of parse and M (fold?):

B*\ L(G) LN ;
(2) parse
. Y Id Target
errors = M (Ts @) Jo ) — M (Target)
parse
( 1 ) UTE(@ - T Target
- fOld Target g
B =< fold Word(C) Ty >~ Target
fold>emc) (3) execute
Sem/(G) >~ Sem(Target)

encode
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The inductive construction of syntax trees by parse can be transformed into an inductive
construction of target objects. Consequently, the compiler compiles its input directly
without building a syntax tree!

As fold M™% is just one instance of a generic function that takes an arbitrary ¥(G)-algebra
Target and evaluates the syntax trees of M (Tx ) in Target, so

comp = M(fold™™ ) o parse

is just one instance of a generic function that takes Target and compiles input from B*
to elements of Target.

Moreover, expressing target languages as >(G)-algebras provides a method for proving
the commutativity of (3), i.e. the correctness of comp w.r.t. given semantics Sem/(G)
and Sem(Target) of G resp. Target:

e Suppose that Sem(Target) is a X(G)-algebra and execute and encode are 3(G)-
homomorphic. Then all functions of (3) are ¥(G)-homomorphic and thus (3) com-
mutes because Ty ) is initial in Algsq). (4)
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[C’ontext—fme languages and their 60777,]?7;167"5}

Usually, there is a target signature ' such that Tsy = Target, each constructor of ¥(G)
corresponds some X'-term, Sem( Target) is a >'-algebra and execute is ¥'-term evaluation
in Sem(Target). Then the correspondence between (G )-constructors and X'-terms may
be transferable to their interpretations in 3(G) resp. Sem(Target) such that, indeed,
erecute and encode become Y(G)-homomorphic. In [64], the method is applied to the
translation of imperative programs into data-flow graphs.

To sum up, using algebra in compiler design allows us to

e omit the explicit construction of syntax trees,

e to parameterize the same compiler with different monads that implement different
parsing techniques (deterministic, nondeterministic, fine-grain error handling, etc.),

e to parameterize the same compiler with different target languages,

e to employ the fact that abstract syntax trees form an initial algebra when proving
the correctness of the compiler.
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[Context-free languages and their compz’lers}

Example
The grammar SAB = (N, Z, (), R) consists of N = {S, A, B}, Z = {a, b} and the rules

rn=8—aB, =85 —>bA, r3=5 —¢,
ri=A—aS, rs,=A—bAA, r¢=B —bS, =B — aBB.

For all w € Z* and x € Z let w#x be the number of occurrences of x in w. It is easy to
see that g : N — Lang with

g(
g(
g(

solves the equations derived from R in Lang. Since SAB is not left-recursive, there is

S) = {w e Z" | wH#a = wH#b}
A) = {w e Z* | wH#a =wH#b+ 1}
B) = {w e Z* | w#a = w#b — 1}

only one solution. Hence

L(G)s =g(S), L(G)a=g(4), L(G)p=g(B).
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[Context-free languages and their compz’lers}

The abstract syntax of SAB consists of the sorts .S, A, B and the function symbols
fm:B_>Sa frg:A_>Sa fr‘3:€_>57
fro S — A, f, 1 AA— A
frs S — B, f.:BB— B.

The three carriers of the word algebra A = Word(SAB) are given by {a,b}*. The
function symbols of (SAB) are interpreted in A as follows: For all v,w € {a,b}",

fAw) = fAw) = aw,
) = fw) = b
[

f;?(v,w) = bow,
f;;‘(v,w) = avw.
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[C’onte.rt-free languages and their compilers}

Compiler from Z* into an arbitrary 3(SAB)-algebra Target, written in Haskell:

compile_S w = msum ($ w) [try_rl,try_r2,try_r3]
where try_rl w = do (x,w) <- compile_a w
(c,w) <- compile_ B w
return (f_r1-Target c,w)

try_r2 w = do (x,w) <- compile_b w
(c,w) <- compile_A(w)
return (f_r2-Target c,w)

try_r3 w = return (f_r3"Target,w)
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compile_A w

complile_B w

complle_a w
compile_b w

[Context—free languages and their 60777,]?7;167"5}

= msum ($ w) [try_rd,try_r5]

where try_r4 w = do (x,w) <- compile_a w
(c,w) <- compile_S w
return (f_r4-Target(c),w)
try_rb w = do (x,w) <- compile_b w
(c,w) <- compile_A w
(d,w) <- compile_A w
return (f_r5 Target(c,d),w)

= msum ($ w) [try_r6,try_r7]

where try_r6 w = do (x,w) <- compile_b w
(c,w) <- compile_S w
return (f_r6-Target(c),w)
try_r7 w = do (x,w) <- compile_a w
(c,w) <- compile_B w
(d,w) <- compile_ B w
return (f_r7-Target(c,d),w)
= if null w || head w /= a then error else return (a,tail w)
= if null w || head w /= b then error else return (b,tail w)
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[ Destructive-signature functors }

Let X = (S, BS, F, P) be a destructive signature.

Y} induces the functor Hy : Set” — Set”: For all A,B € Set®, h € Set’(A, B) and
seS,

HZ(‘A)S - Hf:s—>e€FA€?
HE(h)S - Hf:5—>e€F he

A Hy-coalgebra av - A — Hy(A) (see F-algebras and F-coalgebras) uniquely corresponds
to a X-algebra A and vice versa:

Forallse Sand f:s —e € F,

p— A ‘s—e
AS g <f >fs EF% HE(A)S

Hence a; is the product extension of the interpretations of all destructors of ¥ in A.
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{Destmctive—S?ﬁgnature functom}

Moreover, given Y-algebras A and B and corresponding Hy-coalgebras « resp. (3, an
S-sorted function h : A — B is 3-homomorphic iff i is a coAlgg,-morphism from « to

0.
Examples

Let A be an S-sorted set.

HcoNat (A)nat
HStream(X) <A>list
HcoLz'st(X) (A)list

H ]nfbmtree

H o free(x,v) (A tree
H o free(x,v) (A trees
Hpprree(x,v)(A)ree
Hpau(x,v)(A)state

Hypaur(x,v)(A)state

)btree —

x)(A
oBmtree (A)btree —
= X X Atreesa

= 1+ (Y X Atree X AtT@eS)’
= X X (Y X Atree)*v
— AX

1 + Anat7

= X X Alist7

1+ (X X Alist)a
Abtree X X X Abtree;
1 + (Abtree X X X Abtree)a

state X Y)
Pﬁn(Astate>X X Y. J
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Lemma WEAKFIN

Let X = (S, BS, F, P) and ¥/ = (S, BS’, F’, P) be destructive signatures, 7 : Hys — Hy,
be a surjective natural transformation, A be final in Algsy and

Q= <gA>g:SHe’€F’ A — HE’(A>
be the corresponding Hyv-coalgebra (see (1)).

Taoa: A — Hy(A)is a Hy-coalgebra and thus by (1), the corresponding Y-algebra has
the same carriers as A (why we also denote it by A) and interprets F' as follows: For all
f:s—eel,

fA =T} OTAsO Q.

T4 o a is weakly final in coAlgp,, i.e., for all 3 € coAlgy,, there is a (not necessarily
unique) coAlgy,-morphism from 74 o o to 3.

In other words, A is weakly final in Algy, i.e., for all Y-algebras B there is a (not
necessarily unique) ¥-homomorphism from A to B.

Moreover, A/~ is final in Algy, where ~ is the greatest Y-congruence on B (which is the
union of all -congruences on B).
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Proof. The lemma generalizes [24|, Lemma 2.3 (iv), [26], 4.3.2/3, or [9], 2.4.6/16, from
Set to Set®.

Let B : B — Hyx(B) be a Hy-coalgebra (see (1)). Since 75 : Hsy(B) — Hy(B) is
surjective, there is an S-sorted function h : Hy(B) — Hsy/(B) with 75 0 h = idy ).

Hence hof3 : B — Hyy/(B) is a Hyy-coalgebra and thus there is a unique >’-homomorphism
unfold® : B — A. If F is interpreted in A as above, unfold? is also Y-homomorphic:

Hy(unfold®) o 8 = Hx,(unfold?) o g0 ho 8 =174 0 Hyy(unfold®)oho 3

— 74 0 a0 unfold®.
Hence nat., o unfold® is a ©-homomorphism from B to A/~. Let g,h: B — A/~ be 3-
homomorphisms. There is an S-sorted function m : A/~— A with nat.om = id,.. Let
~ be the least X-congruence on A that contains all pairs (m(g(b)), m(h(b))) with b € B.

Since ~ is the largest X-congruence on A, ~C~. Hence for allb € B, m(g(b)) ~ m(h(b))
implies m(g(b)) ~ m(h(b)) and thus

g(b) = nat.(m(g(b))) = nat(m(h(b))) = h(b).
We conclude g = h. EI
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Let > be polynomial.

By Theorem CONTYPES, Hy, is w-continuous and thus by Theorem GFIX, coAlgy,. has
a final object o : 32 — Hy(vY). In other words, vX is the final Y-algebra (see (1)).

Since Y. is the limit of the w-cochain D of Set® defined in Theorem GFIX, the Subset
Theorem implies that for all s € S,

v, = {a e [[ D), |Vi<w:a;=D(i+1,i)(ai)}.

Let A be a Y-algebra. The unique S-homomorphism unfold” : A — v is the unique
S-sorted function such that

3i)i unfold? e .
AV T o) = A" v T Do)
1<w 1<w

where ) is the unique S-sorted function from A to D(0) and for all i < w and s € S,
B’H—l,s — <E<6ts) o fA>f:5He€F : As — D(Z + 1)5
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Flat destructive signatures

Y2 1s flat if the range of each function symbol of X is a finite or coproduct of flat types.

If ¥ is not flat, ¥ can often be transformed into an equivalent flat signature ' =
(S',BS,F', P), ie., Algy = Algsy. For instance,

e a destructor [ : s — e+ (e; x -+ X ¢,) is flattened by adding e; x - -+ X ¢, as a new
sort to S and the projections 7; : ¢; X -+ X ¢, — ¢;, 1 <1 < n, as new destructors
to F;

e a destructor f : s — e+ ¢’ with B € BS is flattened by adding ¢/” as a new sort to

S and the projections 7, : ¢/? — ¢/, b € B, as new destructors to F.
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The final model of a flat destructive signature

Let X = (S,BS,F,P)beflatand " ={f :s — e|+---+e, | [ :s — e+ - -+e, € F}
where for all s € S, set(s)’ = word(s), and for all other flat types e, €' = e.

¥ = (S, BS, F', P) is flat and polynomial.

Hyv is w-continuous and its object mapping reads as follows: For all S-sorted sets A and
s €S,

HZ(A>S - Hf:(9—>61+---+67L€F H?Zl Aei
={9g: F—>AXN|Vf:s—e+ --+e,€F:mg(f) € Ay .

mo(g(f))
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Moreover, for all s € S, k € Nand t € D(k + 1),

D(O)s = 1= {*}

Dk+1)s = Hy(D(k))s={t: F -Dk)xN|Vf:s—e+---+e, € F:
m(t(f) € Dk), )
Dk+1,k)(t) = mot

and thus by the Subset Theorem,

vy, = {t€]lenDk)s | VEEN D+ 1,k)(mp41(t)) = mi(t)}

= {te[[,enDPk)s |V ke N:m omy(t) = mi(t)}
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A surjective natural transformation 7 : Hyy — Hy, is defined as follows: For all S-sorted
sets A, f 15— extoot e, € Fand b= (by)ger € Hy(A) = [y oosener L Ay

ai,...,apt,t) ifby=1(ar...ax,1) and ¢; is a set type,
f

m(7al(b)) = {

by otherwise.

Since A = vY is final in Algsy. Lemma WEAKFIN implies that A is weakly final in
Algy, if F' is interpreted as follows: For all f:s — e+ -+ e,

fA=mporaso () ser,

i.e., for all a € A;,

fA( > ({ay,...,ax},1) if fYa) = (ay...ax, 1) and ¢; is a set type,
a) =
f'a) otherwise.
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Moreover, v¥ = A/~ is final in Algs, where ~ is the greatest X-congruence on A, i.e.,
the union of all S-sorted binary relations ~ on A such that for all s € S and a,b € Aj,

a ~, bimplies fA(a) ~e 1ote, (D), ie.,

(
{CLl, Ce ,ak} ~e; {bl, ceey b[} if f/A<CL) = (CLl Ce ak,i),
a~sb = < fA4(b) = (by ... by, 1) and e; is a set type,
\ f(a) ~ f4(b) otherwise.

Remember that for all set types set(s), {a1,...,ar} ~ses) 101, .., b} holds true iff for
all 1 <17 <k thereis 1 <j <[lwitha; ~5b;andforalll <j <[lthereisl <:<Ek
with a; ~g bj.

By Lambek’s Lemma, the Hy-coalgebra o @ v¥ — Hy(vY) (see (1)) is an isomorphism
and thus forall f:s —e;+---+e, € Fand t € vy,

FE(E) = mp(t) = ¢(f).
Hence for all Y-algebras A and a € A, f4(a) = (b,q) implies
unfold®(a)(f) = f**(unfold™(a)) = unfold(f4(a)) = unfold*(b,7) = (unfold™(b),1).
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The carriers of X can be represented as equivalence classes of trees:

Let T" be the greatest FT(S, BS)-sorted set of finite or infinite trees ¢ such that

o for all X € BS. if t € Ty, then t is a leaf labelled with some element of X,

eforallse S,ift € T, thenforall f:s —e+---+e, € F thereare 1 <1 <n,
u € T¢, and a unique outarc of the root r of ¢ that is labelled with (f,7) and points
to the root of u and r has no other outarcs,

o for all collection types c(s) € FT(S, BS), if t € i), then the root of ¢ is labelled
with c and the tuple of maximal proper subtrees of ¢ is in 7.

Hence for all t € T,

e a node n is a leaf of ¢ iff n is labelled with an element of some X € BS),

e 1 is an inner node iff n is unlabelled or labelled with word, bag or set.
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Let ~ be the greatest equivalence relation on 7" such that for all e € FT(S, BS), t,u € T,
and lists t1,...,t,, and uq, ..., u, of maximal proper subtrees of ¢ resp. u, t ~ u implies

ecce SUBS m=nandforalll <i<n,t; ~u; or

e cis a word type, m =n and for all 1 < i <mn, t; ~ u,;, or

e ¢ is a bag type, m = n and there is a bijection h on {1,...,n} such that for all
I << mn,t;~upg,or

e cisaset type, forall 1 <7 < mthereis1 <j <mnwitht; ~u;andforalll <j<mn
there is 1 <1¢ < n with ¢; ~ u;.

For all e € FT(S, BS), v¥, = T, /~.
If F' does not contain bag or set types, then v3, = T, /~=T..
The elements of v are called ground X-coterms.

For all k € N, D(k) is represented by the (equivalence classes of) finite ground ¥-coterms
t with depth(t) < k.
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/ il 5,1
f,3 @ 2
& D@
f,,2 /7 ‘2 @ifz,z
’ ~
\ f3’-I 4 @ o o o
e
f
fu 13
\@\ f,,2
~—~
(3 ©
~
@fs,z — >0 o o
A ground Y-coterm with destructors f1,..., fs and base elements a,b,c,d, e, *.

Fach inner node n is labelled with the sort of the subtree with root n.

Dots indicate infinite subtrees.
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Examples

A =NU{oo} is a final coNat-algebra: For all n € A,

(

* it n =0,
pred*(n) =< n—1 if n>0,
| if n = o0.

Beh(X,Y)is final in Algpay(xy). In particular, the DAut(1,Y )-algebra of streams with
elements from Y Y is final in Algpau1,y) and the DAwut(2,Y )-algebra of infinite binary
trees with node labels from Y is final in Algpau2.v).-

Since T' = Tp.yx) and Lang are DAut(X,2)-algebras, fold*™9 . T — Lang is a
DAwt(X,2)-homomorphism (see [49], Section 12) and Lang is a final DAut(X, 2)-algebra,
fold™™9 coincides with unfold”. This fact allows us to build a generic parser for all reg-
ular languages upon §7 and 37 and to extend it to a generic parser for all context-free
languages by simply incorporating the respective grammar rules (see ?777[49|, Sections
12 and 14).
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For ¥ € {Stream(X), coList(X), Infbintree(X), coBintree(X,Y'), coTree(X,Y),
FBTree(X,Y)}, the elements of the list-, btree- resp. tree-carrier of vY can be repre-
sented by the sequences resp. trees that we associated in Signatures with X.

This follows from a simple one-to-one transformation of the tree representation described
above: Remove each edge e labelled with an attribute, i.e., a destructor f : s — B with
B € BS and add the label b € B of the target of e to the label(s) of the source of e. Of
course, if s has several attributes, it must be indicated that b was the value produced by

f.
For instance, the usual sequence representation of the stream [1,2,3, .. .] is obtained from
the following tree representation:

JORNONNCO

head head head

Gtaﬂ»@taﬂ»@taﬂ»@ c e
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[ Predicate coinduction }

Let X = (S, BS, F, P) be a signature and C' be a Y-algebra.

Predicate coinduction is an (analytical, top-down) inference rule that allows us to show
that the interpretation of P’ in gfp(®sy ¢ 4x) contains all objects with some properties,
given by YX-formulas 1, : e, one for each p : e € P. The goals psi, = p, p € P', are
replaced by the axioms for P’, which are then resolved upon the goals:

v, =p
1
S N e iy =y 2

If further top-down rules (e.g. resolution and narrowing) transform the succedent of (1)
to True, then by Lemma COIND, C satisfies the antecedent of (1).

