
Building Secure Resources to Ensure Safe
Computations in Distributed and Potentially

Corrupted Environments

Sébastien Varrette1, Jean-Louis Roch2, Guillaume Duc3 and
Ronan Keryell3,4

1 Computer Science and Commnications Unit, University of Luxembourg, Luxembourg
2 MOAIS team, LIG Laboratory, Grenoble, France

3 HPCAS team, Computer Science Laboratory, TÉLÉCOM Bretagne, Plouzané, France
4 HPC Project, Meudon, France

SGS 2008, Las Palmas de Gran Canaria, August 25st, 2008

Context Secure computing grid CryptoPage Application Conclusion

Summary

1 Context & Motivations

2 Guidelines for a secure computing grid

3 The hard-core way : CryptoPage

4 SAFESCALE application

2 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Large scale computing platforms (I)

Highly demanding applications needs highly parallel computing
infrastructures

[Beowulf] Clusters: Chaos.lu (cluster @ Luxembourg)

user

3 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Large scale computing platforms (II)

Computing grids [Foster&al.97] : Grid5000, Globus, etc.

Cluster 2

INTERNET

user

Cluster 1

4 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Large scale computing platforms (III)

“Desktop grid”: Seti@Home, BOINC, XtremWeb, etc.

INTERNET

user

5 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Threats...
Rather open infrastructures and public networks ;

Scans, DoS, DDoS, intrusion

Applicative vulnerabilities

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

N
um

be
r o

f r
ep

or
ts

Year

Number of vulnerability reports

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

N
um

be
r o

f r
ep

or
ts

 (l
og

 s
ca

le
)

Year

Number of incident reports

Malwares

worms, virus (need host program to replicate), trojan horses...

The “Seti@Home” problem

In 2000, modified client to improve FFT computation but
introduced rounding errors that canceled months of world-wide
computation... /
A node can reply “not found” to keep a good result for her own

6 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

... And security concerns

General constraints: CAIN + AD

Confidentiality

Authentication

Integrity

(Non-repudiation)

+
Availability

Delegation

Availability for fault tolerance (crash-fault...)

Delegation for access right

Specific constraints:

Interaction between global/local security policies

Single Sign On

Rely on standards + scalability

7 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

...Trust scalability issue
Secure grid computing in a real (hostile) environment

No confidence in the remote computers that run our own programs

What proves the remote computers are reliable and trustworthy?

The remote administrator or a pirate can spy computations

The remote administrator or a pirate can modify computations and
results

Distributed computing

; Asymmetry in the trust from the user point of view

A remote computer can trust a user with secure authentication

...but how to be sure the remote program is fairplay?

The remote computer should be able to verify the policy usage

8 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

In this talk

Guidelines for a secured large scale computing platform

↪→ ensure general/specific security concern

Explicit construction of strongly secured resources

↪→ used to ensure computation resilience against tasks forgery
↪→ combine both software and hardware approaches

Application within the SAFESCALE project

9 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Summary

1 Context & Motivations

2 Guidelines for a secure computing grid

3 The hard-core way : CryptoPage

4 SAFESCALE application

10 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Guidelines for a secure computing grid (I)

Build Safe Resources

Control user rights, limit available services, enforce quotas

Ensure up-to-date system, enable firewall, monitoring and audit

Sandboxing

Hard drive encryption

Anti-virus, etc.

... and more in the sequel

11 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Guidelines for a secure computing grid (II)

Ensure confidentiality

Communications:

↪→ Cluster/grid of cluster: VPN, SSH, eventually IPSec...
↪→ “Globus” grids: SSL/TLS, WS-Security, WS-SecureConversation

[Source | Executed] code

↪→ encrypted computation
↪→ code obfuscation
↪→ time-limited blackbox security

12 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Guidelines for a secure computing grid (III)

Ensure authentication & (eventually) access control

Clusters: SSH + authentication agents, Kerberos, KryptoKnight,
LDAP(s)-based

Globus: GSI (Grid Security Infrastructure) module

13 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Guidelines for a secure computing grid (IV)

Short−term Certificat

TLS/WS−Security

PUU

PR

id. locale

id. globale

grid−mapfile

PR

id. locale

id. globale

grid−mapfile

T

T

T

T

(2)

Alice

(login UNIX, Kerberos...)

