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Abstract. Transfer algorithms allow the use of knowledge previously
learned on related tasks to speed-up learning of the current task. Re-
cently, many complex reinforcement learning problems have been suc-
cessfully solved by efficient transfer learners. However, most of these
algorithms suffer from a severe flaw: they are implicitly tuned to transfer
knowledge between tasks having a given degree of similarity. In other
words, if the previous task is very dissimilar (respectively nearly identi-
cal) to the current task, then the transfer process might slow down the
learning (respectively might be far from optimal speed up). In this pa-
per, we address this specific issue by explicitly optimizing the transfer
rate between tasks and answer to the question: “can the transfer rate be
accurately optimized, and at what cost?”. In this paper, we show that
this optimization problem is related to the continuum bandit problem.
Based on this relation, we design an generic adaptive transfer method,
which we evaluate on a grid-world task.

1 Introduction

In the reinforcement learning problem, an agent acts in an unknown environ-
ment, with the goal of maximizing its reward. All learning agents have to face
the exploration-exploitation dilemma: whether to act so as to explore unknown
areas or to act consistently with experience to maximize reward (exploit). Most
research on reinforcement learning deals with this issue. Recently Strehl et al. [?]
showed that nearly optimal strategies could be reached in as few as Õ(S×A) time
steps. However, with most real-world learning problems, the designer will face a
huge state and action space, thus preventing any kind of exhaustive exploration.

One way to circumvent this problem is to use previously acquired knowledge
related to the current task being learned. This knowledge may then be used
to guide exploration through the state-action space, hopefully leading the agent
towards areas in which high rewards can be found. This knowledge can be utilized
in different ways:

– By imitation: in particular, in a multi-agent environment, agents may observe
traces of other agents and use this observation to learn the environment faster
[?].



– By bootstrap: related tasks may have been previously learned by reinforce-
ment [?] and the learned policy may be used to bootstrap the learning.

– By abstraction: a simplified version of the current task could have been
generated to quickly learn a policy which could be used as a starting point
for the current task.

– By demonstration: a human tutor may provide some explicit knowledge.
Other similar settings exist in the literature, among which are “advice taking”
or “apprenticeship”.

In this paper, we will focus on a simple version of the “bootstrap” transfer learn-
ing problem [?]: we will assume that a policy is available to the learner, and that
this policy has been learned on a past task which shares the same state-action
space as that of the current task. Note that unlike in the "imitation" setting, in
the boostrap setting no information about the transitions in the environment is
available to the learning agent.

Given this knowledge, the learning agent faces a new dilemma: it has to bal-
ance between following the ongoing learned policy and exploring the available
policy. Most transfer learners do not tackle this dilemma explicitly: the amount
of exploration based on the available policy does not depend on its quality.
However, if the available policy is unrelated to the current task, then exploring
the environment by following the available policy could result in a slowdown of
the learning process. This pathological behavior has been known in the transfer
learning litterature as the negative transfer phenomenon [?]. Ideally, this amount
should be tuned such that the transfer learner be robust with respect to the qual-
ity of the past policy : good policies should speed up the learner while bad ones
should not slow it down significantly. Recently, a new approach has been pro-
posed to solve this issue [?]. The main idea of this approach is to estimate the
similarity between the two tasks, and then to use this estimate to parameterize
the transfer learning process, balancing between ongoing and past policies. How-
ever, measuring this similarity is a costly process in itself and moreover there
are no guarantee that this similarity optimizes the transfer learning process.

In this paper, we show that a parameter called the transfer rate controlling
the balance between past policy and the ongoing policy can be optimized ef-
ficiently during the reinforcement learning process. For this purpose, we first
show in which way this optimization problem is related to the continuum-armed
bandit problem. Based on this relation, we propose a generic adaptive transfer
learning method consisting of a wrapper around some standard transfer learning
algorithm, and implementing a continuum-armed bandit algorithm.

We show that under some conditions, the regret of not having chosen from
the beginning the optimal value of the transfer rate can be efficiently bounded.
Experiments on a grid-world task validate our approach.