Goals can often be proved by coinduction only after they have been generalized: Some
formula 0, must be found such that C' satisfies ¢, V 9, = p. The generalization weakens
the coinduction conclusion in the succedent of (1) from [, /p| to @[, V 0, /p].
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In order to find §,, ¢, and ¢, <= 1, are added to ¥ resp. AX when (1) is applied. The
succedent of (1) is modified accordingly:
(2) wp :> p
/\pt:>90€AX(¢Pt = ¢lg,/p | p € P])

If p is binary and AX includes congruence axioms for p, v, is also binary and we add

equivalence axioms for ¢, to AX:

qp<x,x>, Qp<xay> = Qp<yax>7 Qp<x7y> /\Qp<yaz> =4 qp<x,z>.
The demand for generalizing the goal 1, = p becomes apparent in the course of proving
the succedent of (2) when a subgoal of the form ¢, <= §, is encountered:

It 0, = 1, then the subgoal is an axiom and thus reduces to True. Otherwise ¢, <= 0, is
added to AX and the proof proceeds with an application of the following rule:

(3)

0p = Gy
/\pt:>g0€AX(5pt = QO[Qp/p | p e Pl])
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(Predicate coinduction)

Between the applications of (2) resp. (3), resolution steps upon the added axiom g, <= v,
must be confined to redex positions with positive polarity, i.e., the number of preceding
negation symbols in the entire formula must be even. Otherwise the axiom added when
(3) is applied might violate the soundness of the resolution steps.

Resolution upon ¢, at any redex position becomes sound as soon as the set of axioms for
qp is not extended any more.

By inferring True from the conclusions of (2) and (3) one shows, roughly speaking, that
the predicate 1, V 0, solves the axioms for p. Since p itself represents the greatest solu-
tion, we conclude v, V 0, = p, in particular the original goal v, = p.

Predicate coinduction allows us to prove properties of greatest predicates. If, however,
P’ consists of least predicates, then proving goals of the form v, = p amounts to simply
resolving them upon p.
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The recent approach called coinductive logic or co-logic programming [27, 61| has not
much to do with co/induction. It is rather co/resolution upon least resp. greatest predi-
cates on models consisting of finite or infinite terms. In contrast to the above co/resolution
rules, co-logic programming does not only resolve axioms upon (atoms of) the current
goal o, but also compares ¢ with all predecessors of ¢ in order to detect circularities
in the derivation. We claim that most results obtained due to this — rather inefficient —
inspection of the entire derivation would also be accomplished if the above co/induction
rules were used instead.
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Coinduction for proving equality
Let PP={~ssxs|seS}HYX=(S,F,P+P),
AX = {lz~y=for~y fyl|lf:e—e eF},

C be final in a full subcategory of Algy;, R be an S-sorted binary relation on C' and
be an S-sorted set of Y-formulas such that for all s € S, ¥¢ = R,. By Lemma MIN (1),

R C A¢ <= some X-congruence ~ contains R
<= the greatest X-congruence ~ contains R

<= the succedent of predicate coinduction is valid

for P', AX and v defined as above.
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KRRk Rk

Suppose that for all s € S, s-equality =4 s X s belongs to P, and AX is a set of co-
Horn clauses such that for all Y-algebras A satisfying AX, == {=2 | s € S} isa
Y-congruence.

Let vX be final in Algs 4x or gen(Algs; 1) (see Thm. RESFIN resp. ABSFIN). Then
—"* is the greatest Y-congruence on v that satisfies AX.

Let R be an S-sorted binary relation on v and for all s € S, ¥, : s X s be a X-formula
that describes Ry, i.e., Ry coincides with % > By algebraic coinduction, R C A,y if for
all s € S, Yv* C=">,
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[ Bounded functors }

Let «: A — F(A) be an F-coalgebra and B be a subset of A. If the inclusion mapping
inc: B — Ais a coAlgp-morphism from an F-coalgebra §: B — F(B) to « then (3 is
an F-invariant or F-subcoalgebra of a.

Theorem (|30, Prop. 4.2.4 (i)) Every union or intersection of F-invariants is an F-
invariant. Hence for all subsets of B of A there is a least F-invariant (B) : C' — F(C)
such that C includes B. 3

Let M be an S-sorted set. F : Set® — Set® is M-bounded if for all F-coalgebras
a:A— F(A)and a € A, [{a)s| < |My| (see [24], Section 4).

Let A be a cardinal number. A category Z is A-filtered if for each class £ of less than A
Z-objects there is a cocone {i — j | i € L} in Z and for all Z-objects 4,7 and each set
® of less than A Z-morphisms from ¢ to j there is a coequalizing Z-morphism h : j — k,

e, forall f,ge ® hof=hog.
A diagram D : 7 — K is AM-filtered if 7 is a A-filtered category.

A functor F': K — L is A-accessible if F' preserves the colimits of all A-filtered diagrams
D :T — K (see [9], Section 5.2).
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Theorem ([10|, Thm. 4.1; [11], Thm. V.4)

Let M be an S-sorted set. F': Set® — Set” is M-bounded if F is | M |-accessible. Con-
versely, Fis (|M| + 1)-accessible if F'is M-bounded. l:I

By [55], Thm. 10.6, or [24], Cor. 4.9 and Section 5.1, for each destructive signature
there is an S-sorted set M such that Hy is M-bounded (see Destructive-signature func-
tors).

Examples
By [55], Ex. 6.8.2, or |24, Lemma 4.2, Hps,(x,y) is X -bounded:
For all DAut(X,Y )-algebras A and a € Agqase,

(st) = {6 (a)(w), w e X*}

where 04*(a)(e) = st and for all z € X and w € X*, §*(a)(zw) = 6*(6%(a)())(w).
Hence [(st)| < | X*|.
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Hypaw(x,yy is (X7 x N)-bounded: For all NDAut-algebras A and a € Agge,
(st) = U{6"(a)(w), w e X"}

where a € A, 07 (a)(e) = {st} and 6 (a)(zw) = V{6 (st')(w) | st’ € §4(a)(z)}
for all z € X and w € X*. Since for all a € Agye and z € X, [6%(a)(z)] € N,
[(st)| < [X* x N[. If X =1, then X* x N = N and thus Hypay(1,y) is N-bounded (see
55|, Ex. 6.8.1; [24], Section 5.1). EI

A destructive signature > = (S, BS, F, P) is Moore-like if there is an S-sorted set M
such that for all f:s —e € F, e= s or e € BS. Then M is called the input of ¥.
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Lemma MOORE

Let X = (S, BS, F, P) be a Moore-like signature with input M and
F'={f:s—el|lee BS}

22 1s polynomial and thus Algs, has a final object A.

Let YV = [l cepe I [S| = 1, then X agrees with DAut(Ms,Y) and thus A =
Beh(Msg,Y'). Otherwise A can be constructed as a straightforward extension of Beh(Ms, Y
to several sorts: For all s € S and h € A;,

A = M; =Y,
forall f:s—e€F', f4h)=m,(h(c)) and for all f:s— s fA4(h) = Az w.h(azw).

A can be visualized as the S-sorted set of trees such that for all s € S and h € A;, the
root r of h has |M,| outarcs, for all f : s — e € F', r is labelled with f4(h), and for

all f: s — s and x € M,, f4(h)(x) = Mw.h(zw) is the subtree of h where the z-th
outarc of r points to. l:I
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Theorem MOORETAU

Let ¥ = (S, BS, F, P) be a destructive signature, M be an S-sorted set, Hy be M-
bounded and

Fr={f,:s—s"|secSYu{f:s—M|f:s—ecF}

Let ¥ = (S,BSU{M, | e € T(S,BS)},F',R) and 7 : Hsy — Hy, be the function
defined as follows: For all S-sorted sets A, a € Hyy(A)s and f:s —e € F,

mi(Tas(a)) = Fe(ms(a))(mp(a)).

T is a surjective natural transformation.

Proof. The theorem generalizes [24], Thm. 4.7 (i)=-(iv), from Set to Set®. a
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Theorem BFIN

Let ¥ = (S, BS, F, P) be a destructive signature, M be an S-sorted set, Hy be M-
bounded and the Y-algebra A be defined as follows: For all s € .S,

Ay = M; — H M.,

s
fis—eeF

and for all f:s—e € F and h € Ay,
FAR) = F. O hw.h(ww)) (x(h(e))).
A is weakly final and A/~ is final in Algs, where ~ is the greatest Y-congruence on A.

Proof. Let ¥ and 7 be defined as in Theorem MOORETAU. Let Y = [[ ., .ap cpr Me.
Since ¥’ is Moore-like, Lemma MOORE implies that the following >'-algebra B is final:

Forallse S, By = M =Y.
Forall f:s—e€ Fand h € By, f7’(h) = Ax. w.h(zw) and fP(h) = 7p(h(e)).
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Hence by Lemma WEAKFIN, A is weakly final:
For all s € S, Hf:s—>eEF M, =Y and thus A, = B..
Forall f:s—e€ Fand h € A,
fA(R) = F.(Az w.h(zw))(mp(h(e))) = Fo(Av.Mw.h(zw))(mp(h(e)))
= F.(fM)(fA(h) = Felmr(g1(h), ..., gu(W)) (7w pr(g1(R), . ., gu(R)))
= mf(Tas(g1(h), -, ga(h)) = Tp(Tas((g1, -, gu) () = f5(R)
where {g1,..., 9,y ={g? | g:5 — ¢ € F'}.

Hence again by Lemma WEAKFIN, A/~ is final in Algy, where ~ is the greatest -
congruence on A.

A direct proof of the existence of a final 3-algebra is given by [25], Thm. 3.5. EI
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Example
Let X = NDAut(X,Y), i.e., S = {state}, BS = {X, Y},
F = {6 : state — set(state)™, 3 : state — Y}

and P = (), and Mgy = X* x N. Hence M ei(stater = P (M)~ and My =Y. Since
Hy is M-bounded, Theorem BFIN implies that the following Y-algebra A is weakly final:

Astate = M"— Pﬁn(M)X x Y.
For all h € Ague and x € X, h(e) = (g,y) implies

(
FUNE) = Frugtareys A Aw h(mao) (s (h(€))) ()
= Fiistateyx AmAw.h(mw))(g)(x) = Fieystate) (An-Aw.h(mw))(g(x))
= {Fyae(AmAw.h(mw))(m) | m € g(x)}
= {dm. A w.h(mw))(m) | m € g(x)} = {w.h(mw) | m € g(x)},
BAh) = FyOa w.h(zw))(ms(he))) = Fy(Az w.h(zw))(y) = idy(y) = y.
Moroever, A/~ is final in Algy, where ~ is the greatest ¥-congruence on A, i.e., the
union of all S-sorted binary relations ~ on A such that for all h, h' € Agase,

hNh/ 1mphes 5A(h> Nset(state)X 5A( ) N 514( ) ~Y BAULI)?
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ie, forallz € X, h~h' h(e)=(g,y) and h'(¢) = (¢, y/) imply

V'm € g(x) In € ¢'(x) : Aw.h(mw) ~ Aw.h/(nw) A
Vnedg(x)Imeg(x): Awh(mw) ~  w.h'(nw) A y=1y.

Let F' = {f : state — state™, § : state — Py, (M)X, 3 : state — Y}
and ' = (S, {X,Y, M, Py, (M)*}, F', P).

A is constructed from the following ¥'-algebra B with Bgie = Astate (s€e the proof of
Theorem BFIN): For all h € Aggre, f2...(h) = dm. w.h(mw) and (62, BB)(h) = h(e).

state

Since X/ is Moore-like, Lemma MOORE implies that A can be visualized as the set of
trees h such that the root r of h has |M| outarcs, r is labelled with A(e) and for all
m € M, Aw.h(mw) is the subtree of h where the m-th outarc of r points to. [26],
Section 5, shows (for the case X =Y = 1) how these trees yield the quotient A/~. 1
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[ Adjunctions J

An adjunction is a quadruple (L, R, 7, €) consisting of functors L : K — L, R: L — K
and natural transformations n : Idx — RL and € : LR — Id, such that for each
JC-morphism f : A — R(B) there is a unique £-morphism f* : LA — B, called the
IC-extension of f, such that the following diagram commutes:

A M pra LA

RB B
or for each L-morphism g : L(A) — B there is a unique C-morphism ¢* : A — RB,
called the L-extension of g, such that the following diagram commutes:

B~ [IRB RB
A A

‘ # '
LA A
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Adjunctions

n is the unit (or inclusion of generators) and e the co-unit (or evaluation) of the
adjunction.

n exists if and only if € exists.
For all B € L, Reg ongp = i1dpp.

Hence by the uniqueness of KC-extensions,

ep = tdpp and for all f € K(A,B), Lf = (npo f)".

Forall A e K, epqa0Lnsg =idpa.

Hence by the uniqueness of L-extensions,

A = z'de and for all g € L(A, B), Rg = (g o ep)*.

L is the left adjoint of R. R is the right adjoint of L. We write L 4 R.

Left adjoints preserves colimits. Right adjoints preserves limits.
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Adjunctions

LR iff
K(_,R(_))and L£(_,L(_)) are naturally equivalent functors from K% x L to Set,

l.e.

)

eforall Ae K and B € L,
K(A,RB) = L(LA, B),
o for all f € (A", A) and g € L(B, B'), the following diagram commutes:
K(A', RB) = L(LA', B)

K(f, Rg) =dgef AR.(Rgoho f) L(Lf,g) =g | Ah.(gohoLf)

K(A, RB') ~ L(LA, B
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{ Examples of adjunctions L 1 R }

Identity functors are left and right adjoints
L =R = ldg.

Exponentials are right adjoints

A category K is Cartesian closed if K has a final object, binary products and for all
B € K there is an adjunction (L : K — I, R : K — K, 7, €) such that for all A € IC and
JC-morphisms f, L(A) = Ax B and L(f) = f x B.

For all A € K, R(A) is denoted by A® and called an exponential.

< C cPxB A A% B
A ‘

4 : *\ B

g g" x B \f\ ‘(f>
‘ Y
Ax B ch
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[Adjunctwn e.mmples}

Set® is Cartesian closed:

Let B be an S-sorted set.

e For all S-sorted sets A, R(C) = CF = Set”(B, A),

e For all S-sorted functions f: A — Cand g: B — A, R(f)(g) = fP(g) = foy.
e For all S-sorted sets C', e = A\(f,b).f(b).

e For all S-sorted sets A, 14 = Aa.Ab.(a,b).

e For all S-sorted functions g : A x B — C, g* = Ma.\b.g(a,b).

e For all S-sorted functions f: A — CP, f*= fom.
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[Adjunction emmples}

Products are right adjoints

Let I be an index set, IC be a category with I-indexed products,

o L : K — K! be the diagonal functor defined by L(A); = A for all K-objects and
JC-morphisms A and 7 € I,

e R: K — K defined by R((B))icr) = [[,c; Bi for all K!-objects and K!-morphisms
(Bi)ier-

1d4);
< (H B;)ic1 H B, A (ida) S H A=A (A
i el i |
A 1
<<gi>i€]>i€[ | <gi>i€] ‘ (fi)ie[
| Y
iel A H B; (Bj)ier
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@4dﬂwujunzexanuﬂe@

Coproducts are left adjoints

Let I be an index set, £ be a category with I-indexed coproducts,

e R : L — L be the diagonal functor defined by R(A); = A for all L-objects and
L-morphisms A and ¢ € I,

o L : L' — L defined by L((A)ier) = [[;e; Ai for all £'-objects and £/-morphisms
(Ai)ier-

(Zg>ie[
A

(9i)ict
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[Adjunctwn e.mmples}

Term adjunction (see The initial model of a flat constructive signature)

Let X = (S, BS, F, P) be a flat constructive signature, u: be initial in Algy, V be an
S-sorted set of variables,

F'={in,:Vy—s|seS} and X(V)=(S,BSUV,FUF' P).
The initial X(V')-algebra pX (V) is called the free ¥-algebra over V. The X-reduct of
pX(V) is denoted by Tx(V).

T5(0) = p> where () denotes the S-sorted V' with Vi =0 for all s € S
The elements of Tx(V') are called X-terms over V.

In the tree representation of a X-term, we identify each node labelled with ing, s € 5,
and its respective successor.
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[Adjunctwn e.mmples}

3 @
@ o

A X-term over {xg, x1, xo} with base elements by, by, *

202 of 373



[Adjunctwn e.mmples}

Let A be a X-algebra and ¢ be a valuation of V' in A, i.e., an S-sorted function from V
to A. Then there is a unique >-homomorphism ¢* : T5;(V') — A such that for all s € S
the following diagram commutes:

Az.ing(x)

Vs

Proof. A becomes a %(V)-algebra by defining in?' = g, for all s € S. Hence there is a
unique ¥(V')-homomorphism fold” from puX(V) to A.

Let h: Ty(V) — A be a ¥-homomorphism satisfying (1), i.e., for all s € S|
hs o Ax.ing(x) = gs.

Then for all z € Vi, h(in?z(v)(:ﬁ)) = h(ing(z)) = g(x) = in’(x), i.e., h is compatible
with F/. We conclude h = fold™. 3
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[Adjunctwn e.mmples}

Forall se Sand x € V, g*(ins(x)) = g(x).

Since ¢g* is X-homomorphic, for all f:e — s € F and (ty,...,t,) € Ty,
G(Ft, - t) =g (Pt 1) = FA g (), .., g ().

g* evaluates terms into algebra elements:

g* = fold" : Ts(V) — A takes a term t € uX(V), replaces each occurrence of a variable
x € V in t by the value g(x) and folds (“evaluates”) the resulting term into an element

of A.
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[Adjunctwn e.mmples}

B - e
$home g
g4 R

@ Gy © &y ©

FEvaluation of a YX-term w.r.t. the valuation g = \x;.a;
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[Adjunctwn e.mmples}

By the uniqueness of ¢*, the functor

Ty, : Set® — Algs
Vo= Tx(V)
h:V =V — {(Az.ing(z)ohs)* : Tx(V)s — Tx(V')s | s € S}

is the left adjoint of the forgetful functor Ug : Algs;, — Set®

and the following lemma holds true:

Lemma EVAL
For all S-sorted functions g : V' — A and X-homomorphisms h : A — B,

(hog)*=hog".

For all S-sorted sets V and s € S, nys = A\v.ing(x) (see (1)).