Institution 2

(login UNIX, Kerberos...)

Institution 1

Task

Computing Resources

Long−term Certificat

Authentification

(1) Create a

user proxy

 Host Computer

(0) Initialization
of the grid−mapfiles

(2) Allocation of a remote
resource = task creation

(3) Allocation of
a resource
from a task

Local
security policy

Local Authentifition

Job Submission

Job Submission

Computing Resources

Task

Task

sub−task Creation
Job Submission

Job Submission

security policy

Local

Local Authentication

Task

User User Proxy

Resource Proxy

Resource Proxy

14 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Guidelines for a secure computing grid (V)

Ensure integrity

Communications: Modification Detection Code, Message
Authentication Code, etc.

Parallel execution resilience against crash-faults/task forgery

↪→ based on macro-dataflow graph analysis
↪→ graph stored on a secure checkpoint server for checkpoint/rollback
↪→ task context extracted for safe re-execution and result checking
↪→ assume partition of the resources (reliable ∪ unreliable)

15 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Guidelines for a secure computing grid (VI)

Monte-Carlo certification by partial duplication [Varrette07]

Efficient certification of independent tasks: MCT (E)

Certification of dependent tasks

↪→ EMCT (E): low-overhead certification for Trees/Fork-Join graphs
↪→ EMCT (E) variants to limit worst case cost:

EMCTα(E), EMCTK (E)

16 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

; Execution platform in SAFESCALE for safe
execution
Unreliable Resources

INTERNET

user

Checkpoint Server

Reliable Resources

R

Verifiers

Distributed Computing platform

WorkersU

Resources partitionning |Reliable| � |Unreliable|
Reliable system for task re-execution

R need to be trusted...

=⇒ Effective construction of strongly secured resources?
Hybrid solution: software + hardware

17 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

; Execution platform in SAFESCALE for safe
execution
Unreliable Resources

INTERNET

user

Checkpoint Server

Reliable Resources

R

Verifiers

Distributed Computing platform

WorkersU

Resources partitionning |Reliable| � |Unreliable|
Reliable system for task re-execution

R need to be trusted...

=⇒ Effective construction of strongly secured resources?

Hybrid solution: software + hardware

17 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

; Execution platform in SAFESCALE for safe
execution
Unreliable Resources

INTERNET

user

Checkpoint Server

Reliable Resources

R

Verifiers

Distributed Computing platform

WorkersU

Resources partitionning |Reliable| � |Unreliable|
Reliable system for task re-execution

R need to be trusted...

=⇒ Effective construction of strongly secured resources?
Hybrid solution: software + hardware

17 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Software environment

Programming model ≡ Task oriented parallelism to cope with
SAFESCALE model

KAAPI C++ framework (TBB-like language) developed at LIG to
express task parallelism and work stealing

Task creation
Shared types to hide communications if needed
Parallel iterators

Current development of an automatic parallelizer based on PIPS
source-to-source compiler

Use directives to delimit task creation
Use PIPS semantics analysis to parallelize the code
Use of array region analysis to compute data to be changed into
shared object

http://www.cri.ensmp.fr/pips

18 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

http://www.cri.ensmp.fr/pips

Context Secure computing grid CryptoPage Application Conclusion

Summary

1 Context & Motivations

2 Guidelines for a secure computing grid

3 The hard-core way : CryptoPage

4 SAFESCALE application

19 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Needs for some hardware support

The verifiers must be trusted...

A trusted and secure architecture may be used for computation
without verification

A node may want to verify what alien program is running

Is the usage contract respected?
Does the binary correspond to a given program or even source?

Difficult to hide secrets into binaries against reverse-engineering

; Useful to have some secure hardware too...

20 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Some definitions (I)

About what we want to protect into a secure processor

Definition

A secure process

Is protected against physical action outside

Is protected against logical action inside

Has memory spaces enciphered outside

Has a partially randomized address space

Definition

A secure execution of a secure process is

Correct (no attack on its states detected up to now...)