The paper is organized as follows. After some preliminaries, we introduce
the continuous bandit problem and relate it to the optimization of the transfer
rate. The following section introduces the generic transfer learner, which is then
studied in deep. Finally a set of experiments assesses both the robustness and
efficiency of our approach.



2 Preliminaries

Reinforcement learning problems are typically formalized using Markov Decision
Processes (MDPs). An MDP M is a tuple 〈S,A, T, r, γ〉 where S is the set of all
states, A is the set of all actions, T is a state transition function T : S×A×S →
R, r is a reward function r : S × A → R, and 0 ≤ γ < 1 is a discount factor on
rewards. From a state s under action a, the agent receives a stochastic reward
r, which has expectation r(s, a), and is transported to state s′ with probability
T (s, a, s′). A policy is a strategy for choosing actions. If it is also deterministic, a
policy can be represented by a function π : S → A. As in most transfer learning
settings, we assume that the learning process is divided into episodes : at the
beginning of an episode, the agent is placed on a starting state sampled from
a distribution D. The episode ends when the agent reaches a special absorbing
state (the goal), or when a time limit is reached.

For any policy π, let V πM (s) denote the discounted value function for π in
M from state s. More formally, V πM (s) , E [

∑∞
t=0 γ

trt], where r0, r1, . . . is the
reward sequence obtained by following policy π from state s. Also, let V πM ,
Es∼D [V πM (s)]. To evaluate the quality of an action under a given policy, the Q-
value function Qπ(s, a) , r(s, a) + γEs′∼T (s,a,.) [V π(s′)] is generally used (Here,
as there are no ambiguity, M has been omitted). The optimal policy π∗ is the
policy maximizing the value function. The goal of any reinforcement learning
algorithm is to find a policy such that the agent’s performance approaches that
of π∗.

To speed up learning on a new task, transfer learners exploit knowledge
previously learned on a past task. Here, we will assume as in [?] that the past
task and the current task have the same state-action space. We study the case
where the available knowledge has the form of a policy π̄ learned on the past
task.

3 Transfer Learners with Static Transfer Rates

In this section, we will present a state-of-the-art transfer learner, namely PPR
(Probabilistic Policy Reuse, as well as PPR-decay, a variation on PPR [?]). These
algorithms exhibit a parameter which controls the balance between the ongoing
learned policy and π̄. As in many transfer methods, PPR have been directly
built on a standard Q-learner, and thus share the same structure. The only
difference with a Q-learner lies in the action selection method (referred here as
ChooseAction).

Let us see how PPR works. At each step, the PPR algorithm randomly
chooses to follow the policy ε-greedy(π) or to follow π̄, as depicted in Table ??.
Here, π refers to the policy induced by the Q-values (π(s) = argmaxaQt(s, a))
and ε-greedy(π) refers to the policy obtained by choosing π with probability 1−ε,
or a random action with probability ε. Fernandez et al. proposed arbitrarily to
initialize ϕ to one at the beginning of each episode, and to decrease its influence
at each step t by 0, 95t. PPR-decay mimics a Q-learner when ϕ = 0, but does not



follow π̄ at each step when ϕ = 1 because of the decay. Therefore, we introduce
a variation on PPR-decay, namely PPR, in which ϕ is not decreased during the
episode.

ChooseAction(st, π̄, ϕ) Name of transfer algorithm

at =

{
π̄(st) w. proba.ϕ× 0, 95t

ε-greedy(π) otherwise

PPR-decay [?]
(PPR with exponential decay)

at =

{
π̄(st) with proba. ϕ

ε-greedy(π) with proba 1− ϕ
PPR

(Probabilistic Policy Reuse)
Table 1. Examples of ChooseAction(st, π̄, ϕ) functions in static transfer learners.

Clearly, ϕ can be seen here as a parameter controling the transfer rate. It
is not hard to see that this rate should be dependent on the similarity between
the past and the current task. Computing such a similarity is difficult in the
general case, and optimizing ϕ can be done during learning. In this section,
ϕ was assumed to be a constant set before the learning process. In the next
sections, we will show how ϕ can be optimized dynamically, and ajusted after
each episode.