Let A be a Y-algebra. The co-unit ¢4 = id% : Ty (Us(A)) — A takes a term t with
“variables” in A and folds (“evaluates”) t into an element of A.
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[Adjunctzbn e.mmples}

Variety
Let ~ be a X-congruence on Tx(V).

A subcategory IC of Algy, is a Y-variety if for all A € IC and all S-sorted functions
g:V — Ug(A), g* factorizes through Tx(V)/~:

nat.
Vo Ug(To(V)) To(V) s Ty(V)
2
T * * //
g E(g ) g /// g**
Y AN
Us(A) A
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[Adjunction e.mmples}

Let Ae K and g:V — Ug(A) be an S-sorted function. If

~ is a subset of the kernel of g*, (3)

then ¢** is well-defined by ¢**([t|~) = ¢*(¢) for all t € Tx(V).

Since nat. is epi and predicate preserving, Lemma EMH (1) and the uniqueness of g*
imply that (3) is equivalent to the existence and uniqueness of ¢** with (2).

Hence, if Tx(V)/~ € K, then the forgetful functor from K to Set® has a left adjoint
with unit nat. o ny and extension g** of g.

Tx(V)/~ is called the free K-object over V.

In particular, 7%(0)/~ is initial in IC.

Birkhoff Theorem 1

A class of Y-algebras is a X-variety iff it is closed under the formation of subalgebras,
homomorphic images and products. l:l
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[Adjunctwn e.mmples}

Coterm adjunction (see The final model of a flat destructive signature)

Let ¥ = (5, BS, F, P) be a flat destructive signature, v3 be final in Algs, V be an
S-sorted set of covariables,

F'={outy,:s —V,|seS} and X(V)=(S,BSUV,FULF' P).
The final 3(V)-algebra v3(V') is called the cofree »-algebra over V. The Y-reduct of
v3.(V) is denoted by coTs (V).

coTy (1) = v where 1 denotes the S-sorted V' with V; =1 for all s € S.
The elements of Tx(V') are called -coterms over V.

In the tree representation of a »-coterm, we identify each node labelled with out,, s € S,
and its respective successor.
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[Adjunctwn e.mmples}

69(%"5 ~(%) ”
fz,i: feiig
G o o o
) G
/!

0'lo

f i /’ .
OEOSHIp.
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f

/

3113

O (@) (¢]

fii,  f

farig
O]

A X-coterm over {xg,...,x7} with base elements by, by, *

\
() oo«
7
1‘9,|9
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[Adjunctwn e.mmples}

Let A be a X-algebra and g be a coloring of A by V. i.e., an S-sorted function from
A to V. Then there is a unique X-homomorphism ¢” : A — coT% (V) such that for all
s € S the following diagram commutes:

Mt.t(out,
Vi = (out,) coTx (V)

Proof. A becomes a %(V)-algebra by defining out?! = g, for all s € S. Hence there is a
unique ¥(V')-homomorphism unfold” from A to vS(V).

Let h: A — coTx(V) be a ¥-homomorphism satisfying (1), i.e., for all s € S,
At.t(outs) o hy = gs.

Then for all a € Ay, out?™")(h(a)) = ha)(out,) = (At.t(out,))(h(a)) = g(a) = out(a),
i.e., h is compatible with F”. We conclude h = unfold”. a
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[Adjunctwn e.mmples}

For all s € S and a € A, g7 (a)(out,) = (M.t(out,))(g" (a)) = g(a).
Since g™ is ¥-homomorphic, for all f:s — e € F and a € A,

g"(a)(f) = f*(g"(a)) = ¢ (f(a)).

g" observes the behavior of algebra elements:

g = unfold® : A — coTx(V) takes a € A, unfolds a into the behavior ¢ of a and labels
(the root of each) subtree u of ¢ with the color g(b) of some b € A with behavior .
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[Adjunctwn e.mmples}

Observation of the behavior of ag w.r.t. the coloring g = \a;.x;
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[Adjunctwn e.mmples}

By the uniqueness of g7, the functor

coTs : Set® — Algs
V — COTE(V)
h:V — V' — {(hsoM.tlout,))” : coTs(V)s — coTs(V')s | s € S}
is the right adjoint of the forgetful functor Ug : Algs, — Set”

and the following lemma holds true:

Lemma COEVAL
For all S-sorted functions g : A — V and X-homomorphisms h : B — A,

(go h)* = g7 oh.

For all S-sorted sets V and s € S, ey, = At.t(outy) (see (4)).

Let A be a X-algebra. The unit 74 = z'djE c A — coTx(Us(A)) takes a € A and unfolds
a into the behavior (tree) of a.
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[Adjunctzbn e.mmples}

Covariety
Let inv be a Y-invariant of coTy(V).

A subcategory IC of Algy, is a Y-covariety if for all A € IC and all S-sorted functions
g:Us(A) — V, g factorizes through inv:

mce

V <—€V Us(cols(V))  coTx(V) %jnv
A ,
(5) -
g Us <g#> g# v :q##
Us(A) A
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[Adjunction e.mmples}

Let Ae K and g: Ug(A) — V be an S-sorted function. If

the image of g7 is a subset of inv, (6)

then ¢g## is well-defined by g% (a) = g% (a) for all a € A.

Since inc is mono and predicate preserving, Lemma EMH (2) and the uniqueness of g%
imply that (6) is equivalent to the existence and uniqueness of g## with (5).

Hence, if inv € IC, then the forgetful functor from IC to Algy, has a right adjoint
with co-unit ey o inc and extension ¢## of g.
1nv is called the cofree K-object over V.

In particular, if V' =1, then inv is final in /C.

Birkhoff Theorem 11

A class of Y-algebras is a X-covariety iff it is closed under the formation of subalgebras,
homomorphic images and coproducts. l:l
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[Adjunctzbn e.mmples}

Base extensions: Base algebras as base sets

Let ¥ = (8, BS", F', P') be a signature, > = (5, BS, F, P) be a subsignature of ¥ and
B be a Y-algebra.

For all e € T(S, BS), e € T(S"\ S) is obtained from e by replacing each sort s € S
with Bs. Let Fp={fp:ep— ey | f:e—e € F'}, Pr={pp:ep|p:ec P},

Yp = (5'\ S, BS'UB, Fg, Pg)

and op : > — Y5 be the signature morphism that maps s € S to Bs, s € §"\ S to s
and f € F'U P to fg. Then for all X g-algebras A and s € S,

Fp (A) = Bs ifse€ S,
(Alop)s = Fop(s)(A) = |
Fi(A) = A, otherwise.

Let Uy, denote the forgetful functor from Algsy to Algs,.

Let A be a ¥'-algebra and B = Ux(A). A yields a Xp-algebra Ay p that is defined as
follows: For all s € "\ S, As ps = As. Forall f e FFUP, gz’B’s = 4,

The op-reduct of Ay, p agrees with A: Ay |,, = A.
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[Adjunction e.mmples}

Let Xp be constructive and ;> p be initial in Algs,.

Us. has a left adjoint Lyy : Algy, — Algsy:
Ls/(B) is the op-reduct of u>p and called the free >'-algebra over B.

The unit 7 : Id — Usx Ly is defined as follows: For all b € B, np(b) = b.
The co-unit € : LyUs, — Id is defined as follows: For all >-algebras A,

4, A
€A Jold Z’C’(IC

Ly(C) — = wXcley —  Ascles
where C' = Us(A) and fold*®¢ is the unique Ye-homomorphism from uXe to Ay c.
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[Adjunction e.mmples}

Let 3(B) be destructive and v> 5 be the final ¥ p-algebra.
Us. has a right adjoint Rsy : Algs, — Algsy:

Ry/(B) is the op-reduct of v¥ 5 and called the cofree Y'-algebra over B.

The co-unit € : Uy Ryy — Id is defined as follows: For all b € B, ep(b) = b.
The unit n : Id — RsxyUs, is defined as follows: For all >'-algebras A,

-, A
fold™>:C|
A % RE/(C) = AZjC’O‘C o — - VEC‘(IC

where C' = Us,(A) and unfold®>¢ is the unique ¥p-homomorphism from Ay o to v¥p.
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{ Constructor-destructor transformations }

From constructors to destructors

Let X = (S, BS, F, P) be a constructive signature and A be the initial >-algebra.
By Lambek’s Lemma, the initial Hy-algebra

[fA]f:e—>s€F
—

a = {a,: Hy(A); A | se S}

(see Constructive-signature functors) is an isomorphism in Set®. Hence there are the
Hy-coalgebra

A
fa7l: A, 55 Hy(A), | s € S),
which corresponds to a coX-algebra where

coX = (S, {ds:s— H e|seS}tP)

fie—seF

is a destructive signature and for all f:e — s, d' o f* = Lf.
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[Constr'u,ctor—destmctor tmnsformatéons}

Suppose that ¥ is flat (see Constructive-signature functors). Then col is also flat —
provided that we regard the (finite-product) domains of the function symbols of F' as
additional sorts and their projections as additional destructors, i.e.,

coX = ( SUY,
{dszs—>]_[f:e_>seFe\s€S}U
{mi:e—e|le=e x---xe, €8, 1<i<n}
P)
where S ={e | f:e — s € F}.

Hence the elements of the final coX-algebra can be represented as ground coX-coterms,
i.e., (equivalence classes of) finitely branching trees of finite or infinite depth whose edges
are labelled with function symbols of coX..
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[Constmctm’-destructw tmnsformat?lons}

dso:fo
v
uf /CD\W‘2
ol e
dg1,fy dsi’fz

m Ly
g 2 e N
Tl'-l T[Z o Q
V4 \ 0 dgg fg

Figure 1. A ground coX-coterm t
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[Constmctor— destructor trans formations}

These trees are in one-to-one correspondence with ground Y-terms, i.e., trees whose nodes
are labelled with function symbols of X..

Figure 2. The unique infinite X-term obtained from t

Since infinite trees can be formalized as completions of infinite sequences of finite terms,
this observation illustrates the following well-known result:
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[Constr'u,ctor—destmctor tmnsformatéons}

The final coX-algebra is a completion of the initial >-algebra (see [12|, Thm. 3.2; [4],
Prop. 1V.2). H

Instead of presenting infinite terms as infinite sequences of finite terms we define the set
of finite or infinite (ground) X-terms directly as follows:

Ground >.-terms

Let T' be the greatest FT(S, B.S)-sorted set of partial functions
t:N*— FU{word, bag, set} U U BS

such that

e forall X € BS, Tx = X,

o for all s € S, if t € T}, then thereis f:e; X --- X e, — s € F such that t(e) = f,
for all 0 <47 < n, t(wi) € T, and for all ©+ > n, t(wi) is undefined,

e for all collection types c(s) € FT(S, BS), if t € T.,), then there is n € N such that
t(e) = ¢, for all 0 <i < n, t(wi) € Ty and for all i > n, t(wi) is undefined.
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[C()nstr'u,ctor—destmctor tmnsformatéom}

Let ~ be the greatest equivalence relation on 7" such that for all e € FT(S, BS), t,u € T,
and the lists ¢1,...,¢, and wuq,...,u, of maximal proper subtrees of ¢ resp. u, t ~ u
implies
ecc SUBS m=nandforalll<i<n,t ~u;,or
e c is a word type, m =n and for all 1 <i <mn, t; ~u,;, or
e ¢ is a bag type, m = n and there is a bijection h on {1,...,n} such that for all
I <1< n, t; ~ upg), or
e cisaset type, forall 1 <7 <mthereis1 <j <nwitht; ~u;andforalll <j <n
there is 1 <1 <n with ; ~ u;.
The elements of C'Ty, = T/~ are called ground Y-terms.

Of course, finite ground X-terms, which represent the elements of the initial Y-algebra
pY (see The initial model of a flat constructive signature), can be embedded into CT¥::

Let h : u¥ — CTy be defined as follows: For all f:e — s € F and (t,...,t,) € ude,
At ... 1) = O (h(t)), ..., h(t,)).

h is a Y-monomorphism. Hence we write f(t1,...,t,) for fC7=(¢1, ..., t,).
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[C()nstr'u,ctor—destmctor tmnsformatéom}

Suppose that for all s € .S, F' contains the constructor L, :1 — s. For all t € C'Tx;,
def(t) = {w € N* | t(w) is defined, t(w) # L}.

v € def () is the root position of the subtree Aw.t(vw) of t.

t is finite resp. infinite if def(¢) is finite resp. infinite.

A X-algebra A is w-continuous if its carriers are w-complete posets and if for all f € F,
£ is w-continuous (see CPOs, lattices and fixpoints).

wAlgy denotes the subcategory of Algs; that consists of all w-continuous X-algebras as
objects and all w-continuous X-homomorphisms between them.

C'Ty, is initial in wAlgy. ([23], Thm. 4.8)
Proof. A partial order on C'Ty; is defined as follows: For all s € S and t,u € C'Ty 4,
t<u g Ywedef(t): t(w) # L= t(w)=u(w).
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[Constructor—destructor tmnsfwmatz’onsj

The >-tree (), with
1y if w=c¢e,
tw) =gef :
undefined otherwise,
is the least element of CTy ¢ w.r.t. <.
Every w-chain {t; | ¢ € N} of X-trees has a supremum: For all w € N*,

p

ti(w) if 3 e N:w e def(t;) N tj(w) # L,
(Wienti)(w) =g < L ifdieN:wedef(t;) A\Nk>i:tp(w)=1,

undefined otherwise.

\

Hence C'T% is an w-CPO.

Forall f:e—seF, (t1,...,t,) € CTx, and w € N¥,

f if w=e¢,

CTs; w) =
Fo s )W) =de { ti(v) ifw=(i— 1.
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[Constmctm’-destmctw tmnsformationsj

T is w-continuous: Let e = ey x -+ X e,. Forall 1 <i < n, let {t;; | k € N} be an
w-chain of X-trees of type e;. Then for all w € N*,

if w=c¢
FET (Ukentig, - - - Ugentnp)(w) = { f }

(UkENti,k)(v) if w=1v
f if w=¢e
= Uren _ 0 = Uken [ (g, - ) (w).
tir(v) if w=1v
For the initiality of C'Ty, in wAlgy, consult [23], Thm. 4.15; [12], Thm. 3.2; or |4], Prop.
IV.2. 4

For all t € C'Ty and n € N, ¢|,, denotes the restriction of ¢ to positions of length less
than n: For all w € N*,

t(w) falls |w| < n,

t(w) falls |w| = n A t(w) € UBS,

1 falls jw| = n A t(w) € F U {word, bag, set},
| undefined otherwise.

Hence def (t|,,) is finite and ¢ = U,,ent|,..

(t]n)(w) =def
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[Constmctm’-destmctw tmnsformationsj

Completion Theorem

Let A be an w-CPO and f : Ty, — A be monotone. Then

g:CTy — A
f(t) falls def (t) endlich ist
-~ {I_lneNf(tn) sonst
is w-continuous. ¢ is X-homomorphic if A is an w-continuous Y-algebra and f is -
homomorphic.
Proof. See the proof of [23], Thm. 4.8. a

For all w-continuous X-algebras A, fold:,1 denotes the unique w-continuous X-homo-
morphism from CTyx. to A. For all t € C'Tk,,

fold™(t) = Upenfold(t],).

Hence by the Completion Theorem, folal::1 is w-continuous.
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[Constmctm’-destmctw tmnsformationsj

C'Ty, is a coX-algebra: For all s € S and t = f(ty,...,t,) € C'lx,
dS2(t) =aer (b5 tn), ).

C'Tx. is final in Alg.,y.

Proof.

Let A be a coX-algebra. An S-sorted function unfold” : A — CT is defined as follows:
Foralls € S,a€ A,,i € Nand w € N*, d}(a) = ((ay, ..., ay), f) implies

unfold”(a)(e) = f,
unfold(a)(iw) = {

unfold™(a; 1) (w) if 0 <i < n,

undefined otherwise.

unfoldA(a) is represented by the tree whose root is labelled with f and whose subterms
are given by unfold(ay), ..., unfold*(a,).

unfold” is coS-homomorphic: Let s € S, a € A, and d(a) = (a1, ..., a,), f). Then
A5 (unfold”(a)) = dS™=(f (unfold™(ay), . . ., unfold’(a,)))
= ((unfold™(ay), ..., unfold*(ay)), f) = unfold*((ar, ..., an), f) = unfold(d(a)).
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[C()nstfr"u,ctor—destmctor tmnsformatéons}

Let h: A — C'Tx, be a coX-homomorphism. Then
ds " (h(a)) = h(dX(a)) = h((ar, ..., an), f) = (h@), ..., h(an)), )
= ds ¥ (f(h(a), .. h(an))

and thus h(a) = f(h(ay), ..., h(ay,)) because 5™ is injective. We conclude that h agrees
with unfold™. 4

Hence there is a coX-isomorphism
h:CTy — vcoY
(see The final model of a flat destructive signature). h decomposes Y-terms:

Forall s € Sand t = f(t1,...,t,) € CTx,
h(t)(d,) = drS(h(t) = h(ds () = h((tr, ... . ta), f) = (A(tr), ..., hltn), f).

For instance, the coX-coterm shown in Figure 1 is the h-image of the »-term shown in
Figure 2.
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[Constmctor—destructw tmnsformatz’ons}

From destructors to constructors

Let ¥ = (5, BS, F, P) be a destructive signature and A be the final ¥-algebra.
By Lambek’s Lemma, the final Hy-coalgebra

<fA>f:eH5€F
a={as: Ay, ~ = Hxg(A)|seS}

(see Destructive-signature functors) is an isomorphism in Set®. Hence there are the
Hx-algebra,

f

{og' Hy(A)s = Ay | s € S},
which corresponds to a coX-algebra where
coX = (5, {cs: H e—s|seS} P)
fis—eeF
A

is a constructive signature and for all f:s — e, f1oc! = .
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[Constr'u,ctor—destmctor tmnsformatéons}

Suppose that Y is flat (see Destructive-signature functors). Then coX is also flat —
provided that we regard the (finite-coproduct) ranges of the function symbols of F as
additional sorts and their injections as additional constructors, i.e.,

coY = ( SUY,
{cs:Hf:S_)(iepeﬁs\SES}U
{ti:e, mwe—|e=e+---+e,€8, 1<i<n}
P)
where S'={e | f:s —e€ F}.