Or aborted (active attack detected and all the internal states are deleted)

21 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Some definitions (II)

About the attackers

Definition

An attacker of a secure process is

Another process (secure or not, the operating system...) that spies or
modifies internal states (registers, caches...) or external states (memory,
peripherals...)

A human being with logical or physical means to forge or spy anything
outside the processor

22 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

CryptoPage: the big picture

Clear text
process
context

Ciphered
process
context

Ciphered
process
context

Clear text
process
context

Clear text
process
context

Ciphered
process
context

RSA

AES
CBC

Swap-out
symmetric key

Processor
private key

Cache

MMU

Processor

Merkle tree
verifier

MMU

Cache

TLB

Secure
information

Bus

Data & instructions

Addresses

AES
GCM

Symmetric
key

Line
remapper

Line
remapping

buffer

Physically secure perimeter

Random
generator

Attestation
system Identication

buffer SHA1

Secure storage
verifier

Secure
storage key

23 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Performance simulations on SpecINT2000

On SimpleScalar/CryptoPage

 0

 0.2

 0.4

 0.6

 0.8

 1

tw
ol

f

bz
ip

2

vo
rt

ex

ga
p

pe
rlb

m
k

pa
rs

er

m
cf

gc
c

vp
r

gz
ip

N
or

m
al

iz
ed

 IP
C

2.22 0.99 2.37 0.37 0.97 0.67 1.76 1.00 1.95 0.88

HIDE CP/HIDE CP/HIDE Lazy 512

24 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

CryptoPage use case

To run a secure process remotely

The compute owner enciphers her program by using the public key
of the remote processor

The remote processor executes the process

The remote owner can authenticate the process against a given
binary or a given source with a a given compilation chain

25 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Summary

1 Context & Motivations

2 Guidelines for a secure computing grid

3 The hard-core way : CryptoPage

4 SAFESCALE application

26 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

SAFESCALE application

(0) To store
DB1

Storage grid

DB2 DB3

Computing grid
D2

(1) To analyse

D1

(2) score computation

(3) Results

Breast cancer lesions detection in mammograms [Varrette& al.06]

Statistical comparison on a database of studied cases

27 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Experimental protocol

(8) The first 10% entries of T are sent back to the user

DB1 DB2 DBm

Storage grid (PACS)

meta­data

Checkpoint Server
+

Farmanager

C
o
n
tr

o
le

r/
V

e
ri
fi
e
r

10%

Sorted scores

n

INTERNET user

C C

Hostmanager Hostmanager Hostmanager

C

S S S

CERTIFICATION PROCESS

Hostmanager Hostmanager Hostmanager

r2r1 rn

Comparison Tasks

Sorting tasks

Scores

CERTIFICATION PROCESS

UNSAFE RESOURCES

SAFE RESOURCES

Front−End

Grid5000

(1)

(8)

(1)

(2)

(8)

(3)

(4)

(4)

(5)

(6)

(7)

(3) Using metadata of I, index of n images are selected on the storage grid

(2) A new mammogram I is send for analyse

(4) Farmanager submits n comparison jobs to hostmanagers
Input images are anonymized

(5) Scores are certified to be correct using result−checking algorithms

(1) User authenticate to the front−end server

(6) Farmanager submits sorting jobs to hostmanagers

(7) The sorting process is certified correct using result−checking algorithms

is produced

A table T containing sorted scores with pointers to corresponding images

28 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Experimental results (I)

Try to detect corruption with ratio of wrong nodes q = 0.01 with a
probability of ε = 0.001

With only 1 reliable processor to do the verification of 688 tasks
needed by EMCT

The execution on CryptoPage is estimated with an overhead of
7.4% (worst case on SpecINT 2000)

The data-base access is not yet parallelized

29 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Experimental results (II)

Time required to deploy the images on the grid

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processors

n=100000
n=10000
n=1000

30 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Experimental results (III)

Scores computation + certification: 1000 tasks

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processeurs

End of phase 3 (EMCT certification on CryptoPage resources)
End of phase 3 (EMCT certification on classical resources)

