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Introduction

I Monads encapsulate generic side-effects

I functional-imperative programming

I programming semantics

I program logics

I Monads can be combined:

I Sum: disjoint union of theories

I Tensor: commuting union of theories (orthogonal effects)
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Introduction (cont’d)

I In the unranked case, existence of tensors is often unclear

I E.g., Hyland et al. (2007) prove that tensors of continuations with ranked
monads exist

I We prove existence of tensors for uniform monads, which includes

I Powerset (full or non-empty)

I Continuations

I Analyse powerset in more detail:

I Tensor = sets of terms modulo rectangularity

I Order-theoretic variant of the construction

I Characterize monads for which tensoring with powerset is conservative
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Monads for Computational Effects

Strong monad T = (T ,η , ∗, t):

I TX type of computations over X

I η : X → TX converts values into computations

I ∗ lifts f : X → TY to f ∗ : TX → TY

I Sequential composition g; f ∗

I t : X ×TY → T (X ×Y ) propagates context

Supports computational metalanguage:

I do x ← p;q sequential composition (uses ∗ and t)

I ret returns a value (η)
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Monads: Examples

I State: TX = S→ (S×X )

I Input: TX = µY .(X + I→ Y )

I Output: TX = µY .(X + O×Y )

I Non-determinism: TX = P(X )

I Probabilistic non-determinism: TX = D(X )

I Continuation passing: TX = (X → R)→ R.
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Monads vs. Lawvere Theories

Definition A large Lawvere theory is a category L equipped with an
identity-on-objects functor I : Setop→ L (written Ie = [e]) that preserves
products.

Large Lawvere theories are equivalent to monads on Set:

I L large Lawvere theory ; TL(X ) = L(X ,1) monad

I T monad ; (Kl(T ))op large Lawvere theory

Sergey Goncharov, Lutz Schröder: Tensoring Unranked Effects 6 IFIP WG 1.3 Meeting, Aussois, January 2011



Lawvere Theories

I Objects are sets (think: of variables)

I Morphisms are tuples of terms/ substitutions

I Sums of sets are products

I for κi : 1→ n, κi (∗) = i : [κi ] : n→ 1 projection

I n×k is the n-th power of k

I for f : k → l , have n⊗ f : n×k → n× l
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Tensors of Lawvere Theories

Tensor L1⊗L2 is universal w.r.t. having theory morphisms

L1→ L1⊗L2← L2

that commute, i.e. (eliding theory morphisms)

n1×n2
n1⊗f2 //

f1⊗n2

��

n1×m2

f1⊗m2

��
m1×n2

m1⊗f2 // m1×m2

where f1 : n1→m1 in L1, f2 : n2→m2 in L2. E.g.

lookupl(x1 + y1,x2 + y2,x3 + y3) =

lookupl(x1,x2,x3) + lookupl(y1,y2,y3)

if there are three values.
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Tensors of Monads

. . . are the same: T1⊗T2 is universal w.r.t. to having monad morphisms
T1→ T1⊗T2← T1 that commute; this can now be written as

do x ← f1;y ← f2; ret (x ,y) = do y ← f2;x ← f1; ret (x ,y)

for f1 : T1X , f2 : T2Y .
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Existence of Tensors

I Existence is a size issue: TX / L(n,m) must be sets

I Obviously, the tensor exists if the sum exists

I the sum, however, need not exist for unranked monads

I Hyland et al. (2007) show that tensors of continuations with ranked
monads exist

I Hyland et al. (2006) show that tensors with the state monad always
exist
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Uniform Lawvere Theories

cn
L : n→ n + c = [id ]×∏f∈c f where c = homL(0,1).

Definition A Lawvere theory L is uniform if for every L-morphism
f : n→m, there exist a morphism f̂ : k → 1 and a set-function
uf : k ×m→ n + c such that f = (f̂ ⊗m)◦ [uf ]◦cn

L.

Theorem The tensor of two Lawvere theories exists if one of them
is uniform.

PROOF: Uniformity allows sorting the operations of the uniform
theory to the top.
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Uniform Theories: Examples

I Non-empty Powerset: m non-empty subsets of n can be obtained
from one set (e.g. n itself) by renaming elements.

I Full Powerset: m subsets of n can be obtained from one set (e.g. n
itself) by either renaming elements or substituting them by /0.

I Continuations: m functions (n→ R)→ R can be obtained from one
function ((n + logR(m))→ R)→ R by substituting elements of
n + logR(m) with either elements of n or constants r ∈ R.
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Tensoring with Non-empty Powerset

I By the general construction, morphisms n→m in L⊗LP1 are
m-tuples of non-empty subsets of L(n,1), modulo something.

I Can improve this to non-empty subsets of L(n,m) modulo something
via cartesian product map

P(L(n,1))m→P(L(n,1)m)∼= P(L(n,m))

– by AC, this is injective!

I ‘something’ is rectangular equivalence ≈1, the smallest preorder
closed under

(π)
∀i . [κi ]A≈1 [κi ]B

CA≈1 CB
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Pointed Theories

Definition L is pointed if L is a pointed category with point ⊥, and
L(0,1) = {⊥}.

Pointed theories carry a canonical preordering v defined as the
smallest preorder with bottom element ⊥ and closed under

(πv)
∀i . [κi ]◦ f v [κi ]◦g

hf v hg

N.B.: L pointed iff L∼= L⊗L⊥
I LP is pointed, with points λ . /0

I Lists are pointed

I Partial state S→ (S×X )⊥ is pointed
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Tensoring with Full Powerset

I Clearly, tensoring L with LP can be conservative only if L→ L⊗L⊥ is
conservative; hence assume L is already pointed.

I L⊗LP is sets of L-morphisms modulo ≈0 = rectangular equivalence
plus {⊥} ≈0 /0.

I Have A≈0 B iff cl(A) = cl(B), where cl(A) is the smallest downclosed
superset of A closed under

(∆)
∀i . g∆ih ∈ cl(A)

gh ∈ cl(A)

with ∆i = ∏δij , δij = id if i = j , =⊥ otherwise.
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Conservativity

L→ L⊗LP preserves the canonical preorder. Note

fg =
⊔
i

f ∆ig (1)

in the tensor.

Theorem a) L→ L⊗LP reflects the preordering iff (1) holds in L
b) Under a), L→ L⊗LP is injective iff v is antisymmetric.
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Conclusions

I Tensors with uniform monads always exist

I This improves on previous results, in particular for continuations

I Tensoring with powerset has a simple description

I Monad transformer for non-determinism

I Simple order-theoretic conservativity criterion for pointed case

I Can then use non-deterministic arguments for deterministic effects

I E.g. Fischer/Ladner encoding

if b then p else q 7→ b?;p + (¬b)?;q
while b do p 7→ (b?;p)?; (¬b)?
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Future Work

I How much of this works over toposes/domain categories?

I Existence of tensors for uniform theories probably does work over
toposes

I Verification logics for tensors of effects
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