Hence the elements of the initial coX:-algebra can be represented as finite ground coX.-
terms, i.e., (equivalence classes of) finitely branching trees of finite depth whose nodes
are labelled with function symbols of coX..
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[Constmctor—destmctor tmnsformatéons}

®© &

Figure 3. A finite ground coX-term t
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[Constmctor— destructor trans formations}

These trees are in one-to-one correspondence with finite ground X-coterms, i.e., finite
trees whose nodes are labelled with function symbols of X..

f3’i3 f5,i5
f10 foig iz faig  foil

¢« 6 e o

Figure 4. The unique X-coterm obtained from t
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[C()nstr'u,ctor—destmctor tmnsformatéom}

peoXsis a Y-algebra: Forall s € S, t = co(vy (1), ooy ty,0,(tn)) € peoXsand 1 < k < n,
F) Zder La(te).
Since v is final in Algy, there is a coX-homomorphism
h : pcodX — v,
h decomposes Y-coterms:

Forall s € S, t =cs(epi(t1), .- tp,0,(tn)) € pcoXs and 1 < k < n,

R(E)(fie) = [EEE) = RUE) = Plegi(t) = g (B(t)).
img(h) consists of all finite ground Y-coterms.

For instance, the X-coterm shown in Figure 4 is the h-image of the coX-term shown in
Figure 3.
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[Constmctm’-destructw tmnsformat?lons}

Recursive Y-equations

Let ¥ = (S,BS, F, P) be a flat constructive signature and V' be an S-sorted set of
variables. An S-sorted function
E:V —-Tx(V)

is called a system of recursive Y-equations (see Constructive-signature functors).
Fisideal if forallz € V E(x) ¢ V.
Let A be a Y-algebra. E induces the step function
E AV — AV
g — g"oF

(see Term adjunction). A solution of F in A is a fixpoint of E4.

By Lemma EVAL, for all g € AY and ¥-homomorphisms h : A — B,
hoEalg) = Ep(hoyg). (1)

Let A be w-continuous. Then the partial orders, least elements and suprema of A are
lifted to AV as usually, i.e., AV is w-CPO. By [23|, Prop. 4.13, E, is w-continuous.
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[COnstm(JtOT-destructw tmnsformatz’onsj

Hence by Kleene’s Fixpoint Theorem (1),
Up(Ea) =af Unen Ef(Ax.L?) (2)

is the least solution of F in A.

For all w-continuous >-homomorphisms h : A — B,
holfp(Ea) = Ufp(Ep). (3)
Proof. By (1) and since h(L4) = L”, one obtains
hoEt(A\z. L) = Er(\x.LP)

for all n € N by induction on n. Hence (3) holds true because h is w-continuous. 3

Solution Theorem

Every ideal system E : V — Tx(V) of recursive Y-equations has a unique solution in
CT.
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[Constmctor—destmctor tmnsformatéons}

Proof. Let g : V' — C'Ix, be a solution of E in C'Ty,. Then
ol Eery) < g. (4)
Let n € N. By induction on n, it can be shown that for all x € V and w € N”,
w € def (g(x)) implies w € def (Egf) (2)(z))
(see [50|, Satz 17). Hence by (2),
w € def(g(x)) implies w € def (UnewEr, (2)(x)) = def (Yp(Eery)(x)

and thus by (4), def (g(z)) = def (Ifp(Ecr,)(x)). Consequently, (4) implies g = Ifp(Ecry. ).
J

Tx(V) is a coX-algebra:

o Forallz € V, E(z) = f(t1,...,t,) implies d. > (z) = ((t1, ..., ), f).
eforall f:e—se€ Fand(ty,...,t,) € Tx(V)e.,
d{E(X)(f(tla <. 7tn)> - ((tla s 7tn>7 f)

The Solution Theorem can also be concluded from the facts that CTy, and Tx(V) are
coX-algebras and CTy; is the final one:
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[C()nstfr"u,ctor—destmctm’ tmnsformations}

Lemma COSOL

Let h : V — CTx, be an S-sorted function. h* : Tx,(V) — CT¥ is coX-homomorphic iff
h is a solution of £ in C'Tx.

Proof.
“=": Let h* be coX-homomorphic, s € S, x € Vy and E(x) = f(t1,...,t,). Then
ds ™ (Eors (h) () = d (0 (B (@) = dS (0 (f (b, t)

= dSTE(F (R (8, - DA () = (1), o () ) = B (b b)) ()
= n*(ds>(2)) = dETEm(x)).

Hence {(Ecry.(h)(x), h(z)) }UAcr, is a coX-congruence and thus we conclude Eory (h)(x) =
h(z) by algebraic coinduction because C'Ty, is final in Alg.,y,. Hence h is a solution of E
n CTE

“«<" Let h be a solution of E in CTy,. Then for all x € V| Ecp (h)(z) = h(x) and thus
dCTE(ECTE(h)(x)) = dSCTE(h(x)). Hence by re-arranging the equations of (5), one obtains

WH(d ) (x)) = dT(h(x)). (6)
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[Constmctor— destructor trans formations}

Moreover, for all f:e — s € Fand (t,...,t,) € Tx,,
R (A=Y () = (b)), f) = (B7(E), - B (), f)
= dUE(f (), B () = ds (R (F ()

By (6) and (7), h* is coX-homomorphic. EI

(7)

Since there is exactly one coX-homomorphism from Tx(V) to CTy, Lemma COSOL
implies that there is exactly one solution of E in CTy: If there were two solutions
g,h : V — CTx, then ¢* = h* and thus ¢ = ¢* oincy = h* oincy = h. We conclude
that the Solution Theorem holds true.
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[ Recursion and corecursion J

Let ¥ = (5, BS, F, P) be a constructive signature, u> be initial in Algy,
IC = 11.cs Ks be a product category
and (L : Set” — K, R: K — Set® n,¢) be an adjunction.

A K-morphism f : L(u¥) — A is Y-recursive if the kernel of f# : u¥ — R(A) is
compatible with F'.

Lemma REC

f o L(uX) — A is Y-recursive iff R(A) is a Y-algebra and g% : u¥ — R(A) coincides
with foldR(A).

Proof. Lemma KER (1). a
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[C 0/ Recursion}

Let X = (S, BS, F, P) be a destructive signature, v¥ be final in Algsy,
IC = []scq s be a product category
and (L : K — Set”, R : Set® — K,n,¢€) be an adjunction.

A K-morphism f : A — R(vY) is Y-corecursive if the image of f* : L(A) — vX is
compatible with F'.

Lemma COR

f:A— R(X) is X-corecursive iff L(A) is a X-algebra and f* : L(A) — v¥ coincides
with unfoldL(A).

Proof. Lemma IMG (1). l:l

243 of 373



[ Conservative extensions }

Let ¥ = (5, F, P) be a signature, 3’ = (S’, F’, P') be a subsignature of ¥, AX be a set
Y-formulas, AX" C AX be a set ¥-formulas, A be a -algebra and B = Alsy.

Algs; 4 denotes the full subcategory K of Algs ax such that for all equality predicates
—exeof Pand A € K, =1 = A4. The objects of Algs, 4x are called X, AX-algebras
with equality.

Al gg v denotes the full subcategory K of Algs ax such that for all membership predi-
cates €: e of Pand A € K, €4 = A. The objects of AlgSAX are called X, AX-algebras
with membership.

Constructor extensions
Let 3 be constructive and p> and 3 be initial in Algs 45 resp. Algs 4y

A'is F'-reachable (or F'-generated) if fold” : > — B is surjective.
A is F'-consistent if fold? is injective.

(X, AX) is a conservative extension of (X', AX") if u¥ is F'-reachable and F’-consistent,
i.e. if uX|yy and p’ are isomorphic.
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[Conserv(ztz‘ve eattenséons}

Intuitively,
A is F'-reachable if each element of A is obtained by folding an element of puX';

A is F'-consistent if for each element a of A there is only one element of p that folds
nto a.

A is F'-reachable iff img(fold”) = B. (1)
Ais F'-consistent iff ker(fold”) = A,s.

Given a category IC of Y-algebras, the full subcategory of F-reachable objects of K is
denoted by gen(KC).

Lemma REACH
Let A be initial in Algxy, ax.
A is F'-reachable iff img(fold”) is a Y-invariant.

Proof. “=": Let A be F'-reachable. Then img(fold”) = B = A and thus img(fold”) is
a X-Invariant.
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[Conservative emtenséons}

“<=" Let img(fold®) be a Y-invariant. By Lemma MAX (1), A is the least Y-invariant
of A. Hence B = A C img(fold®) C B and thus by (1), A is F'-reachable. a

Lemma CONEXT

Let ¥’ be extendable to a (3, AX)-algebra C' with equality. Then (X, AX) is a conser-
vative extension of (X', AX").

Proof. Let fold® be the unique S-homomorphism from u¥ to C, A = uX/ker(fold®)
and B = Alsy. By Lemma KER (2), there is a unique -monomorphism h : A — C such
that (%) commutes:

1d¢
(1 Jo - C
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[Conservative emtenséons}

By Lemma NAT (4), A satisfies AX. Hence A € Algs 4y and thus B € Algs, . Let
fold? be the unique ¥’-homomorphism from pY’ to B.

oldB h|s

agrees with the identity on X' because X' is initial. Since id,,5y is epi, Lemma EPIMON
implies that hlsy is also epi. We conclude that p> and B are '-isomorphic and thus
(X, AX) is a conservative extension of (X', AX"). EI

Destructor extensions

Let ¥ be destructive and 3 and vX' be final in Algs 4y resp. Algs -

A is F'-observable (or F’-cogenerated) if unfold” : B — v¥ is injective.
A is F'-complete if unfold? is surjective.

(X, AX) is a conservative extension of (X', AX’) and F'\ I’ is derived from F if v¥
is F'-observable and F’-complete, i.e. vX|yy and vY are isomorphic.
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[Conserv(ztz‘ve emtenséons}

Intuitively,
A is F'-observable if for each element a of A, all unfoldings of a in v>' are the same;

A is F'-complete if each element of v>' is the unfolding of an element of A.

A is F'-observable iff ker(unfold®) = Ap. (3)
A is F'-complete iff img(unfold”) = v¥'.

Given a category KC of Y-algebras, the full subcategory of F-observable objects of K is
denoted by 0bs(/C).

Lemma OBS
Let A be final in Algs, ax.

A is F'-observable iff ker(unfold®) is a Y-congruence.

Proof. “=" Let A be F'-observable. Then ker(unfold”) = Ap = A, and thus
ker(unfold®) is a Y-congruence.

248 of 373



[Conservative emtenséons}

“<=" Let ker(unfold”) be a Y-congruence. By Lemma MIN (1), Ay is the greatest
S-congruence on A. Hence Ap C ker(unfold®) C Ay = Ap and thus by (3), 4 is
F'-observable. EI

Lemma DESEXT

Let v¥' be extendable to a (3, AX)-algebra C' with membership. Then (3, AX) is a
conservative extension of (X', AX").

Proof. Let unfold® be the unique S-homomorphism from C to v¥, A = img(unfoldc)
and B = Aly. By Lemma IMG (2), there is a unique ¥-epimorphism h : C' — A such
that (%) commutes:

unfold®

Q
Y
R

|

A (%)

mc

A
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[Conservative emtenséons}

By Lemma INC (3), A satisfies AX. Hence A € Algs v and thus B € Algy, /. Let
unfold® be the unique ¥-homomorphism from B to uY.

hlsy unfoldB
H

v =Cly = B 234

agrees with the identity on ¥’ because v is final. Since id, s is mono, Lemma EPIMON
implies that h|ys is also mono. We conclude that v¥" and B are >'-isomorphic and thus
(¥, AX) is a conservative extension of (¥, AX"). -
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{ Abstraction (under construction!) }

Let 3 = (S, F, P) be a constructive signature, ¥’ = (S, F, () and p>) be initial in Algsy.

Lemma REFL
Let h: A — B be a X-homomorphism that preserves all p : e € P, i.e.,

p? = {a € A, | h(a) € pP},
e=]l,crex € T(S,BS) and ¢ : e € Foy, be a negation-free X-formula.

[f ¢ does not contain universal quantifiers, then

h(p) C ", (1)
If A is epi, then
hH(e") C ™. (2)
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Proof of (1) by induction on the size of .

Let p:ee P,z €V, W.lo.g. we assume that r is unary.

Abstraction

Fert)d o tAf) ert o tBho /)L htA(F) e rB & ho f € r(t)P.

felpnrv)t=g"nut = hofe Ny =(pAy
felpvy=ptuygt B hofe Uy =(pv )~

fe @zt & Jac A, upd(f,z,a) € pt

£ dac A, :upd(ho f,z,h(a)) = houpd(f, z,a) €
= 3be By :upd(ho f,x,b) € pP & ho fe (Fup)>.
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Abstraction

Proof of (2) by induction on the size of .

Let r € R, s € Sand z € V. W.l.o.g. we assume that r is unary.
ho fert) o htA(f) """ Bho f)erB & tA(f)ert & fer@®
hofe(pn)f=gp mpB;» feetnyt=(pny)t

hofe(pv)P=pBUgP =2 feptuy=(pv)h
hofe (Fxp)’ & Fbe B, :updlho f,x,b) € P
hepZHaGA houpd(f,z,a) =upd(ho f,z, h(a)) € P
EIaEAS:upd(f,x,a)Ecp & f e (Fwp)t
hofe (Vxp)? & Vbe B,:upd(ho f,x,b) € o
=VacA,:houpd(f,z,a) =upd(ho f,z ha)) € ©°
L VacA upd(f,z,a) € o & fe€ (Vop)t a

253 of 373



Abstraction

Abstraction with a least congruence

Let AX consist of V-free Horn clauses such that for all A € Algsy ax, —4 s a ¥-
congruence, and C' = [fp(u>' 3, AX).

Then ~ = =% is the least Y-congruence on u'.

Let K = Algs 4 By Lemma NAT, C'/~ € K.

Let A € K. We define B € Algs, as the fold*-pre-image of the interpretation of R in A,
ie., forall r:w e R,

rB =g {b € uXl, | fold*(b) € r}.

Use induction on N and Kleene’s Fixpoint Theorem (or transfinite induction and Zer-
melo’s Fixpoint Theorem ?7777) to show that foldA extends to a >-homomorphism!
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Abstraction

B satisfies AX and thus B € Algs ax.

Proof. Let o = (r(ty,...,t,) < ) € AX and g € ¥®. By Lemma REFL (1), foldtog €
4. Since A satisfies ¢, foldA og€r(ty,....tn)4 ie.,

(fold*(tP(g)), ..., fold*(tE(g))) "™ =" (1 (fold™ o g), ..., t2(fold" o g)) € 1.

Hence (t2(g),...,t5(g)) € rP and thus g € r(t1,...,t,)". a

Theorem ABSINI '/~ is initial in K.

Proof. Since C'is the least D € Algsy ax with D]y = p¥’, we obtain C' < B. In
particular,

~ = =C C =B = {(t,u) € (uX?| fold™(t) =* fold*(u)}

= ker(fold?)

because =4 = Ay. Hence h : C/~— A is well-defined by h o nat.. = fold™* o id sy
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C——=C/~
id,,sy h
Y Y
B YRa A
fold

Since nat., is epi and predicate preserving and fold” o id,sv is 2-homomorphic, Lemma
EMH (1) implies that A is also X-homomorphic.

Let A’ be any >-homomorphism from C'/~ to A. Since B|py = BA is initial in Algy,
h' o nat. = h o nat. and thus h’' = h because nat. is epi. EI
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Abstraction

Abstraction with a greatest congruence

Let AX consist of co-Horn clauses such that for all A € Algs, ax. =4 is a Y-congruence,
C = gfp(pX 2, AX) and ~ = =Y be a Y-congruence on puY’. Hence C €

gen(Algs ax).
Let K = gen(Algs 4x). By Lemma NAT, €'/~ € K.

Let A € K. We define B € Algs, as the fold*-pre-image of the interpretation of R in A,
ie., forallr:w € R,

rB =g {b€ uxl, | fold*(b) € r}.

Use induction on N and Kleene’s Fixpoint Theorem (or transfinite induction and Zer-
melo’s Fixpoint Theorem ?777) to show that fold” extends to a Y-homomorphism!
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Abstraction

B satisfies AX and thus B € gen(Algs ax).

Proof. Letr € R, ¢ = (r(ty,...,t,) = ) € AX and g € r(ty,...,t,)”. Hence
(tB(9),...,t5(g)) € rP and thus

(t(fold" o g), ..., t(fold* o g)) "™ =" (foldA (1 (g)), . .., fold(t5(g))) € .

Hence fold® o g € r(ty,...,t,)* Since A satisfies @, fold* o g € ¥*. Since A is %-
reachable, fold” is epi and thus Lemma REFL (2) implies ¢ € 7. a

Theorem ABSFIN '/~ is final in gen(Algs 4x).

Proof. Since C'is the greatest D € Algs ax with D|py, = uX', we obtain
B < C'. In particular,

ker(fold") = {(t,u) € (u¥)* | fold*(t) =" fold(u)} = =P C =0 = ~
because =4 = A 4.

Hence for all t,u € uY’, fold®(t) = fold(u) implies t ~ u. Since A is S-reachable, fold”
is epi and thus for all a € A there is t € puX' with fold(t) = a.
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Abstraction

Hence h : A — C'/~ is well-defined by h o fold” = nat.. o id,sy.

1d4
Jold™
id, sy h
Y Y
C—C/~
nat .

Since fold? is epi and predicate preserving and nat. o id,sy 18 2-homomorphic, Lemma
EMH (1) implies that h is also X5 ~homomorphic.

