Toward Institution for Graph Transformation Fabio Gadducci

Discussions: Andrea Corradini, Leila Ribeiro Hints: Razvan Diaconescu Inspiration: José Meseguer

institutions vs. DPO rewr.

Institutions: abstract model theory sentences, models (and satisfiability) **DPO** rewriting: abstract rewriting formalism rules, rule applications (and replacement) lacking both sentences and models (hence, lacking an entailment system)

shortly, the DPO approach

a rule

a derivation step

set of theoretical tools (concurrency, mostly) [holding for adhesive cats]

the CoSpan (bi-)category

connecting wth the DPO

a rule

a derivation step

operational vs. induction-based

a "cell" Ø

Ø

"whiskering"

DPO vs. CoSpans

- (A factorized sub-category of) Cospans over graphs (typed over \sum) form the free compact-closed category built from \sum (with operators as basic arrows)
- The DPO approach is operational: search for the match, build the PO complement...
 - The free construction (concretely, via cospans) is algebraic: inductive closure of a set of basic rules

first step: inductive sentences

DGSTh(∑) is the self-dual, free symmetric (strict) monoidal category equipped with symmetric monoidal transformations

 $abla_a: a \to a \otimes a \qquad !_a: a \to e$ (intuitively representing pairing tuple <x, x> and empty tuple)
plus two additional laws (relating transfs. and their dual)

-

main correspondence result

- [I) (Isomorphic classes of) Cospans over graphs (typed on \sum) and sets of nodes as objects *1-1 correspond to* arrows in $DGSTh(\sum)$ (indeed, a categorical equivalence)
 - You abstract the identity of nodes not in the interface
 - ...but this way graphs get a "standard" notion of sentence
- II) The preorder on arrows obtained by replacing each DPO rule with an order on graphs *1-1 corresponds to* DPO rewrites
 - This way DPO rewriting gets an entailment system

very shortly, institutions

A category Sign of specifications a functor Sen: Sign -> Set for sentences a functor Mod: Sign -> Cat^{op} for models a (satisfiability) relation $=_{\Sigma}$ on $Mod(\Sigma) \times Sen(\Sigma)$ a coherence axiom $\forall \phi: \Sigma \to \Sigma', e \in Sen(\Sigma), M' \in Mod(\Sigma')$ $M' \models_{\Sigma'} Sen(\phi)(e) \Leftrightarrow Mod(\phi)(M') \models_{\Sigma} e$

istitution for algebraic specs.

istitution for rewriting specs.

the easy way out...

- exploit the categorical laws...
 - sentences as pairs of arrows in $DGSTh(\Sigma)$ (same homs.)
 - models as dgs-monoidal categories
 - obvious satisfiability
 - reductions via order enrichment
- Unsatisfactory: looking for a "concrete" model characterisation, in terms of "classical" algebraic models (algebras for specs.)

a functorial detour

The algebraic theory $Th(\Sigma)$ is concretely defined as lists of vars as objects, (tuples of) typed terms as arrows term substitution as composition (the theory is also the free cartesian category over \sum) Algebras over \sum and axioms in E as functors - $M \in [Th(\Sigma) \to Set]_E^{\times}$ product and axioms preserving (homs as natural transfs.)

a functorial detour, II

PreAlgebras as rule-preserving functors $M \in [Th(\Sigma) \to Pre]_{E,R}^{\times}$ $s \to t \in R \Leftrightarrow \forall X. M(s) \leq M(t)$ (still homomorphisms as natural transformations) How to generalize? Note that functors $M \in [Th(\Sigma) \to Rel]_E^{\times}$ still define algebras!!

alternative take on $Th(\Sigma)$

- Th(∑) is the free symmetric (strict) monoidal category equipped with symmetric monoidal natural transformations

$$abla_a: a \to a \otimes a \qquad \quad !_a: a \to e$$

(intuitively representing pairing tuple $\langle x, x \rangle$ and empty tuple)

explicit definition of a theory

two alternative takes

another alternative take

$- DGSTh(\Sigma)$ as self-dual $GSTh(\Sigma)$ satisfying

some characterization results

- arrows in DGSTh(Σ) are (isomorphic classes of) cospans of graphs (typed over Σ)
- arrows in $GSTh(\Sigma)$ are (isomorphic classes of) cospans of term graphs (typed over Σ)
- $\{ \text{ arrows in } \mathbf{GTh}(\Sigma) \text{ are conditioned terms s } D \text{ (over } \Sigma) \}$
 - s a term (the functional)
 - D a sub-term closed set of terms (the domain restriction)

functorial characterizations

- Partial algebras with ⊥-preserving operators, tight homomorphisms and conditioned Kleene (in)equations
- Multialgebras with tight point-to-set operators, tight point-topoint homomorphisms and "term graph" (in)equations
- Multialgebras with tight point-to-set operators, tight point-topoint homomorphisms and "graph" (in)equations

$$\begin{split} [GTh(\Sigma) \to Set_{\perp}]_E^{\times} & [DGSTh(\Sigma) \to 2^{Set}]_E^{\times} \\ & [GSTh(\Sigma) \to 2^{Set}]_E^{\times} \end{split}$$

back to institutions

or $[(D)GSTh(\Sigma) \to 2^{Set}]_E^{\times}$

on entailment systems

Claim: complete entailment system for partial algebras

 $\frac{s \mid D_s \equiv t \mid D_t}{s \mid D_s \cup D \equiv t \mid D_t \cup D} \quad \frac{u_i \mid D_u \quad (s \mid D_s, t \mid D_t) \in E}{s[\overline{u}/\overline{x}] \mid D_s[\overline{u}/\overline{x}] \cup D_u \equiv t[\overline{u}/\overline{x}] \mid D_t[\overline{u}/\overline{x}] \cup D_u}$

Conjecture: complete entailment system for multi-algebras

GSTh(∑) plus

back to insts. on preorders

preliminary conclusions

uniform presentation of institutions for the DPO rewriting formalism over various graph-like structures
 sound and complete "abstract" entailment systems
 sound (possibly complete) "concrete" entailment systems

to be addressed...

completeness for the entailment system (rewriting) interpretation for up-to garbage law tackling hyper-graphs and hyper-signature (singular vs plural) interpretation for hyper-operators **considering cospans of adhesive categories** free construction for suitable algebraic varieties