4 Optimization of the Transfer
Rate as a Stochastic Continuum-Armed Bandit
Problem

Consider a transfer method such as one of those discussed above, in which a
parameter ϕ ∈ [0, 1] controls the transfer rate, in such a way that if ϕ = 0, the
policy π̄ is not being used, and if ϕ = 1, the agent follows exclusively π̄. Let us
consider the problem of optimizing ϕ, in order to improve the speed up learning.
For the sake of simplicity, adjustment of ϕ will occur only after each episode,
thus exploiting the sequence of rewards gathered during the last episode.

Consider a learning episode starting at time t. Before the episode begins, the
agent has to choose a value of ϕ, which ideally would yield the highest expected
gain Vt(ϕ) , E [rt + γrt+1 + . . . | ϕ]. At the end of the episode, the agent can
compute

∑
k rt+kγ

k which is an unbiased estimator of Vt(ϕ). Choosing the best
value for ϕ is challenging, as gradient methods which require the knowledge of
∂Vt

∂ϕ might not be applicable. It turns out that this problem is a typical continuum
armed bandit problem.

The continuum armed bandit problem which belongs to the well known family
of multi-armed bandit problems, is a particularly appropriate setting for the
optimization of Vt(ϕ). In this setting, at each time step t, a learner chooses
a real number Xt ∈ [0, 1] and receives a reward depending on the sequence
X1 . . . Xt. The goal of the learner is to maximize the total sum of rewards, or to
minimize the regret as stated formally below:



Definition 1 (The continuum armed-bandit problem) Let P (. | x, t) be
an unknown distribution indexed by x ∈ [0, 1] and t ∈ {1 . . . n}. At each trial
t, the learner chooses Xt ∈ [0, 1] and receives return Yt randomly drawn from
P (. | Xt, t). Let bt(x) = E [Yt | Xt = x, t]. The agent’s goal is to minimize its
expected regret E [

∑
t bt(x

∗)−
∑
t Yt], given that x∗ = supx∈[0,1]

∑n
t=1 bt(x).

This definition is a slight generalization of that found in [?]. Still in [?],
Kleinberg designs an algorithm called CAB1 solving this continuum armed ban-
dit problem with the following guaratees:

Corollary 2 If the function bt is L-lipschitz (i.e., | bt(x)− bt(x′) |≤ L | x− x′ |
for all x, x′ ∈ [0, 1]), then using CAB1 yields an expected regret bounded by
O(Ln

2
3 log

2
3 n).

In the next section, we will describe AdaTran, an algorithm using CAB1 as
a subroutine. Thus, corollary ?? will later be useful to derive a regret bound on
AdaTran.

5 AdaTran : A Generic Adaptive
Transfer Framework

We now present a generic adaptive transfer learning algorithm, which can be
seen as a wrapper around a transfer learner, optimizing the transfer rate ϕ
using a stochastic adversarial continuum armed-bandit algorithm refered to as
UpdateContBandit. This leads to the AdaTran wrapper, a generic adaptive
transfer algorithm in which many transfer learners can be implemented. Note
that even though most transfer learners do not have such a parameter, they can
often be modified so as to make ϕ appear explicitly.

Algorithm 1 AdaTran
1: Init()
2: t← 0
3: ϕ← ϕ0

4: for each episode h do
5: set the initial state s
6: while (end of episode not reached) do
7: at = ChooseAction(st, π̄, ϕ)
8: Take action at, observe rt+1, st+1

9: Learn(st, at, rt+1, st+1)
10: t← t+ 1
11: end while
12: ϕ← UpdateContBandit(π̄, ϕ, 〈r1, r2, . . .〉)
13: end for

Depending of the function used for ChooseAction (e.g. one of Table ??), Learn
(e.g. a TD update of a model-based learning step) and UpdateContBandit (e.g.