Let h' be any »-homomorphism from A to C'//~. Since B|py = v is initial in Algsy,
W o fold! = h o fold! and thus b’ = h because fold” is epi. 0
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{ Restriction (under construction!) }

Let X = (S, F, P) be a destructive signature, ¥/ = (S, F,0) and v¥’ be final in Algsy.

Lemma PRES

Let h: A — B be a X-homomorphism that preserves all p € P, i.e.,
p" = h(p?)

and ¢ be a negation-free >-formula.

[f ¢ does not contain universal quantifiers, then

fept implies ho fe P (3)

If A is mono and for all atomic subformulas r(tq,...,t,) of ¢, t1,...,t, are variables,
then

g € QOB implies 3 f < QOA :ho f = free(p) Y- (4)
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Restriction

Proof of (3) by induction on the size of .
Let r € R, s € Sand z € V. W.l.o.g. we assume that r is unary.
Fert)d o tAf) ert o tBho /)L htA(F) e rB & ho f € r(t)P.
felpnp)t=prnyt B hofepPny? = (pAy)P.
felpv)=ptuyt = hofey uwB (o V)P,
fe @zt & Jac A, upd(f,z,a) € pt
t Jae A, upd(h o f,z, h(a)) = houpd(f,z,a) € ©?
= 3be By :upd(ho f,x,b) € pP & ho fe (Fup)>.
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Restriction

Proof of (4) by induction on the size of .
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Let r€ R, s €S and x € V. W.l.o.g. we assume that r is unary.
ger(z)? & glz)er? & Jacrt:hla)=g(z)
& 3feAt flzm)er'Ahof=p9 © Ffer(z) hof =) 9
ge (@A) =P NyP B 3 feptihof —pupgAIf €Vt ihof =g
"EY Jfey ﬂw“‘-hOf = free(p)Ufree(w) 9
& 3fe@NY hof =peony) 9-
ge (V)P "L I fe(pv)hof=g.
c (Fwp)? < Ibe B, :upd(g,z,b) € P
L 3be BT f et hof =puy upd(y, x,b)
= 3 feAY :Fac A upd(f,z,a) € o ANho f =pee(oia) 9
= 3 fe@Fep)! i hof =pemmn) g
c Vop)? & Vbe B;:upd(g,z,b) € P
LVbeB, I fept hof =pu upd(y, z,b)
hmOnOEIfEAX VaeAs:upd(f,z,a) € P Ao f =pee(onia) 9
= 3 f e Vap):ho f =puy) 0. a

263 of 373



Restriction

Restriction with a greatest invariant

Let AX consist of co-Horn clauses r(t1,...,t,) = 1t such that for all A € Algs ax,
c? is a Y-invariant, ty,...,t, are variables, free(v) C {t;,...,t,} and ¥ is V-free and
membership compatible. Let C' = gfp(v>', 2, AX). Then inv =€ is the greatest Y-
invariant of >’

Let K = Algs 4y By Lemma INC, inv € K.

Let A € K. We define B € Algy, as the unfold”-image of the interpretation of R in A,
e, forall r € R,

rB = def unfoldA(TA>.
Use induction on N and Kleene’s Fixpoint Theorem (or transfinite induction and Zer-
melo’s Fixpoint Theorem ?777) to show that unfold” extends to a Y-homomorphism!
B satisfies AX and thus B € Algy, ax.
Proof. W.lo.g. let o = (r(z1,...,2,) = ¢¥) € AX and g € r(x1,...,2,)". Hence

.....

some f € AX. Hence f € 9* because A satisfies ¢, and thus by Lemma PRES (1),
unfold® o f € P, Therefore, free(v)) C {xzy,. .., z,} implies g € 7. W
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Theorem RESFIN inwv is final in IC.

Proof. Since C'is the greatest D € Algs, ax with D]y = v¥', we obtain B < C. In
particular,

img(unfold®) = {unfold*(a) | a € A} = {unfold*(a) | a € €}
= 8 C €Y = inw

because €= A. Hence h : A — inv is well-defined by inc o h = id,sv o unfold™.

1nU e -
A A
h vd,yy
A yia B
unfold

Since inc is mono and predicate preserving and ¢d,,yvo unfoldA is X-homomorphic, Lemma,
EMH (2) implies that h is also 3-homomorphic.

Let A’ be any Y-homomorphism from A to inv. Since Blyy = v/ is final in Algsy,
inco h' =inco h and thus A’ = h because inc is mono. a
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Restriction

Restriction with a least invariant

Let AX consist of Horn clauses r(t1, ..., t,) <= 1 such that for all A € Algs ax, cdisa
Y-invariant, free(r(t;,...,t,)) C free(1)), ¢ is membership compatible and for all atomic
subformulas p(uq, ..., uy) of ¥, uy, ..., u, are variables. Let C' = [fp(v>', ¥, AX) and
inv =€ be a Y-invariant of vY. Hence C € obs(Algs ax).

Let K = obs(Algs 4x). By Lemma INC, inv € K.

Let A € K. We define B € Algy, as the unfold*-image of the interpretation of R in A,

e, forall r € R,
rB = def unfoldA(TA>.

Use induction on N and Kleene’s Fixpoint Theorem (or transfinite induction and Zer-
melo’s Fixpoint Theorem ?7777) to show that unfoldA extends to a Y-homomorphism!
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B satisfies AX and thus B € obs(Algs ax).

Proof. Let ¢ = (r(t1,...,t,) = 1) € AX and g € ¥P. Since A is L-observable, unfold”
is mono and thus Lemma PRES (2) implies g =jee(y) unfold” o f for some f € 1A, Since
A satisfies o, f € r(ty,...,t,)" and thus (£'(f),...,t2(f)) € 4. Hence

(tP (unfold™ o f), ..., t2(unfold” o f))
B (unfold  (1(f)), .. ., unfold (t1(f))) € rP

and thus unfold® o f € r(ty,...,t,)%. Therefore, free(r(ts,...,t,)) C free(s)) implies
ger(ty,... t,)5 a

Theorem RESINI inv is initial in obs(Algs 4y ).
Proof. Since C'is the least D € Algs, ax with D|sy = v we obtain C < B.

267 of 373



Restriction

In particular,

inv = € C €8 = {unfold*(a) | a € €} = {unfold*(a) | a € A}
= img(unfold™) (%)

because €4 = A. Since A is Y-observable, unfold” is mono and thus for all a,b € A,

unfold*(a) = unfold*(b) implies @ = b. Hence by (x), h : inv — A with h(b) =
(unfold™®)~1(b) for all b € inv is well-defined. Therefore, unfold” o h = id,sy o inc.
ld*
unfo B

A A

h 1d,sy

v — ~C

inc

Since unfold” is mono and predicate preserving and id,syoinc is S-homomorphic, Lemma
EMH (2) implies that h is also ¥-homomorphic.

Let A’ be any Y-homomorphism from inv to A. Since B|py = BA is final in Algsy,
unfold® o b/ = unfold” o h and thus k' = h because unfold” is mono. l:l
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{ Definitions by co/recursion, extension, abstraction or restriction

Notational conventions

Let ¥ = (S, BS, F, P) is a constructive resp. destructive signature.
(X resp. v denotes the initial resp. final object of Algs.

We simply write f for the interpretation of f € F'in ud resp. v,

The only argument of a function with domain 1 is omitted.
For instance, 0 stands for 0(x), nil stands for nil(x).
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[ Natural numbers

S = {nat},
F = {zero:1— nat, succ:nat — nat},
F' = {pred: nat — 1+ nat},

Nat = (S, F,0),

coNat = (S, F', ().

o Forall A € Set®, Hyu(A)na = Heonvar(A)par = 1+ Apar.
o Nat,, = N.

e zero =0 and for all n € N, succ(n) =n+ 1.

o vcoNatpgy = N =4, NU {00}

( * if n =0,

eforalln e N predin)=<¢ n—1 ifn>0,

00 if n = oo.

\
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(Natural numbers)

1.1 Recursion and currying: Addition on N

The function plus : N x N — N satisfies the equations

~—
—_
~—

plus(zero,n) = n

—~
DO
~—7

plus(succ(m),n) = succ(plus(m,n))

Define K = Set and for all A € Set, L(A)pa = Anat X N and R(A),ur = AN ..

By (2), the kernel of plus? : N — NN is compatible with succ:

plus®(m) = plus(n)
= plus™ (succ(m)) = i.plus(succ(m), i) = Mi.succ(plus(m,i)) = Ni.succ(plus™(m)(i))
= Ni.succ(plus™(n)(i)) = M.suce(plus(n,i)) = Ni.plus(succ(n),i) = plus™ (succ(n)).

Hence plus is Nat-recursive and thus by Lemma REC, plus™ agrees with foldNN where

N = I,
sued = A n.(f(n) +1).
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The validity of (1) and (2) is equivalent to the commutativity of (3):

1+ N 0, sucd >N
1+ plus® (3) plus?
1+ NY S\
[ONN, suchN]

1.2 Corecursion and coproduct: Addition on N U {oco} (see [33])
The function plus : N’ x N’ — N’ satisfies the equations
pred(plus(0,0)) = x
n # 0 = pred(plus(0,n)) = id(pred(n))
m # 0 = pred(plus(m,n)) = plus(pred(m),n)

Define K = Set? and for all A, B € Set, L(A, B)ut = Apat + Bpat and
R<A)nat — (Anata Anat)-

A/~ /N /
W N
N N N~
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Let Q@ = N x N+ N. By (1)-(3), the image of (plus,id)* = [plus,id] : Q@ — N is
compatible with pred.

Hence (plus,id) : (N'x N N') — (N'|N) is coNat-corecursive and thus by Lemma COR,
[plus, id] agrees with unfold? where for all m,n € N/,

)
* ifm=n=020,

(0,n—1) iftm=0AneN\ {0},
\ (m—1,n) if m e N\ {0},
pred®(n) = pred(n).

N\

pred®(m,n) =

The validity of (1)-(3) is equivalent to the commutativity of (4):
pred

N’ ~1+N
A A
[plus, id] (4) 1 + [plus, id]
—1+
© pred? ©
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1.3 Recursion and product: Factorial numbers (see [28|)
Let n € N. The function fact : N — N satisfies the equations
(fact,id)(zero) = (1,0)
(fact,id)(succ(n)) = (fact(n)* (id(n)+1),id(n)+ 1) (2)

Define K = Set? and for all A, B € Set, L(A),at = (Apat, Anat) and
R(A, B)nat — Anat X Bnat-

—~
(N
SN——

By (1) and (2), the kernel of (fact,id)* = (fact,id) : N — N x N is compatible with
(fact(m),id(m)) = (fact,id)(m) = (fact,id)(n) = (fact(n),id(n))
= (fact,id)(m + 1) = (fact(m + 1),id(m + 1))
= (fact(m) % (id(m) + 1),id(m) + 1) = (fact(n) * (id(n) + 1),id(n) + 1)
= (fact(n +1),id(n + 1)) = (fact,id)(n + 1).
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Hence (fact,id) : (N,N) — (N,N) is Nat-recursive and thus by Lemma REC, (fact, id)
agrees with fold™N where

0NN = (1,0),

succVN = Xm,n).(mx (n+1),n+1).

The validity of (1) and (2) is equivalent to the commutativity of (3):

1+N 0, suc ~ N
1+ (fact,id) (3) (fact,id)
Y
I1+NxN =N x N
[ONXN7 SU,CCNXN]
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1.4 Recursion and product: Fibonacci numbers (see [28])
The function fib : N — N satisfies the equations
fib(zero) = 0
fib(succ(zero)) = 1
fib(succ(succ(n))) = fib(n) + fib(succ(n))
Again, these equations do not imply that the kernel of fib is a Y-congruence.

We regard the composition fib o succ as a further function fit' : N — N and transform
the above equations into a mutually recursive definition of fib and fib":

(fib, fit)(zero) = (0,1)
(fib, fib')(succ(n)) = (fib'(n), fib(n) + fib'(n)) (2)

Define K = Set? and for all A, B € Set, L(A)nat = (Apat, Anat) and
R(A, B)nat — Anat X Bnat-

—~
Do
SN——
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By (1) and (2), the kernel of (fib, fib")* = (fib, fib") : N — N x N is compatible with
(fib(m), fib'(m)) = (fib, fib’)(m) = (fib, fib)(n) = (fib(n), fib'(n))
= (fib, fib") (succ(m)) = (fib(succ(m)), fib'(succ(m))) = (fit"(m), fib(m) + fib'(m))
= (fib'(n), fib(n) + fit'(n)) = (fib(succ(n)), fib"(succ(n))) = {fib, fib') (succ(n)).

(n
Hence (fib, fib") - (N,N) — (N, N) is Nat-recursive and thus by Lemma REC, {(fib, fib")
agrees with fold™N where

0NN = (0,1),

succ N = X(m,n).(n,m +n).

The validity of (1) and (2) is equivalent to the commutativity of (3):

1+N Osued
+(ﬁ@f%3l (3) jU%LﬁU>
L+ N x N N N
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1.5 Recursion and currying: Replication

Let X be a set. The function repl : N x X — X* satisfies the equations

~
—_
~—

repl(zero,e) = nil

—~
DO
~—

repl(succ(n),e) = cons(e,repl(n,e))

where nil = nglrListX)

Define K = Set and for all A € Set, L(A)py = A x X and R(A), = A~

and cons = cons"*X) (see Lists and Streams).

Let Z = (X*)*. By (2), the kernel of repl” : N — Z is compatible with succ:
repl™ (m) = repl”(n)
= repl™ (succ(m)) = Ae.cons(e, repl” (m)(e)) = Ae.cons(e, repl(m, e))
= Ae.cons(e,repl(n, e)) = Xe.cons(e, repl” (n)(e)) = repl” (succ(n)).
Hence repl is Nat-recursive and thus by Lemma REC, repl™ agrees with fold? where
07 = e,
succ? = Af.de.(e: f(e)).

278 of 373



(Natural numbers)

The validity of (1) and (2) is equivalent to the commutativity of (3):

1+ N 0, sucd >N
1+ repl# (3) repl?
1+Z -7
(07, succ?]

1.6 Corecursion and identity: Length of a colist

Let X be a set. The function length : X*° — N’ satisfies the equations

pred(length(e)) = * (1)
s € X* = pred(length(x:s)) = length(s) (2)
s € XN = pred(length(s)) = length(s) (3)

Define I = Set and L = R = Idg.

279 of 373



(Natural numbers)

By (1)-(3), the image of length is compatible with pred. To see this, complete length to
an S-sorted function h with h,. = length and hy = id;. Then (1)-(3) imply

pred(h(e)) = * = h(x),

s€ X* = pred(h(x:s)) = h(s),

s€ XN = pred(h(s)) = h(s),

i.e., the image of A is compatible with pred.

Hence length is coNat-corecursive and thus by Lemma COR, length agrees with unfold™ b
where for all s € X,

( .
* if s =,

pred® (s) =< & if s =x:5 for some x € X and s € X*,
\ Mn.s(n+1) if s € XN,

280 of 373



(Natural numbers)

The validity of (1)-(3) is equivalent to the commutativity of (4):

NP
A
length (4) 1+ length
X =14+ X
pred™
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[ Lists and streams J

Let X be a set.
S = {list},
F = {nil : 1 — list, cons : X x list — list},
F' = {split : list — 1+ (X x list)},
F" = {head : list — X, tail : list — list},
List(X) = (S, F,0),
coList(X) = (S, F',0),
Stream(X) = (S, F",0).

e For all A € Set?,
H Lz’st(X)(A)list =H coLz’st(X)(A)list =1+ X x Ay and HStrea7n(X)(A>list = X X Ajist.
o (1 List( X ) = X
e nil = e and for all z € X and s € X*, cons(x,s) =x:s.
o vcoList( X )jst = X
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e For all s € X,

* if s =,

split(s) = ¢ (x,5) fdeeX, §deX¥ . s=ux:9,
(5(0), An.s(n + 1)) if s € XM,

\
o vStreamyg = XN,
o For all s € XN, head(s) = s(0) and tail(s) = An.s(n + 1).

2.1 Constructor extension: Replication

In 1.5 we have shown that there is a unique interpretation in puList(X) of an additional
constructor repl : N x X — [ist such that the corresponding extension of pList(X)
satisfies the equations (1) and (2) of 1.5.

Let 3 = (S, F U {repl},{=: list x list}), ¥’ = (S, F U {repl},0) and AX be a set of
>-Horn clauses such that for all A € Algs ax, =4 is a Y-congruence, and AX includes
(1) and (2) of 1.5.
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Let A = Ifp(3, pX', AX). By Theorem ABSINI, A/=% is initial in Algs sx- Since the ini-
tial List(X)-algebra with equality can be extended to a (3, AX )-algebra with equality, we
conclude from Lemma CONEXT that (¥, AX) is a conservative extension of (List(X), ).

2.2 Recursion and identity: Length of a finite list
The function length : X* — N satisfies the equations
length(nil) = 0
length(cons(x,s)) = length(s) + 1
Define IC = Set and L = R = Id g.;.

~—~
o =

By (2), the kernel of length is compatible with cons:

length(s) = length(s')
= length(cons(x, s)) = length(s) + 1 = length(s') + 1 = length(cons(zx, s')).