End of phase 2 (distributed score computation)

31 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Experimental results (IV)

Scores computation + certification: 10000 tasks

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processeurs

End of phase 3 (EMCT certification on CryptoPage resources)
End of phase 3 (EMCT certification on classical resources)

End of phase 2 (distributed score computation)

32 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Experimental results (V)

Scores computation + certification: 100000 tasks

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processeurs

End of phase 3 (EMCT certification on CryptoPage resources)
End of phase 3 (EMCT certification on classical resources)

End of phase 2 (distributed score computation)

33 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Conclusion

Security, reliability and trust need to be addressed for global
acceptance of distributed computing at large

Probabilistic verification ≡ good trade-off result quality/overhead

Efficient even with only 1 verifier

HPC confidentiality and remote trust needs hardware support

SAFESCALE architecture embraces different amounts of secure
hardware

Pure software execution with verification on her own well controlled
machines
Pure software execution with verification on some (remote)
hardware secured machines
Software execution on hardware secured (remote) machines, no
need for verification

KAAPI C++ framework to ease task parallelism

PIPS-based tool to generate KAAPI code for legacy applications

34 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Context Secure computing grid CryptoPage Application Conclusion

Thanks for your attention...

Questions?

35 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Monte-Carlo certification (1)

Definition (certification Monte-Carlo algorithm)

A : (E , ε) −→
{

CORRECT (with error probability ≤ ε)

FALSIFIED (with falsification proof)

Cf. Miller-Rabin

Interests:

↪→ ε fixed by the user
↪→ a limited number of controller calls (ideally o(n))
↪→ can be done in parallel on R!

Efficient detection of massive attack (nF ≥ nq = dq.ne)
↪→ the application should tolerate a limited number of faults [cf. chap.7]

↪→ no assumption on attackers behaviour

36 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Monte-Carlo certification (2)

Resources avg. speed/proc total speed

U ΠU Πtot
U

R ΠR Πtot
R

Scheduling by on-line work-stealing

↪→ execution (on U): W1 �W∞
↪→ certification (on R) : W C

1 and W C
∞

Theorem (Executing and Certification Time)

w.h.p:

TEC ≤
[

W1

Πtot
U

+O
(

W∞
ΠU

)]
+

[
W C

1

Πtot
R

+O
(

W C∞
ΠR

)]

37 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

EMCT algorithm

Extended Monte-Carlo Test EMCT (E) 17

Input: Execution E represented by G composed of dependent tasks.
Output: The correctness of E (FALSIFIED or CORRECT)
Uniformly choose one task T in G;
// Re-execution of G≤(T) on R to detect initiators
forall Tj ∈ G≤(T) / Tj as not yet been checked do

ô(Tj , E) ← ReexecuteOnVerifier(Tj, i(Tj , E));
if o(Tj , E) 6= ô(Tj , E) then

return FALSIFIED;
end
return CORRECT;

Figure 9. EMCT algorithm: certification of dependent tasks.

by the certification algorithm (i.e in G≥(Tj) ∩ G≤(T)). As nF ≥ q.n,
P (EMCT = CORRECT) ≤ n−nF

n ≤ 1 − q. The average number of
verifications is simply the average number of tasks in the predecessor
graph checked in EMCT . Note that once T is selected, the cost can be
specified exactly as |G≤(T)|.

Theorem 2 (Probabilistic certification using EMCT). Let E be an ex-
ecution with only dependent tasks and assume that E is either correct or
massively attacked with ratio q. ∀ǫ ∈]0, 1[, the number of independent
executions of algorithm EMCT sufficient to achieve a certification of
E with probability of error less than or equal to ǫ is Nǫ,q = ⌈ log ǫ

log(1−q)⌉.
Yet in the worst case, W C

1 = Ω(W1) and W C∞ = Ω(W∞).