CAB1), the AdaTran will lead to different types of transfer learners. In partic-
ular, the experimental section will evaluate AdaTran(PPR) and AdaTran(PPR-
decay) Let us now show how the bound on the regret of CAB1 can be applied.
Let ti be the time at which the ith episode begins. Suppose Vt(ϕ) satisfies the
L-lipschitz condition. Let ϕt refer to the parameter chosen by CAB1 at time t.
Then on the n first episodes, we have

∑n
i=1 Vti(ϕ

∗) − VtI (ϕt) ≤ O(Ln
2
3 log

2
3 n)

iff the following assumption holds:

Assumption 3 At any given time step t, the value functions Vt(ϕ) does not
depend on previous actions in the MDP.

Equivalently, we might assume that the sequence of functions Vt(ϕ) is fixed
in advance. Note that this type of assumption has been widely discussed in the
multi-armed bandit setting. Also, there has been some attempts to overcome this
assumption in the bandit literature, in particular [?]. These attempts usually rely
on non standard definition of the regret and/or on strong assumptions on the
type of non-stationarity of the environment, which does not suit our setting.
Nevertheless, in our case, the assumption ?? seems reasonable since in most
situations, choosing a sub-optimal exploration strategy for a given episode will
not jeopardize the whole learning process.

We have seen in this section that optimizing ϕ with bounded regret may be
possible, given that Vt(ϕ) satisfies the Lipschitz condition. This remains to be
proven. We will show this in detail for AdaTran(PPR).

6 Properties of the Value Function

In order to bound the regret of AdaTran, we now need to study the properties
of the value function V (ϕ) (the parameter t will be omitted). We will conduct
this analysis in detail for AdaTran(PPR).

First, we will show that without any restrictions, V (ϕ) cannot be optimized
in the worst case. This is due to the fact that the function V (ϕ) can be made
arbitrarily close to any continuous function. To show this, we must first recall
what Bernstein polynomials are. Without loss of generality, we will assume that
the probability distribution D of starting states is equal to one on a given state
s0 and is null elsewhere.

Definition 4 For any function f on [0, 1], the associated Bernstein polynomial
is defined as follows: Bn(f, x) ,

∑n
k=0 f( kn )bk,n(x), where bk,n(x) ,

(
n
k

)
xk(1 −

x)n−k .

Unfortunately, the set of all possible function V (ϕ) includes the set of all Bern-
stein polynomials:

Lemma 5 Let f be any continuous function of [0, 1] and d ∈ N. Then there
exist an MDP such that V (ϕ) = Bd(f, ϕ)



Proof. Let Ad be a deterministic MDP having the structure of a binary tree of
depth d. Let the root state be s0. At each state (node in the tree), Ad allows two
actions left and right leading respectively to the left and right child states. Let
the rewards of all state-actions be null, except those between depth d− 1 and d.
Let us allocate rewards to the 2d states-actions pairs at depth d−1 of the tree in
the following way: if a state-action pair can be reached from the root by l steps
left and d − l steps right (in any order), then its reward must be γ1−d × f( ld ).
Suppose on each state s, the standard policy is π(s) = right, whereas the transfer
policy is π̄(s) = left. Thus, a learner exploring this tree and starting from the
root node would walk down the tree, choosing randomly left and right branches
with probability ϕ (respectively 1−ϕ), and collecting a reward γ1−d×f( id ) at the
bottom of the tree. Let V A

d

(ϕ) = E [r1 + γr2 + . . .] be the value of the root node,
parameterized by ϕ. Clearly, the probability that an agent chooses l times the
left action and d− l times the right action in a given order is ϕl(1−ϕ)d−l. Thus,
the probability of choosing l times left in any order is bl,d(ϕ) =

(
d
l

)
ϕl(1− ϕ)d−l

. Therefore, we have V A
d

(ϕ) = 1
γd−1

∑d
l=0 γ

1−d × f( ld )× bl,d(ϕ).

Recall now that the Weierstrass theorem states that for any continuous function
f on [0, 1], Bn(f, x) converges uniformly to f(x) as n → ∞. An immediate
corollary is:

Corollary 6 For any continuous function f on [0, 1], for any ε > 0, there exists
a deterministic MDP such that |V (ϕ)− f(ϕ)| < ε for all ϕ.

This has important implications in our setting: this corollary tells us that V (ϕ)
can be arbitrarily close to any continuous function, provided the appropriate
MDP. Thus, optimizing V (ϕ) without further restrictions is hopeless.