Hence length is List(X )-recursive and thus by Lemma REC, length agrees with fold™
where nil™ = 0 and cons® = \(z,n).n + 1.
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The validity of (1) and (2) is equivalent to the commutativity of (3):

14X x x+_milcons] v
1+ X x length (3) length
Y Y
1+ X xN — N
[nil™, cons™]

2.3 Destructor extension: Length of a colist

In 1.6 we have shown that there is a unique interpretation in vcoList(X) of an additional
destructor length : list — nat + 1 such that the corresponding extension of vcoList(X)

satisfies the equations (1)-(3) of 1.6.
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Let ¥ = (S, F' U {length},{€: list}), X' = (S, F' U {length},()) and AX be a set of
>-co-Horn clauses such that for all A € Algy ax, 4 is a Y-invariant, and AX includes
the following co-Horn clauses:

Clist (s) = (length(s) = 0= split(s))
Cist (s) = (length(s) =n+1= Fx, s : (split(s) = (x,s") Alength(s') =n))
Cust (8) = (length(s) =+ = 3z, 5" : (split?(s) = (x,s') A length(s') = *).
Let A = gfp(2, vy, AX). By Theorem RESFIN, €4 is final in Algs 4x- Since the final
coList(X )-algebra with membership can be extended to a (X, AX)-algebra with mem-

bership, we conclude from Lemma DESEXT that (X, AX) is a conservative extension of
(coList(X),0).

2.4 Recursion and currying: Concatenation of finite lists

The function conc : X* x X* — X* satisfies the equations

~—~
[ —
SN——

conc(nil,s) = s

—~
(N
N—

conc(cons(x,s),s') = cons(x,conc(s,s'))
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Define K = Set and for all A € Set, L(A);iss = At X X* and R(A)jy = As} .
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Let Z = (X*)*". By (2), the kernel of conc™ : X* — Z is compatible with cons:
conc™(s) = conc?(s')
= conc’ (cons(z, s)) = \s".conc(cons(z, s),s") = \s".cons(z, conc(s, s"))
= \s".cons(x, conc™ (5)(s")) = Xs".cons(z, conc (s')(s"))
= \s".cons(z, conc(s', s")) = \s".conc(cons(x, s'), s") = conc” (cons(z, s)).

Hence conc is List( X )-recursive and thus by Lemma REC, conc® agrees with fold? where
nil? = Xs.s and cons? = Xz, f).\s.cons(z, f(s)).

The validity of (1) and (2) is equivalent to the commutativity of (3):

. [nil, cons] .
1+ X x X - X
1+ X x conc” (3) conc?
X x 7 7
I+ X X -
[nil?, cons?|
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2.5 Corecursion and coproduct: Concatenation of colists (see [33])

The function conc : X x X*° — X satisfies the equations

~—
—_
~—

split(s) = * A split(s') = x = split(conc(s,s’)) = *
split(s) = * A split(s') = (x,s") = split(conc(s,s")) = (x,
split(s) = (x,s") = split(conc(s,s")) = (
Define K = Set? and for all A, B € Set, R(A)s = (Ajist, Aist) and
L(A, B)iist = Alist + Blist.
Let Q = X x X* + X By (1)-(3), the image of (conc,id)* = [conc,id] : Q — X
is compatible with split: Let h = [conc, id].

id(s")) (2)

x, conc(s”, s')) (3)

split(s) = = N\ split(s') = x = split(h(s,s’)) = % = h(x),
split(s) = = A split(s') = (z, ")
= split(h(s, s)) = (z,h(s")) = (h(x), h(s")) = h(z, s"),
split(s) = (x,s") = split(h(s,s")) = (z,h(s",s")) = (h(x),h(s",s")) = h(zx, (s",s)),

i.e., the image of h is compatible with splut.
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Hence (conc,id) is coList(X )-corecursive and thus by Lemma COR, (conc,id) agrees
with unfold? where for all s, s € X
(

* if split(s) = split(s’) = x,
(z,(s,8")) if split(s) = = A split(s') = (x, "),
\ (x, (", 8") if split(s) = (x,s"),

split?(s) = split(s).

split?(s,s') =

7\

The validity of (1)-(3) is equivalent to the commutativity of (4):

split
X~ -1+ X x X%
A
[conce, id] (3) 1+ X X [conc,id]
1+ X X
© split? ©
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2.6 Recursion and identity: Folding a finite list from the right

Let Abeasetand Z = (X xA— A) — A— A
The function foldr : X* — (X x A — A) — A — A satisfies the equations

foldr(nil)(f)(a) = a
foldr(cons(e, s))(f)(a) = [(e, foldr(s)(f)(a))
Define I = Set and L = R = Idg..

~~
N
~ ~—

By (2), the kernel of foldr is compatible with cons:
foldr(s) = foldr(s')
= foldr(cons(x,s)) = Af.Xa.f(e, foldr(s)(f)(a)) = AfXa.f(x, foldr(s")(f)(a))
= foldr(cons(x,s")).

Hence foldr is List(X )-recursive and thus by Lemma REC, foldr agrees with fold? where
forall f: X xA—A ac€A x€ X and g € Z,

nil”(f)(a) = a,
cons”(z, 9)(f)(a) = As.g(f)(a)(z:s).
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The validity of (1) and (2) is equivalent to the commutativity of (3):

14+ X x x+ b eons] .
1+ X x foldr (3) foldr
1+ X xZ -7
[nil?, cons?|

2.7 Recursion and identity: Filter a finite list
Let Z = (X — 2) — X*. The function filter : X* — Z satisfies the equations
filter(nil)(f) = nil
filter(cons(x,s))(f) = if f(x) then filter(s)(f) else x: filter(s)(f) (2)
Define IC = Set and L = R = Id g.;.

—~
o
~—
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By (2), the kernel of filter is compatible with cons:
filter(s) = filter(s')
= filter(cons(z,s)) = Af.if f(x) then filter(s)(f) else x: filter(s)(f)
= A\f.if f(x) then filter(s')(f) else x: filter(s")(f) = filter(cons(x,s')).

Hence filter is List(X )-recursive and thus by Lemma REC, filter agrees with fold? where
forall f: X — 2,2 € X and g € Z, nil?(f) = nil and cons? = XNz, g). \f. s.g(f)(x:5).

The validity of (1) and (2) is equivalent to the commutativity of (3):

[nil, cons]

1+ X x X* .
1+ X X filter (3) filter
1+ X xZ — 7
[nil?, cons?|
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2.8 Corecursion and coproduct: A blinker

Suppose that on, off € X. The functions blink : 1 — X" and blink’ : 1 — X" satisfy
the equations

(head, tail)(blink) = (on,blink’)
(head, tail)(blink") = (off,blink)

Define K = Set? and for all A, B € Set, R(A)iist = (Aist, Alist)
and L<A7 B)list - Alist + Blist~

Let @ =1+ 1. By (1) and (2), the image of (blink, blink')* = [blink, blink'] : Q — XN
is compatible with head and tail.
Hence (blink, blink’) - Q — (XY, XN) is Stream(X)-corecursive and thus by Lemma
COR, [blink,blink] agrees with unfold? where (head?,tail?)(x,1) = (on, (x,2)) and
(head®, tail?)(x,2) = (off, (x,1)).

~—~
N
~ ~—
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The validity of (1) and (2) is equivalent to the commutativity of (3):
(head, tail)

XN “ X x XN
[blink, blink'] (3) X x [blink, blink']
Q - X X Q

(head®?, tail?)

fAz,y} — XN with f(z) = blink and f(y) = blink’ solves the set {x = cons(1,y), y =
cons(0,x)} of Stream-equations (see Recursive Y-equations).

2.9 Corecursion and coproduct: Alternation of successors and squares (see

28])

The functions nats : N — X~ and squares : N — X" satisfy the equations

—~
[ —
SN—

(head, tail)(nats(n)) = (n,squares(n))
(head, tail)(squares(n)) = (n*mn,nats(n + 1)) (2)
Define K = Set? and for all A, B € Set, R(A)us = (Ajist, Aist) and

(N}
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Let @ = N+ N. By (1) and (2), the image of
(nats, squares)* = [nats, squares] : Q — X
is compatible with head and tail.

Hence (nats, squares) : (N, N) — (X", XY} is Stream-recursive and thus by Lemma
COR, [nats, squares] agrees with unfold¥ where for all n € N,
(head®, tail?)(n,1) = (n,(n,2)) and (head®, tail®)(n,2) = (n *n, (n +1,1)).

The validity of (1) and (2) is equivalent to the commutativity of (3):
(head, tail)

X" - X x X"
A A

(nats, squares] (3) X X [nats, squares]
Q =X xQ

(head®?, tail?)
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2.10 Corecursion and coproduct: Insertion into a stream (see [65])
The function insert : X x XY — XN satisfies the equation
(head, tail)(insert(x, s)) = if © < head(s) then (x,s) else(head(s),insert(x,tail(s)))

Analogously to 1.3, this equation does not imply that the image of insert is compatible

with head and tail. Hence we transform them into equations for insert and the identity
on XN:
(head, tail)(insert(z,s)) = if © < head(s)
then (z,id(s)) else (head(s),insert(z,tail(s))) (1)
(head, tail)(id(s)) = (head(s),id(tail(s))) (2)

Define K = Set? and for all A, B € Set, R(A)jis = (Aist, Atist)
and L<A7 B)list - Alist + Blist-

Let Q = (X x XN 4+ XN By (1)-(3), the image of
(insert, id)* = [insert,id] : Q — X"

is compatible with head and tail.
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Hence (insert,id) : (X x XN, XN) — (XN XN is Stream-corecursive and thus by
Lemma COR, [insert,id] agrees with unfold® where for all e € X and s € XV,

(head(s), (z,tail(s))) otherwise,
(head®, tail®)(s) = (head(s), tail(s)).

(head®, tail®)(z, s) = { (z,5) if e < head(s),

The validity of (1)-(3) is equivalent to the commutativity of (4):
(head, tail)

X" =X x X"
linsert, id] (4) X X linsert, id]
Q =X X Q

(head®?, tail?)
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2.11 Corecursion and coproduct: Exchange stream elements (see [65])

The function exch : XY — XY which exchanges each two consecutive elements of a
strem, satisfies the equations

head(exch(s)) = head(tail(s))
(head, tail)(tail(exch(s))) = (head(s),exch(tail(tail(s))))
Analogously to 1.4, we regard the composition tail o exch as a further function
exch’ : XN — XN
and transform the above equations into a mutually recursive definition of exch and exch’:

(head, tail)(exch(s)) = (head(tail(s)),exch'(s)) (1)
(head, tail)(exch'(s)) = (head(s), exch(tail(tail(s))))) (2)

Define K = Set? and for all A, B € Set, R(A)jist = (Asist, Asist) and
L<A7 B)list - Alist + Blist~

Let Q = XN+ XY, By (1) and (2), the image of (exch, exch’)* = |exch,exch’] : Q — XN
is compatible with head and tail.
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Hence (exch,exch’) « (XN, XNy — (XN XN} is Stream-recursive and thus by Lemma
COR, [exch, exch] agrees with unfold? where for all s € XN,

(head®, tail?)(s,1) = (head(tail(s)), (s,2)) and

(head®, tail?)(s,2) = (head(s), (tail(tail(s)),1)).

The validity of (1) and (2) is equivalent to the commutativity of (3):
(head, tail)

XM - X x X"
A A

lexch, exch/] (3) X X lexch,exch’]
Q - X X Q

(head®?, tail?)
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(Lists and streams)

2.12 Corecursion and coproduct: Flatten a cotree

Let T = vcoTree(X) (see Labelled trees). The functions flatten : T — X and flattenl :
T — X satisfy the equations

split(flatten(t)) = (root(t), flattenL(subtrees(t))) (1)
split(ts) = x = split(flattenL(ts)) = * (2)
split(ts) = (u, us)

= split(flattenL(ts)) = (root(u), flattenL(conc(subtrees(u), us)) (3)

where conc : T x T — T is defined as in 2.5.

Define K = Set? and for all A, B € L, R(A)jist = (Ajist, Asist) and
L(A7 B)list — Alist + Blz’st-

By (1)-(3), the image of
(flatten, flattenL)” = [flatten, flattenl] : T + T — X

is compatible with splat.
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(Lists and streams)

Hence (flatten, flattenL) : (T, T>) — (X, X*) is coList(X)-corecursive and thus by
Lemma COR, [flatten, flattenL] agrees with unfold’ 1" where for all t € T and ts € T,

split’ 1 (t) = (root(t), subtrees(t)),

. if split(ts) = *,
split! V17 (ts) = {* i split(ts) = =

(u,us) if split(ts) = (root(u), conc(subtrees(u), us)).

The validity of (1)-(3) is equivalent to the commutativity of (4):

lit
X e — 14X x X
A
[flatten, flattenL) (4) 1+ X X [flatten, flattenl]
T+ 7> I+ X x (T4 T™
split’ 1 ( )
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(Lists and streams)

2.13 Recursion and identity: Subtrees

Let Z = (vcoBintree(X ) — vcoBintree(X)) (see Destructive signatures). The function
subtree : 2° — Z

satisfies the equations

subtree(nil)(t) =
fork(t) = (u,e,u’) = subtree(cons(0, s)
fork(t) = (u,e,u’) = subtree(cons(1,s)
Define IC = Set and L = R = Id g.;.
By (1)-(3), the kernel of subtree is compatible with fork.

~—~
NI
~—_— ~——

(t) = subtree(s)(u)
(t) = subtree(s)(u')

~— ~——
—
w
~——

Hence subtree is List(2)-recursive and thus by Lemma REC, subtree agrees with fole
where for all s € 2%, f € Z and t € vcoBintree(X),

nil? = id,

consZ(b, £)(t) — { f(u) itb=0and fork(t) = (u,e,u'),

f(u') if b=1and fork(t) = (u,e,u).
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(Lists and streams)

The validity of (1)-(3) is equivalent to the commutativity of (4):

. [nil, cons] .
1+2x2 -2
142 x subtree (4) subtree
1+2x Z —Z
[nil?, cons?|
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[ Labelled binary trees }

Let X be a set.

S = {btree},
F = {empty : 1 — btree, join : btree x X x btree — btree},
F' = {split : btree — 1 + (btree x X X btree)},
F" = {root : btree — X, left, right : btree — btree},
Bintree(X) = (S, F,0),
coBintree(X) = (S, F',0),
Infbintree(X) = (S, F",0).

e For all A € Set?,
HBirztr’ee(X)(A)btree — HcoBz'ntree(X)(A>btree = 1+ Aptree X X X Appree and
H]nfbmtree(X)(A)btree - Abtree X X X Abtree-

o i Bintree( X )pree = T where T is the least set of expressions such that 1. € T and
forallz € X and t,u € T, z(t,u) € T.

e empty = 1L and for all x € X and t,u € T, join(t,z,u) = x(t,u).

306 of 373



[Bma,ry trees}

o vcoBintree( X )pree = T where T" is the set of partial functions ¢ : 2* — X such that
for all w € 2%,

o if ¢(w0) is defined, then ¢(w) is defined,

o if ¢(wl) is defined, then ¢(w0) is defined.
o Forallt € TV,

, if t =,
split(t) =
(Aw.t(0w), t(e), Aw.t(lw)) otherwise.

o vinfbintree( X )ptree = X 7
o For all t € X2, root(t) = t(e), left(t) = Mw.t(0w) and right(t) = \w.t(1w).

3.1 Recursion and product: Check balancing (see [21])
Let T" = pBintree(X )pree. The functions depth : T — N and bal : T — 2 satisfy the
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equations

(height, bal)(empty) = (0, True) (1)
(height,bal)(join(t,x,u)) = (max(height(t), height(u)) + 1,
bal(t) A bal(u) A height(t) = height(u)) (2)
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[B mary trees}

Define K = Set? and for all A, B € Set, L(A)pree = (N,2) and
R(A, B)btree - Abtree X Bbtree-

By (1) and (2), the kernel of
(height, bal)* = (height,bal) : T — N x 2
is compatible with join.

Hence (height,bal) : (T,T) — (N, 2) is Bintree( X )-recursive and thus by Lemma REC,
(height,bal) agrees with fold"** where

empty™*? = (0, True),

join™% = \((m,b),z, (n,c)).(max(m,n) +1,b Ac Am =n).
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The validity of (1) and (2) is equivalent to the commutativity of (3):

i
T X X T [empty, join] .

~

1 + (height, bal) (3) (height, bal)

<~

Y
Z,
X
O

1+ (Nx2)x X x (Nx2) empty ™. join™
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[Bma,ry trees}

3.2 Corecursion and identity: Mirror a tree (see [31, 46])
Let T' = vcoBintree(X )pree. The function mirror : T — T satisfies the equations
split(t) =« = split(mirror(t)) = * (1)
split(t) = (u,x,u’) = split(mirror(t)) = (mirror(u'), z, mirror(u)) (2)
Define IC = Set and R = L = Idg..
Extend mirror to the constant types X and 1. Then (1) and (2) read as follows:
split(t) = x = split(mirror(t)) = * = mirror(x),
split(t) = (u, z,u’)
= split(mirror(t)) = (mirror(u’), mirror(x), mirror(u)) = mirror(v', x,u),
Hence the image of mirror is compatible with split.

Hence mirror is coBintree( X )-corecursive and thus by Lemma COR, mirror agrees
with unfold’ where for all t € T,

l'tT(t) * if t = (),
spli =
P (Aw.t(lw), t(e), \w.t(0w)) otherwise.
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[Bma/ry trees}

The validity of (1) and (2) is equivalent to the commutativity of (3):

split
P —1+T x X xT
mirror (3) 1 + mirror x X x mirror
T T —1+T x X xT
split
Since T is a final algebra, properties of mirror! like mirror! omirror! = idy are shown

by algebraic coinduction (see, e.g., [46]).
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[Bmary trees}

3.3 Destructor extension: Subtrees

In 2.13 have shown that there is a unique interpretation in vcoBintree(X) of an additional
destructor subtree : 2* — (btree — btree) such that the corresponding extension of
vcoBintree(X) satisfies the equations (1)-(3) of 2.13.

Let ¥ = (S, F' U {subtree’ : btree — (2* — btree)}, {€: btree}),
Y = (S, F' U {subtree'},0) and AX be a set of ¥-co-Horn clauses such that for all
A € Algs ax, e is a Y-invariant, and AX includes the following co-Horn clauses:

Eptree (t) = subtree(t)(e) =t,
Eptree (1) = (split(t) = (u, x,u’) = subtree’(t)(0:w) = subtree’(u)(w)),
Eptree (1) = (split(t) = (u, x,u’) = subtree’(t)(1:w) = subtree’ (u')(w)).