Proof. The demonstration relative to Nǫ,q is similar to the one described
for theorem 1. It then follows from lemma 7 that the certification cost
can be written W C

1 = Nǫ,qCG = Nǫ,q

n

∑
T∈G

∣∣G≤(T)
∣∣. This cost directly

depends on the underlying graph. In the worst case, the certification
performs a complete re-execution on R. This is the case for instance if
G is a chain of n unit tasks. In such context, the average number of

verifiers calls is CG =
∑

T∈G|G≤(T)|
n = n(n−1)

2n = n−1
2 = Θ(W1) which

leads to W C
1 = Θ(W1). In addition, W C∞ = W∞ on average.

The impact of parameters ǫ and q in EMCT on the number of
verifiers calls remains identical to MCT (see Fig 6).

If some graphs conduct to the worst-case cost during the certification
by EMCT with W C

1 = Θ(W1), there exist numerous graphs with
a much lower overhead. This is the case for instance with trees and
Fork-Join graphs as the next theorem states. Such graphs are common
in distributed computing as they typically represent parallel recursive
programs based on a Divide & Conquer strategy.

jos2008.tex; 20/12/2007; 15:22; p.17

38 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

EMCT algorithm (2)

Theorem (Probabilistic certification by EMCT (E))

A(E , ε) : Nε,q = d log ε
log(1−q)e calls to EMCT (E)

Expected cost per call: CG = 1
n

∑
T∈G |G≤(T)|

Worst case: W C
1 = Ω(W1) and W C

∞ = Ω(W∞)

Yet (Trees/F-J graphs): W C
1 = O (hW∞) where h is the height

EMCT (E) variants to limit worst case cost

1 EMCTα(E): check a proportion α of G≤(T)

2 EMCTK (E): check min
(
K , |G≤(T)|) tasks in G≤(T)

39 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

Certification algorithms comparison23

Table II. Comparison of the certification algorithms dealing with tasks dependencies.

Test T : MCT §4 EMCT §5.2 EMCTα §5.3 EMCT 1 §5.4

#T detected
faulty

nI ≥⌈
(d−1)nF

dh−1

⌉ nq = ⌈n.q⌉ nqαΓT(nq) or
nq

nqΓT(nq)

Perror (T) 1− ΓG(nq) ≤
1−

⌈
q (d−1)

dh−1

⌉ 1− q 1− qαΓT(nq)
or 1− q

1− qΓT(nq)

NT :
convergence to ǫ

⌈
log ǫ

log(1−ΓG(nq))

⌉ ⌈
log ǫ

log(1−q)

⌉ ⌈
log ǫ

log(1−qαΓG(nq))

⌉
or
⌈

log ǫ
log(1−q)

⌉
⌈

log ǫ
log(1−qΓG(nq))

⌉

exact CG 1 |G≤(T)| ⌈α|G≤(T)|⌉ 1

avg. CG

(n tasks,
height h)

G 1 |G≤|
⌈
α|G≤|

⌉
1

Tree 1 h + 1 =
Θ(log n)

⌈α(h + 1)⌉ =
Θ(α log n)

1

Fork-
Join

1 h + 3 =
Θ(log n)

⌈α(h + 3)⌉ =
Θ(α log n)

1

WC
1 :

NT calls
to T

G NMCT W∞ NTW∞|G≤| αNTW∞|G≤| NEMCT 1
W∞

Tree NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1
W∞

Fork-
Join

NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1
W∞

WC∞ O(W∞) O(W∞) O(W∞) O(W∞)

based on MCT is only able to detect with certainty initiators
while in EMCT , any falsified task in the re-executed predecessor
subgraph is always found, if it exists;

− the probability of error when applying the test i.e. the probability
for the considered test to answer CORRECT while G is massively
attacked with ratio q;

− the convergence to ǫ, noted NT , i.e. the minimal number of in-
dependent invocations of the specified test required to certify an
execution E with error probability bound by ǫ, therefore leading to
the complete certification algorithm A(E, ǫ). This value depends
on the probability of error contributed by a single invocation of
the considered test;

− the exact and average number CG of calls to verifiers needed by a
single evocation of the considered test;

jos2008.tex; 20/12/2007; 15:22; p.23

40 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments

	Context & Motivations
	Guidelines for a secure computing grid
	The hard-core way : CryptoPage
	SAFESCALE application
	Conclusion
	Appendix

