On testing

and specifying

Dusko Pavlovic
(work in progress with Bart Jacobs)
September 2005



Some approaches to software development:

correct-by-construction:
spec — refine — ... — prog +/

hacking:
prog — test — prog — test ...

development cycle:
spec — refine — prog — test — spec ...



Testing goals:

correctness: '"'Does system satisfy spec?”

e "How closely?”

assurance:
bugs =

e "How bad?”
e "How likely am I to find more?”

no bugs =

e "How good?”
— "How much assurance do I get from 20 tests?”

— "Which tests are more informative?”



Task:

Define experimental method for software sci-
ence:

e experiment design techniques for
— test suites

— blind sampling

e Statistical data analysis for
— quantitative view of

— computational behaviors



Outline|

1. Testing frameworks
2. Examples

3. Behaviors and representation



1. Testing frameworksl

Facets of testing.

Syst x Test Obs

testing equivalence* on Syst:
R~ S — vVt € Test. (R=t) = (SE 1)

debugging:
R#.S <= 3Jbug € Test. (RE bug) > (SE=bug) + ¢V
dreq € Test. (RE=req) + e < (SE req)
— Jt. (REt) € |[(SEt) —¢, (SEt)+¢
authentication:

dsp € Test. XEsy = X =A

*e.g., system R satisfies spec S
("real function” vs "ideal functionality”)



1.1. Systemsl

given

e category S of " (state) spaces”

e monad R : §——S& of " next-state spaces”

represent

e systems as (G-coalgebras X—GX for

— reactive (read): G,X = RX4
— generating (write): Gy X = R(A x X)

— read-write: GroX = R(A x X)4

e \We test reactive systems as the final G-
coalgebra

Syst = vX. RX4



1.2. Tests|

given
e category 7 of " (data) types”
e monad L : S——S of "test algebras”

— pointed by 1 9, L

represent

e tests (for reactive systems) as the ele-
ments of F-algebras FX—X for

— X=LX4+AxX

e type of tests as the initial F-algebra

Test = puX. LX+AXx X



1.3. Connections and dualityl

Def. A connection is a contravariant adjunc-
tion
MAP : SP—T

where

o PX C ObsX represents a ""type of predi-
cates over the space X",

o MY C ObsY represents a "space of models
over the type Y, i.e.

— the underlying sets of predicates PX and of mod-
els MY consist of functions X — Obss and Y —
Obsg respectively,

— the space Obsgs € S and the type Obss € 7 have
the same underlying set Obs of " observations’ *

(continued. . .)

*In 7 they form the type " propositions” or "truth val-
ues’. In S they form the space of "coordinates” .

9



e Obsg has an L-algebra structure,

e Obss has an R-algebra structure.

A connection is a duality if it is an equivalence.

10



Examples of connections.

1. QP 46 : SetP—Set

2. Stone duality

3. pt 10O : EspP—Frm

4. C S : Esp?P—Rng

5. Priestley duality, and the various lattice cor-
respondences

6. Scott duality: injective spaces and domains

11



1.4 Behaviors|

Def. A testing framework consists of
e a system monad R : S—S
e a test monad L : 7—7, and
e a connection M 4P : §SP—T

Def. For a given testing framework, with the
final coalgebra Syst of systems and the initial
algebra Test of tests, the space Behv of be-
haviors is defined by

Test = P(Syst) C Obs>Yst

Syst = M(Test) C ObsTest

L

Behv

12



Since the test algebra is Test = uX. LX 4+ A X
X, a test t must be in the form

t = c| f(tg..-tn) | a.t

where c is a constant and f an operation from
the signature of the algebraic theory of the
monad L.

13



Testing semantics |= is defined by combining
induction over Test and coinduction over Syst

(P|= c) = c
(PE f(to---t)) = f((PEt0)...(PE tn))
(P): a.t) = (Q(P, a)E= t)

where
o Syst x A— R(Syst)

is (the transpose of) the final G-coalgebra struc-
ture on Syst, and = extends along

Syst d R(Syst)

/
/
/
)
/
/

N\

ObS—IfeSt
because Obs is an R-algebra.
14



1.5 Metrics|

Indistinguishability = testing equivalence

R~S <= Vte Test. (R=t)=(SE=1t)

refines to

d(R,S) = \/ |(REt)-(SE1D)

teTest

(R#:S becomes d(R,S) >¢e...)

15



2. Examplesl

2.1. Linear time — branching time

With

S
R

Set<w

we capture possibilistic nondeterminism*

X—>(KJX)A

where A is a fixed set of actions.

The space of systems

consists of finite A-labelled hypersets.

(It lives in Set, not in Set<,.)

*reading = writing, because ({2X)* = (J(A x X)

16



Moreover, in all of the following examples, take

T = Set<y

Obs = 2 = {0,1} and
T = € : Set,°P——Set,
S = PPHp

17



2.1.1. Testing with traces: LX =1 = {()}

Test = A*
(PEQ) = 1
(PEat) = \ (QE)

Qco(P,a)

18



2.1.2. ...complete traces: LX = {()} again,
but A is extended to A + &, i.e.

Test = (A4 k)F

Extend each system by a final state 4/, so that
each run must be completed by k:

XxA 2 -pX

X+ V) x(A+K) - 0OX+V)
by setting

(o(P,a) ifPeEXAa€A
ox(P,a) = { {/} ifPeXANa=kAP =1
U otherwise

where P = {a € A | o(P,a) # 0}.