Let A = gfp(Z,vY, AX). By Theorem RESFIN, €4 is final in Algs 4x- Since the
final coBintree( X )-algebra with membership can be extended to a (3, AX)-algebra with
membership, we conclude from Lemma DESEXT that (3, AX) is a conservative extension

of (coBintree(X), ).
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[Bma/ry trees}

3.4 Least Restriction: Finite trees, EF and AF (see [46])
Let X = (S, F', {finite, EF, AF'}) and AX be a set of X-Horn clauses such that for all
A € Algs ax, e is a Y-invariant. Moreover, let AX include the following axioms:
finite(t) < split(t) = *x V (split(t) = (u, x,u’) A finite(u) A finite(u’))
EF(P)(t) < split(t) = (u,z,u) A (P(x) \/EF( J(u) vV EF(u))
AF(P)(t) < split(t) = (u, z,u') A (P(x) V (AF(P)(u) N AF(u')))
where P is a predicate variable.

Let A = Ifp(Z, veoBintree, AX). By Theorem RESINI, €4 is initial in obs(Algs 4y ),
the category of F’-observable ¥-coalgebras B such that B satisfies AX and €® = B.
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[Bma/ry trees}

3.5 Greatest Restriction: Infinite trees, AG and EG (see [46])
Let ¥ = (S, F', {infinite, AG, EG}) and AX be set of ¥-co-Horn clauses such that for

all A € Algs ax. e is a Y-invariant. Moreover, let AX include the following axioms:
infinite(t) = 3 u,x,u : split(t) = (u, z,u') A (infinite(u) V infinite(u'))
AG(P)(t) = FJu,z,u : (split(t) = (u,z,u) = (P(x) N AG(P)(u) N AG(P)(u')))
EG(P)(t) = Ju,z,u : (split(t) = (u,z,u') = (P(x) N AG(P)(u) N AG(P)(u')))
where P is a predicate variable.

Let A = Ifp(vcoBintree, ¥, AX). By Theorem RESFIN, € is final in AlgSAX, the cat-
egory of Y-algebras B such that B satisfies AX and €® = B.
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[ Labelled trees (from 4.2 under construction!) }

Let X be a set.
S = {tree,trees},

F = {join: X X trees — tree, nil : 1 — trees,
cons : tree trees — trees},
F' = {root : tree — X, subtrees : tree — trees,
split : trees — 1+ (tree x trees)},
Tree(X) = (S, F,0),
coTree(X) = (S, F',0).

o For all A € Set”, Hoyooxt)(A)tree = Hootree () (A)ree = X X Aprees
and H 7o (x)(A)irees = HooTree(x) (A trees = 14 (Apree X Aprees)-

o 1 Tree( X )yee = T and pTree( X )ipees = T where T is the least set of expressions
such that for all x € X and ts € T*, x € T and x(ts) € T.

o nil =€
and for all x € X, t € T and ts € T*, join(x,ts) = x(ts) and cons(t,ts) =t : ts.
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o veoTree( X )pee = T and veoTree( X )yrees = (T7)>° where T" is the set of partial
functions ¢ : (NU {w})* — X such that for all w € (NU {w})" and i € N,

e i(¢) is defined,

o if ¢(w0) is defined, then t(w) is defined,

o if t(w(i + 1)) is defined, then t(wi) is defined,

o if t(ww) is defined, then for all ¢ € N, t(wi) is defined.
e For all t € T", root(t) = t(e) and

* if t =0,

Ai. A \w.t(iw) otherwise.

subtrees(t) = {

e For all ts € (T")>,

lit(ts) if ts =e,
split(ts) =
P (ts(0), Ai.ts(i + 1)) otherwise.

317 of 373



4.1 Recursion and identity: Flatten a finite tree (see [28]|)

The functions flatten : pTree(X )yee — X* and flattenL : pTree(X )rees — X ™ satisfy
the equations

—
—_
~—

flatten(join(x,ts)) = x:flattenL(ts)
flattenL(nil) = nil
flattenL(cons(t,ts)) = flatten(t)++flattenL(ts)

Define I = Set and L = R = Idg..

—~
W DO
~— ~—

Since S = {tree, trees}, flatten and flattenL provide the tree- resp. trees-component of
an S-sorted function flatten’ : pTree(X) — (X*, X*).

By (1)-(3), the kernel of flatten is compatible with join and cons.

Hence flatten’ is Tree( X )-recursive and thus by Lemma REC, flatten’ agrees with fold™"
where join® = Xz, s).(x:5), nil® = € and cons® = \(s,s).(s++5")).
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The validity of (1)-(3) is equivalent to the commutativity of (4) and (5):

join
X X pTree(X)yrees —— pTree( X )ree

X X flattenL flatten
X x X* — X"
join®
(nil, cons]

+ (Ltree(X) x pTree(X )irees)

— 1 Tree( X )irees

1 + (flatten x flattenL) (5) flattenL

1+ (X" x X*) — X*

. * *
(nil*", cons™’]
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4.2 Least restriction: Cotrees with finite outdegree

Let AX be given by the following Horn clauses over coTree:

Etree(t) < Eprees(subtrees(t))
Erees(ts) < [z, ylsplitlts = [x]p V
(HQS, y}split]ts — [?J]p A Etree<7rl <p>> A Etr'ees<ﬂ_2 <p>))
AX satisfies the assumptions of Restriction with a least invariant. Hence inv = clfp(AX)

is initial in 0bs(Algeomree Ax ), the category of coTree-observable coTree-coalgebras A such
that A satisfies AX and €4 = A.

4.3 Destructor extension: Flatten a cotree

We have shown that there is a unique interpretation in vcoList(X) of additional de-
structors flatten : tree — list and flattenL : trees — list such that the corresponding
extension of vcoTree satisfies the equations (1)-(3) of 2.12.

Let coTree’ = coTree U {flatten, flattenL}. By Lemma DESEXT (1), coTree’ is a con-
servative extension of coTree.
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Let C = {flatten, flattenL}. vcoTree' is isomorphic to the coTree’-coalgebra
B =45 Tree opree. o BA) of C-colored coTree-trees over BA (see Colored Y-trees).

By, can be represented as the set of partial functions
t:N*%XXBh'St
(see 2.3) such that t(e) is defined and for all w € N* and i € N,

o if t(wi) is defined, then t(w) is defined,
o if t(w(i+ 1)) is defined, then t(wi) is defined.

By, ces can be represented as the union of By and the set of partial functions
ts N — Btree X Blist

such that ts(0) is defined and for all i € N, if ¢s(i + 1) is defined, then ¢s(i) is defined.
With respect to this interpretation, the destructors of coTree’ are interpreted as follows:
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For all t € Byyee and ts € Byyees,
root?(t) = m(t(e)),
subtreesB(t) = Ni.\w.t(iw),
flatten®(t) = my(t(e)),

4B * if ts € Blisty
split®(ts) =
(71(ts(0)), Ai.ts(i + 1)) otherwise,
t if ¢ S Bis )
flattenLP(ts) = ° s list
mo(ts(0)) otherwise.
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Let AX be given by the coTree’-formulas

Etreclt) = Eprees(subtrees(t))

Cirees(ts) = Ciutreextrees( ||y 2]split]ts)
EtreextreesP) = EtreeT1P)) N Etrees(m2(p))
Eweet) = I p: (y, z]split|flatten(t) = [z]p N m1{p) = root(t) A
mo(p) = flattenL{subtrees(t))) (4)
Emees(ts) = I p,q: ([ly, z]splitlts = [ylp A [y, z]split] flattenL(ts) = [ylq) V
A p,q: ([ly, z|splitlts = [z]p A [[y, z|split]flattenL(ts) = [z]qg N
mi(q) = root(m(p)) A
mo(q) = flattenL{conc(subtrees(m (p)), m(p)))) (5)

AX consists of inverse Horn clauses over coTree’ that satisfy the assumptions of Restric-

A~ —~
W DN
~— —— ~—

tion with a greatest invariant. Hence gfp(AX) = B. Let inv = &5,

For all ¢,t" € invyee,

ﬂattenB(t) + ﬂattenB(t’) implies u?(t) # uP(t') for some u € ObS oTree tree- (6)
For all ts,ts’ € inviyees,

flattenL® (ts) # flattenL”(ts') implies u”(ts) # u®(ts') for some u € ObS coTree trees- (7)

Proof.
Since B satisfies (4) and (5), inv satisfies the conclusions of (4) and (5) or, equivalently,
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the equations (1)-(3) of 2.12. Hence t € invye. iff
flatten® (t) = (rootB(t), flattenL” (subtrees®(t))), (8)
and ts € 1NUyees 1ff for all u € By and us € Byyees,

splitB(ts) = * implies split®(flattenL” (ts)) = ,
splitB(ts) = (u, us)

implies flattenL”(ts) = (root?(u), flattenL” (conc® (subtrees®(u), us))).

[t is easy to see that

® ObS orrec tree = {0bSy, | w € N*} where obs. = {[0]root} and for all w € NT,
obs,, = [0 - obsL,,|subtrees,

® ObS o Tiee trees = {00sLy, | w € NT} where for all i > 0 and w € N*,
0bs Lo, = [0, [10 - obsp]m]split and 0bsLi, = [0, [10 - 0bsL;_1),|ms]split,
e for all t € By and w € N*,
obsB(t) = t(w) if t(w) is defined, and obsB(t) = * otherwise,
o for all ts € Bjyees, © € N and w € NT,
obsL;,(ts) = ts(i)(w) if ts(i)(w) is defined, and obsL;,(ts) = * otherwise.

(10)

(11)

(12)
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By (8)-(10) and the definition of B, for all t € invyee, ts € iNVees and s € By,
flatten®(t) = s < V n € domain(s) : t(leafPos(t)(n)) = s(n),

flattenLP(ts) = s < YV n € domain(s) : ts(i)(w) = s(n) where leafPosL(ts)(n) = iw,

and thus by (11) and (12),

flatten®(t) = s < V¥ n € domain(s) : ObsleafPos( Hm (&) = s(n), (13)
flattenL”(ts) = s < ¥V n € domain(s) : obsLﬁaﬂDOSL 1)) (E8) = s(n), (14)

where leafPos(t)(n) and leafPosL(ts)(n) are the positions of the n-th leaf of ¢ and ts,
respectively.

Haskell code for leafPos : Biee — N — N* and leafPosL : Biyees — N — NT:

(11) . leafPoss
(11) . leafPossL

leafPos
leafPosL

leafPoss :: B_tree -> [[Int]]
leafPoss t = if null ts then [[]] else leafPossL ts
where ts = subtrees t

leafPossL :: B_trees -> [[Int]]
leafPossL ts = if null ts then [] else concatMap g [0..length ts-1]
where g i = map (i:) $ leafPoss $ ts!!i
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Let t,t' € Biyee and s,8 € By such that ﬂattenB(t) =5 #£ 5 = ﬂattenB(t’). Let
domain(t) # domain(t’). Then there is w € N* such that t(w) is defined and t'(w) is
undefined. Hence by (11), obs?(t) = t(w) and obs?(t') = *, and thus (6) is valid for
u = obs,. Let domain(t) = domain(t’). Then domain(s) = domain(s’) and there is

s
n € domain(s) such that s(n) # s'(n) and for all i < n, s(i) = §'(¢). By (13),

ObsiafPos(t)(n) (t) - S(n) 7é S/(n) - ObSleafPos t)( (t/) ObsleafPos( t)(n )(t/)

Hence (6) is valid for w = 0bSeatpos(t)(n)-

Let ts,ts' € Byrees and s, s’ € By such that flattenL” (ts) =s # s = flattenL” (ts'). Let
domain(ts) # domain(ts’) or domain(ts(i)) # domain(ts'(i)) for some i € domain(ts) =
domain(ts’). Then there are i € N and w € N* such that ¢s(i)(w) is defined and ¢s'(7)(w)
is undefined. Hence by (12), obsL? (ts) = ts(i)(w) and obsL? (ts') = *, and thus (7)
is valid for t = obs;,. Let domain(ts) = domain(ts’) and for all ¢ € domain(ts),
domain(ts(i)) = domain(ts'(i)). Then domain(s) = domain(s’) and there is n €
domain(s) such that s(n) # s'(n). By (14),

ObsgafPosL(ts)(n) (t5> - S(”) 7é SI(”) = ObsﬁafPosL(ts’)(n) (tsl) - ObsﬁafPos(ts)(n) (tsl)°
Hence (7) is valid for w = 0bseqposits)(n)- M

Let €4 = vcoTree. Then A satisfies AX. Hence A € Alg€©
DESEXT (2), (6) and (7) imply €7 | 7.0 = vcoTree.

coTree AX and thus by Lemma
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{ Monads and comonads }

A monad (or algebraic theory in monoid form) in K is a triple M = (T, n, )
consisting of a functor 7' : K — K and natural transformations n : Idx — T (unit) and
p:TT — T (multiplication) such that the following diagrams commute:

nd’ I'n pd
T—— TT<—"—T TTT —TT
T
idy B idr . a
Y Y Y
T T —T
]

Let A, B € K. Forall f: A — B, the extension f*:T(A) — B is defined as pug o T(f).
Conversely, 11 = id}( )

A monad in K is a monoid in the category KN with functors as objects and natural
transformations as morphisms.
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(Monads and comonads)

In Haskell, M is defined in terms of return = n and bind : T(A) — (A — T(B)) —
T(B). (also denoted by >>=): Forallt € T(A) and f: A — T(B),

bind(t)(f) = ps(T(f)(t)) = f*(1).
Conversely, u(t) = idp () = bind(t)(idr (). pis called join in Haskell.

Example

The list monad is given by LM = (T, n, ) is defined as follows: For all A € Set,
T(A)=A" na=Aafa]: A—=T(A) pa=concat:T(T(A)—T(A). 4
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(Monads and comonads)

An M-algebra or Eilenberg-Moore algebra is a T-algebra oo : TTA — A such that
the following diagrams commute:

T
A L TA TTA —&> TA
id g “ HA “«
Y Y Y
A TA—-—3> A
(@

The category of M-algebras is denoted by Algy;. Algys is a full subcategory of Algyr.
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(Monads and comonads)

et A=(L:K—= L R:L—K,n:Ildg — RL,e: LR — Idy) be an adjunction.
M(A)=(RL,n, ReL : RLRL — RL) is a monad, called the monad induced by A.

Let X = (S, F, P) be a (flat) constructive signature.

The monad induced by the adjunction Ay, = (Tx, Ug, 1, €) is called the monad freely
generated by X (see Term adjunction).

The multiplication p : UsTxUgTs, — UgTs: of the monad freely generated by Y is defined
as follows: For all sets X and trees t € Tx(Tx(X)), px(t) is the tree in Tx(X) that is
obtained from ¢ by substituting each leaf n of ¢ with the label of n (which is in Tx(X)).

The categories Algys(a,,) and Algs are isomorphic.
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(Monads and comonads)

A Y-term t over X together with a valuation g : X — Tx(Y)
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(Monads and comonads)

The term u over Tx(Y') that results from applying Tx(g) : Tx(X) — Tx(Tx(Y)) to t
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(Monads and comonads)

The term over X that results from applying py = Tx(Tx(Y)) — Tx(Y) to u
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(Monads and comonads)

Let M = (T : K — K,n, 1) be a monad.

The forgetful functor Uy : Algy; — K has a left adjoint Fyy : KK — Algyy.
Let Ay = (Upg, Far, n, €) be the corresponding adjunction.

The monad induced by Ay coincides with M: M(Ay) = M.
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(Monads and comonads)

A comonad in K is a triple CM = (D,¢€,d) consisting of a functor D : K — K and
natural transformations € : D — Idx (counit) and 0 : D — DD (comultiplication)
such that the following diagrams commute:

eD De oD
D=<—— DP — =) DleD < D){?
. .
) Do )
1dp 1dp
D DD <57 D

Let A, B € K. For all g : A — B, the extension ¢* : A — D(B) is defined as D(g) o 6.
Conversely, 0 = idﬁ( A

In Haskell, C'M is defined in terms of retract = e and
cobind : D(A) — (D(A) — B) — D(B)
(also denoted by =>>): For all d € D(A) and g : D(A) — B,
cobind(d)(g) = D(g)(da(d)) = g™ (d).
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(Monads and comonads)

Conversely, 6(d) = id}, 1 (d) = cobind(d)(idp4)).

A C'M-coalgebra is a D-coalgebra 3 : A — DA such that the following diagrams
commute:

D
A< DA ppa<’’  pa
A A A
id V] 04 B
A DA< A

The category of C'M-coalgebras is denoted by coAlgoar. coAlgeny is a full subcategory
of coAlgp.
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(Monads and comonads)

et A=(L:K—= L R:L—K,n:Ildg — RL,e: LR — Idy) be an adjunction.

CM(A) = (LR,e,LnR : LR — LRLR) is a comonad, called the comonad induced
by A.

Let ¥ = (S, F, P) be a (flat) destructive signature.

The comonad induced by the adjunction Ay, = (Ug, colx,n,€) is called the comonad
cofreely generated by X (see Coterm adjunction).

The comultiplication 0 : Ugcoly, — UgcolxUgcoTy, of the comonad cofreely generated
by ¥ is defined as follows: For all sets X and trees t € coTx(X), dx(t) is the tree in
coTx(coTy (X)) that is obtained from t by replacing the label of each node n of t with
the subtree of ¢ whose root is n.

The categories coAlgenray) and coAlgs; are isomorphic.

337 of 373



A Y-coterm t over X

(Monads and comonads)
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(Monads and comonads)
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The coterm u over coTx(X)
that results from applying dx : coTx(X) — colx(coTlx (X)) tot
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(Monads and comonads)

341 of 373



The coterm u over coTx(X) together with a coloring g : coTs(X) — Y
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(Monads and comonads)

The coterm over Y that results from applying coTx(g) : coTx(coTx(X)) — coTx(Y) to u
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(Monads and comonads)

Let CM = (D : K — K,¢,d) be a comonad.
The forgetful functor Ugcys : coAlgeyr — K has a right adjoint Ceyy @ IC — coAlgon.