However, by upper-bounding the rewards, we will now show that V (ϕ) finally
satisfies the lipschitz condition. Let us first bound the derivative of Bernstein
polynomials.

Lemma 7 Let f be a real-valued function on {0, 1
n ,

2
n , . . . , 1}. Then we have

supx∈[0,1] | ddxBn(f, x) |≤ 2n sup | f(x) |.
Due to space constraints, the proof of this technical lemma is omitted.
Applying this lemma on the tree MDPs used in lemma ??, we get the bound

| ddxV
Ad(ϕ) |≤ 2dγd−1rmax, given that all rewards are bounded by rmax. Finally,

we generalize this result (again, the proof is omitted).

Proposition 8 For any MDP M in which rewards are bounded by rmax , any
policies π and π̄, and a starting state s0, we have

∣∣∣ ddϕV (ϕ)
∣∣∣ ≤ 2rmax

(1−γ)2 .

Finally, combining the above result with the regret bound of corollary ??, we
can now show the following:

Corollary 9 The cumulative regret per episode of AdaTran(PPR) is

O

(
rmaxh

2
3 log

2
3 h

(1−γ)2

)
, where h is the episode number.

Again, note that the regret does not depend on the number of states, so the
MDP might be huge here.



7 Experiments

In this section, we evaluate AdaTran on a standard benchmark for transfer learn-
ing: the grid-world problem [?,?]. The reason behind our choice of this learning
task lies in its simplicity. In this learning task, an agent moves in a 25× 25 two-
dimensional maze. Each cell of this grid-world is a state and it may be surrounded
by zero to four walls. At each time step, the agent can choose to move from its
current position to one of the reachable contiguous north/east/west/south cell.
If a wall lies in between, the action fails. Otherwise, the move succeeds with
probability 90%, and with probability 10%, the agent is randomly placed on one
of the reachable cells contiguous to the current cell. At the beginning of each
episode, the agent is randomly and uniformly placed on the maze. As the agent
reaches the goal state (the exit of the maze), it is given a reward of 1, and the
episode is ended. All other rewards are null and the discount factor is arbitrarily
set to γ = 0, 95.

The goal of the current task (the exit) is to reach the bottom right corner. We
generated two other tasks based on the exact same maze but different goals. The
first task refered to as the "similar task" has its goal located two cells away from
the bottom right corner, whereas the second task, refered to as the "dissimilar
task", has its goal located on the opposite corner (upper left corner).

The optimal policies computed on each of these two tasks will serve as transfer
knowledge to solve the current task. The goals of the "similar task" and the
current task are very close to each other. Thus, transfer between both might be
highly valuable. On the opposite, the goals of the "dissimilar task" and that of
the current task are very dissimilar to one another, and transfer is likely to be
less valuable.

AdaTran is compared to other algorithms on figure ?? and ??. Each of these
curves have been averaged over 100 runs. The x-axis represents the episodes,
and the y-axis is the average episode length, given that episode are limited to
10000 steps.

When transferring from the "similar task", PPR performs extremely well,
and AdaTran performs much better than Q-learning, as it quickly finds that
tasks are similar, but a bit worse that PPR as expected. When transferring
from the "dissimilar task", PPR with various levels of ϕ perform the worse: all
episodes reach 10000 steps in average, and the exit of the maze is nearly never
found. The best learner here is Q-learning, which ignores the transfer policy. In
between both lies AdaTran, which quickly detects that the transfer policy should
not be trusted.

Clearly, AdaTran is shown to be robust to dissimilar tasks unlike most other
transfer methods, and it is shown to transfer successfully a high amount of
knowledge on similar tasks.

8 Conclusion

In this paper, we have presented a new framework for explicitly optimizing
the transfer rate in reinforcement learning. We have shown how this frame-



Fig. 1. Similar transfer tasks Fig. 2. Dissimilar transfer tasks

work could be applied on a well known transfer learner to make the transfer rate
auto-adaptable, namely the PPR method. Moreover, by bounding the maximum
reward, we showed that the average regret converged towards zero.
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