19



The semantics definition

(P=()) =1
(PE=at) = V  (QEY)

QEQHD(Paa')
now unfolds to

(P rt) = {é“?“ TP=0

otherwise

1 it t = ()
WVEH = {\/(D = 0 otherwise

20



i.e. to

(PE Q)
(PE a.t)

(PE k.t)

1

V. (@QFD
QeEo(P,a)
{1 if P=0At=)

0O otherwise

21



2.1.3. Failures LX = {()} again, but A is
extended to A + (A, i.e.

Test = (A4 QA"

The final state / is now reached reached by
testing, at the end of a run, by a failure set

o € QDA:

XxA 2 -pX

(X +) x (A+ pA) T o(X + /)
by setting

(o(P,a) ifPeEXAacA
ofail(Pr o) = { {/} fPEXNa€PANaNP =1
) otherwise

\

where P={a € A | o(P,a) # 0}.

22



The semantics definition

(PE= ()
(PE a.t)

1

vV (@QFY)

Qegfail(Paa)

now unfolds to

(\/QEQ(P,O()(Q’: t) |f o & A
= KA N
(P=at) = {1 if { anP=0A
L=
\O otherwise

23



2.1.4. Refusal LX = {()} again, but A is
extended to A+ (A, i.e.

Test = (A4 QA"

Test systems not only by the accepted actions
a € A, but also by the refused sets a € (A:

X xA 22— X

Oref

X x (A4 @A) (DX
by setting
(o(P,a) ifaceA
oref(P,a) = S {P} if o€ QAN anP =10
0 otherwise

\

where P={a € A | o(P,a) # 0}.

24



The semantics definition

(PE() = 1
(PEat) = \  (QFD

QEQref(Paa)

now unfolds to
\/QEQ(P,CV)(Q’: t) ifac A

_ . o € QA N
(PEat) = ((PET) If{aﬂﬁz@

0 otherwise

\

25



2.1.5. Acceptance-refusal LX = {()} again,
but A is extended to A+ 2 x (A, i.e.

Test = (A4+2x QA"

Extend each system to test it not only by the
accepted actions a € A, but also by the refused
sets a € {0} x A and by the accepted sets

a € {1} x QA:
XxA 2 -pX
X x (A4+2x pA) 2. oX

by setting
(Q(P, a) ifacA
, a=(0,0) A /NP =10
Po)=<{P it "
oar (P, ) {P} {ora:<l,o/)/\o/CP
0 otherwise

\

where P={a € A | o(P,a) # 0}.

26



The semantics definition

(PF= ()
(PE= a.t)

1

\/  (QE1)

QEQar(P,Oé)
now unfolds to

(\/QEQ(P,a)(Q): t) ifacA

7\

(PEat) = ((PE1) if

0 otherwise

27



2.1.6. Simulation testing LX = QX

Test = A — edge labelled sets*
— positive Hennessy-Milner formulas
(P=0) = 1
(PE{t1...tn}) = N\ (PEt)
=1
(PEat) = \/ (QF1)
Qeo(P,a)

28



2.1.7. Bisimulation testing LX =2 x ©X

Test = A — edge labelled
2 — node labelled sets

— Hennessy-Milner formulas

(PE(,0)) =
(PE (t,{t1...ta})) = t® N\ (PEt)
i=1
(PEat) = \ (QFD
Qeco(P,a)

29



2.2. Probabilistic systems

X x A2 VvX

where for finite X

VX = {p:X—[0,1]] ¥ u(z) <1}
reX

or for general measurable X, and V : Mes——Mes

VX = {p:0(X)—I[0,1] | p(X) <1}

30



2.2.1. Possibilistic observations

Reduce finite X x A—VX to the framework

Obs = 2
by setting

XxA 2. .vXx

X xAx[0,1] % - pX

o(Pa,p) = {Qe X [ o(Pa)(Q) = p}

31



With the labels from A x [0,1] and LX = (X,
we get

Test = A x [0, 1] — edge labelled sets

and semantics

(P=0) = 1
(PE{t1...ta}) = N\ (PEt;)
i=1
(PE (a,p).t) = V  (QED
Qeo(P,a,p)

= V @@=
o(P,a)(Q)>p

32



2.2.2. Probabilistic observations
For V : Mes—Mes and Obs = [0, 1], testing by
LX = MX suffices:

Test = A — edge labelled wf-trees

and semantics
(P 0)
(Pt ta)) = [[(PE )
(PEat) = 3 @ DeP.o@

QeX

1

33



2.2.2. Probabilistic observations

For V : Mes—Mes and Obs = [0, 1], testing by
LX = MX suffices:

Test = A — edge labelled wf-trees

and semantics

(P=0) = 1
(PE{t...ta}) = J[(PE®)
1=1
(PEat) = [ (QF Ddogp,

34



Remarkably,

i
vVt € Test,.qp. (RET) = (SE1)
although, of course
dposs.(R, S)

=
dprob(Ra S)

35



2.3. Cryptanalysis as testing

Secrecy is indistinguishability

36



2.4. Quantum systems

37



3. Behaviors and representationl

Test ObsSYyst
Syst = Obs Test
Behv

Thm. [FOoSSACS04] The bisimilarity classes
of probabilistic systems (LMPs) correspond to
the monoid homomorphisms Test—|[0, 1].

The category of LMPs is dual to the category
of PMLs.

Proof sketches. [FOSSACS] Generate the
free C*-algebra over the monoid Test and use
Stone-Gelfand duality. (The states of a prob-
abilistic system are the characters of this C*-
algebra. Their weak topology is compact Haus-
dorff.)

38



[Soft proof.] Use LX = Z[X] and develop test-
ing framework. . .



Gaussian error estimate (central limit theorem)
to determine how much more testing is needed
for how much assurance.

39