Let Acar = (Uown, Fou,m, €) be the corresponding adjunction.
The comonad induced by Ay coincides with CM: CM (Ao ) = CM.
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[ Distributive laws and bialgebras }

Given two functors T, D : K — IC, a distributive law is a natural transformation
A:TD — DT

Given a distributive law A : TD — DT, a K-morphism TA = A . DAisa A-bialgebra
if the following diagram commutes:

O D R A {1
J
s Do —= o € Mor(coAlgp) maps Ay oTf to 3,
B € Mor(Algr) maps a to Da o A 4.
Y W
TDA ~DTA
Conversely,

o if TA 5 A is the initial T-algebra, then there is a unique Algp-morphism 3 from o
to Da o Ay and thus TA 5 A 2 DA is a(n initial) A-bialgebra,

oif A2 DAis the final D-coalgebra, then there is a unique coAlgp-morphism « from
AoTBto 3 and thus TA = A % DA s a (final) A-bialgebra.
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(Distributive laws)

Given a monad M = (T,n, u), a distributive law X\ : TD — DT is M-compatible if
the following diagrams commute:

nD T AT

D—""%1TD TTD——~TDT —~ DITT
D D
D A I I
Y Y \ Y
DT TD > DT

Given a comonad C'M = (D, €,6), a distributive law XA : T'D — DT is C M-compatible
if the following diagrams commute:

el DA\ D
T<——— l&T DleT < DT'D=<—— leD
J J
Te A 0T To
AA
TD DT < TD
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(Distributive laws)

Examples

Given a monad M = (T,n, i) in Set, the strength st’>4 of T and A is M-compatible.

Given a monoid A with multiplication - and unit e,
CM = ((—)"€,0)

with ep(f) = f(e) and 6p(f) = Aa.Ab.f(a - b) for all sets B and f € B is a comonad
and stT4 is C' M-compatible.

Given a T-algebra o« : TB — B, let D = (—)* x B.

AN:TD — DT
with
. _ A (T'(mq),T(m2)) A <St§A><()z A
Ay : TDX =T(X* x B) """ 1(X4) x TB X" (TX)* x B = DTX

is an M-compatible distributive law. l:l
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[ Older stuff J

A previous notion of coterms

Let w € N*.

e For all x € X,
x if w =,
(W) =gef .
undefined otherwise.

eltorall f:s1...5, 2 s€ Fandt; € Tx(X),, 1 <i<nmn,

(

f if w=g¢,
Jt, ot (w) =gef § ti1(v) if w=1v for some ¢ € N, v € N*,

undefined otherwise.

\
eforall f:s—s1...5,€ Fandt; € colx(X),, 1 <i<n,

p

f if w =,
L, ) f(w) =aer St () if w=1v for some ¢ € N, v € N*,

undefined otherwise.
\

Given a coterm ¢t and w € N*, path(t,w) returns the sequence of symbols on the path
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from the root to node w of t: For all x € X, [t1,...,t,|f € coTx(X), i € N and w € N¥,

x if w = e,
path(x, w) = def .
undefined otherwise,

f path(t;y,w) if 0 <i<n,

undefined otherwise.

path([ti, ... . ta)f,iw) =g {

A term resp. coterm t over N* such that all function symbols of ¢ belong to F'\ BF and

for all x € var(t) U cov(t), sort(x) € BS and t(x) = x, is called a -generator resp.
>.-observer.

Given w € N* and a co/term ¢, w - t denotes the co/term obtained from ¢ by replacing
each co/variable v of t with wv.

349 of 373



The tree representing the term fi(fo(x, f5(x, fs{y), ),
or the coterm |||x, |z,

\ 10 /\11

fg z fe

\02 ‘ /\

fo X y X

011 012 100 110 111
y 0110

Z>7 f3<f6<y>7 f8<$7 ZL’>>>
Wl fe, x| f5, 2] fo, [[W] fos [0, 2] f] f3] S
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The term : (x: (y : (z,[]))) generates lists of length 3 from two elements.

If applied to a list with at least three elements, the coterm [x, [z, [[z, [y|m|ht|mo| ht|ms| At
returns the third element at exit y. If the list has fewer elements, the coterm returns this
fact by taking exit x. The underlying signatures are given later.

The S-sorted set colx(Y') of ¥-coterms over X is inductively defined as follows:
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e Forall s € S, Y, C coTx(Y)s.
etorall f:s—s1...5, € Fandt; € coIx(Y)s,, 1 <i<mn, [t1,... t,]f € coTx(Y)s.
[t1, ..., t,)f is also written as [t;]7, f.
A Y-term t is a ground term if var(t) is empty.
Given t € Tx(V), var(t) denotes the set of variables occurring in ¢.
Given t € coTx(Y'), cou(t) denotes the set of covariables occurring in ¢.

Let X = (S, F, P) be a signature, V' be a T(S, BS)-sorted set of variables and A be a
Y-algebra.

The T(.S, BS)-sorted function

A = A Ty(V), = (AY = A) | eeT(S, BS)}

is inductively defined as follows: Let g € AV

eForallz €V, 2" (g) = g(x).

e For all base sets B of ¥ and b € B, b"'(g) = .

eforal f:e—é cFandtcTe(V)., f(t)'(g) = ft"(g)).
eforalln>1andty,...,.t, € Tx(V), (t1,....t,) " g) = (ti(g),....t(g)).

The coterm evaluation ' : coT%(Y) — (A — A-Y)is inductively defined as follows:
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eforallsc S,z €Y,andac A, v"(a) = (a,z).
etorall f:s—s1...5,€ F\BF,t;€colx(X);,1<i<n, and a € A,

fa) = (b,9) = ([t ta ) (a) = (D).

According to their respective intuitive meaning, ground X-terms are called generators
if > is constructive, and X-terms with a single variable are called observers if X is
destructive.

353 of 373



4’7_3 /o\+ $
b, by 4 oy d, dy
A AA N A% AN A ¥ 7 A
[y; Vol yol  ly; ol \[y1 Yol Iyq yol  [yql
Yo b W N NV
2 3 4 5 s f3 Vo
~N
[f4] \[f4]/ \ ‘ /
l [f4]
9o ‘ ‘
PN Xo
<94 9> A o X2
\ / \
<Xq> <X4 93>
» /,4 ‘
a1/ K> <--mmmm- an

The data flow induced by the formula 7 (1, to, t3) where

t1 = [lly1, vl f2, vo, (Wl f3] filg2(g1(®1), g2{@1, g3{x2))),
ta = [[[y1, vol f1, [y1, yol f5] fal w2 and &3 = [[[y1, yal f5, [y1] f3, yo] f1] 2.

r(tito ts)! = {h € AY [ (H(h), 13 (h), t5(h)) € r}
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Alternative representation of coTly

Let BA be the union of all base sets of 2. For all s € S,
Behys =gef H (BA x cou(t)).

tGObSZ_/S

Intuitively, an element of Behg, is a tuple of possible results of applying s-observers
to any s-element of a »-algebra. The result of applying observer ¢ is a pair (a,z) that
consists of an “output” value a € BA and a covariable x of t representing the “exit” where
a is returned.

b € Behy is called a X-behavior if for all ¢,u € Obsy 5, n € N and w € N,
path(t,w) = path(u,w) implies take(n + 1)(ma (b)) = take(n + 1)(ma(by)). (1)

By (1), the “runs” of two observers ¢ and u on b “take the same direction” as long as both

observers apply the same destructors. In particular, if they start with the same destructor

[, they take the same exit of f, formally: for all b € Behy(BA)s and t,u € Obsy,
t(e) = u(e) implies head(ma(b;)) = head(ms(by,)). Hence

forall f:s—5s1...5, € I"and b € Behy s there is 1 <1i¢j, < n such that
for all t € Obsy 5, t(e) = f implies head(ma (b)) = i 7. (2)

An element of p> = Ty, (left) resp. ¥4 = Behy (right):
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' [\
/ \ [dz d3 d
<Cy Cy > \‘/
d d d
/\ /\ 1*\ A] T 1

dg [dy dg 4

<C5 6> <¢ 8~

o forall s €S, v, = Behy ;.
eforall f:s—s1...5,€ F\ BF and (bt)tEOszs € Behsy s,

£72(b) = (({my, tail o 72) (Ot 0] 7) J1:€0bss, . )
where i = iy and for all k # 4, ¢ € Obsy,,. Note that head(m(by,

For all Y-algebras A, the unique Y-morphism unfold” : A — Y is defined as follows:
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For all s € S and a € A,
unfold;(a) = (t"(a))consy,-

Labelled >-trees

For all s € S\ BS, let lab; be an additional destructor with dom(labs) = s and
ran(labs) € BS, Lab = {labs | s € S\ BS} and coXp, = (S, coF' U Lab U BF, P, BY).

Given an S-sorted set X, the S-sorted set C'T; 1,,(X) of (X, Lab)-trees over X consists
of all partial functions ¢ : N* — (X x (F'\ BF')) U X such that for all s € S, t €
CT&L&(,(X)S iff for all w € N*,

o (mi(t(€)) € Xyan(iapy) N m2(t(€)) € F' Aran(m(t(e))) = s) V t(e) € X,
o [f my(t(w)) € F, thenforall0 <i < |w|, ' = dom(my(t(w))); and s" = ran(me(t(wi))):

2
<S =g /\7T1<t<’wi>) < Xran(lab /\7Tl< ( >) c F> V t(wz) e Xy.

CT —def CTXLOJ)(BA) 1s final in Alg(f()ELablBA'
Proof. The following definitions turn C'T" into a coX| BA-coalgebra:
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e For all s € S\ BS and t € CTj, |dom(t(e))| = k implies

dST(t) =4 (Qwt(0w),..., Aw.t((k — Dw)), 7 (t(e))),
labST(t) =g ma(t(e)).

o CT|ps =45 BA.

Let (A, g) be a coXp.] BA-algebra. An S-sorted function unfold”® : A — CT is defined
as follows:

eforallsc€ S\ BS, ac A,,i € Nand w € N*, d'}(a) = ((ay,...,ay), f) implies
T (unfold™(a)(€)) =as f,
ma(unfold(a)(€)) —ay labi(a),
lda; if0<i<|d ,
UTZfOldA<CL><Zw> = def UﬂfO } (CL )(U)) - — Z < ’ Om(f)‘
undefined otherwise,
in short: unfold(a) =4 lab(a) : f(unfold*(ay), ..., unfold*(a,)).

e unfold?|ps = g.

unfold is a coX-homomorphism: Let s € S\ BS, a € A, and d(a) = (a1, ..., an), f).
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Then
dCT (unfold™(a)) = dT(lab?(a) : f(unfold*(ay), ..., unfold*(ay)))
= ((unfold™(ay), . .., unfold*(ay)), f) = unfold*((ar, ..., an), f) = unfold*(d(a)),
1abCT (unfold*(a)) = 1abS" (lab’(a) : f(unfold®(ay),. .., unfold®(ay)))
= lab’(a).
Let h: A — C'T be a coX-homomorphism. Then

ds" (h(a)) = h(d}(a)) = h((ar, ..., an), f) = ((A(ar), .., h(an)), f)
= d’T(labMa) : f(h(ar),..., h(a,))),
1abST (h(a)) = labt(a) = 1abST (lab’(a) : f(h(a1),..., h(ay)))

and thus h(a) = f(h(ay),...,h(a,)) because (d57,1abST) is injective. We conclude that
h agrees with unfold™. 4

Let C' = {length}. veoList' is isomorphic to the coList’-coalgebra B = ;¢ Tree ,p.c(BA)
of C-colored coList-trees over BA (see Colored Y-trees).

Byist can be represented as the union of N’ and the set of partial functions s : N — X x N
such that s(0) is defined and for all ¢ € N, if s(i + 1) is defined, then s(i) is defined.
With respect to this interpretation, the destructors of coList’ are interpreted as follows:
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By = {oo} and for all s € By,

(

B * if s e N,
sphit(s) = 0)), Ai.s(i + 1)) otherwi
\ (7T1(3( ))7-;.8(21\—; )) otherwise,
SR
lengthP(s) = < ° e |
| m2(s(0)) otherwise.

Let AX be given by the coList'-formulas

elist(8> = €1+671/t/r'y><list<[[xay]SpliﬂS> (1>
EentryxlistP) = Elist(ma(p)) (2)
€ust(s) = ||z, yllength|s = [[[x]0, [[[x]succ, y|length)|ms]split]s (3)

AX consists of inverse Horn clauses over coList’ that satisfy the assumptions of Restric-
tion with a greatest invariant. Hence gfp(AX) = B. Let inv = €.

For all s, 5" € invyg,
lengthP(s) # lengthP(s') implies tP(s) # tP(s') for some t € Obsopistist-  (4)

Proof.
Since B satisfies (3), inv satisfies the conclusion of (3) or, equivalently, the equations
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(1)-(3) of 1.6. Hence s € invy; iff for all n € N,

lengthP(s) = 0 implies split?(s) = *, (5)
lengthP(s) = n+ 1 implies J e, s : (split?(s) = (e, s') A lengthP(s') = n), (6)
lengthP(s) = oo implies e, s : (split?(s) = (e, s') AlengthP(s') = 00).  (7)
[t is easy to see that
® ObscoListiist = {0bs, | n € N} where obsy = [0, [10]m;]split
and for all n > 0, obs,, = [0, [10 - obs,,_1]ms|split,
o for all s € By and n € N, obs,,(s) # * iff s(n) is defined. (8)

By (5)-(7) and the definition of B, for all s € inv;4 and n € N,
length®(s) =n < s(n)is undefined AV i < n :s(i) is defined,
lengthP(s) = 0o < V n € N: s(n) is defined,
and thus by (8),
lengthP(s) =n < obsP?(s) =% AV i< n:obsP(s)# *, (9)
lengthB(s) = 0o < V n € N:obsB(s) # x. (10)

Let s,s" € By such that length?(s) # length®(s'). Then length?(s) = n or
lengthP(s') = n for some n € N. W.lo.g. suppose that the first case holds true. By
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(9), 0bsB(s) = *. If lengthP(s') = oo, then (10) implies a contradiction: obs?(s) # * =
obsB(s). Otherwise lengthP(s') = n’ for some n’ € N with n’ # n. Let m = min(n,n’).
If n < n’, then by (9), obs?(s) = obsP(s) = x # obs?(s') = obs?(s'). Otherwise n’ < n
and thus by (9), obs5(s') = obsh(s') =  # obs5(s) = obs;(s). Hence (4) is valid for
t = obs,,. 1

Let C' = {subtree}. vcoBintree' is isomorphic to the coBintree’-coalgebra
B —def Tree(EOB’Z’II/t//’(ifi,C(BA)
of C-colored coBintree-trees over BA (see Colored Y-trees).

Let Z = Btree(X)>* — Btree(X)®. Byee can be represented as the set of partial

functions
t:2" = X x 2/

such that for all w € 2* and b € 2, if t(wb) is defined, then t(w) is defined.
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With respect to this interpretation, the destructors of coBintree’ are interpreted as fol-
lows: For all t € By,

" if t =)
ork? = |
i (?) { (Aw.t(0w), w1 (t(e)), \w.t(1w)) otherwise,

subtreeB(t) = my(t(e)).

Let AX be given by the coBintree’-formulas

Ebtree(t> = E1+btreexentryxbtree<f0rk<t>> A th7-6€1)li<9t<SUth€€<t>) <1>

EbtrceXcrzhyxbhc((p) = three(ﬂl <p>> A El)t7'ee(7r3<p>> (2>
Ebtreebhgt(f) = Ebtree<$w<f>> (3)
ebtr‘ee<t> =

I p,q: ([[x,y]|forklt = [x]p A Se(subtree(t)) =t) V
3p.q: ([lz, ylfork]t = [ylp A
$0w (subtree(t)) = Sw(subtree(m (p))) A
$Slw(subtree(t)) = Sw(subtree(ms(p))))  (4)

for all w € 2*. AX consists of inverse Horn clauses over coBintree’ that satisfy the
assumptions of Restriction with a greatest invariant. Hence gfp(AX) = B. Let inv =¢&?.

For all ¢,t" € invptyee,
subtree® (t) # subtree®(t') implies u?(t) # u?(t') for some u € ObSopintrec ptree- (D)
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Proof.
Since B satisfies (4), inv satisfies the conclusion of (4) or, equivalently, the equations
(1)-(3) of 2.13. Hence t € inuvpe. iff for all w € 2%,

subtree®(t)(e) = t, (6)
forkB(t) = (u,e, ) implies subtree®(t)(0:w) = subtree? (u)(w), (7)
forkB(t) = (u,e,u’) implies subtree®(t)(1:w) = subtree®(u)(w).  (8)

[t is easy to see that

® ObS opintree biree = {0bSy | w € 27} where obs. = [0, [10]ms]fork and for all w € N¥,
0bsg, = [0, [10 - obs,|m|fork and obsy, = [0, [10 - obs,|ms|fork,

o for all t € By and w € N* obsB(t) = t(w) if t(w) is defined, and obs,(t) = *
otherwise. (9)

By (6)-(8) and the definition of B, for all t € invyye. and v € 2%,
subtree®(t)(v) = \w.t(vw),
and thus by (9),
subtreeP (t)(v) = Aw.obs,,(t). (10)

Let t,t" € By and w € 2* such that subtree®(t) # subtree®(t'). Then there are v, w €
2* such thatsubtree?(t)(v)(w) # subtree?(t)(v)(w). Hence by (10), A\w.obs,(t) #
Aw.obs,,(t), and thus (5) is valid for u = obs?, . l:l

364 of 373



Let €4 = veoTree. Then A satisfies AX. Hence A € AlgfoTTee, AxX and thus by Lemma
DESEXT (2), (6) and (7) imply €770 = veoTree.
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