
Building Secure Resources to Ensure Safe
Computations in Distributed and Potentially

Corrupted Environments
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Large scale computing platforms (I)

Highly demanding applications needs highly parallel computing
infrastructures

[Beowulf] Clusters: Chaos.lu (cluster @ Luxembourg)

user

3 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments



Context Secure computing grid CryptoPage Application Conclusion

Large scale computing platforms (II)

Computing grids [Foster&al.97] : Grid5000, Globus, etc.

Cluster 2

INTERNET

user

Cluster 1
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Large scale computing platforms (III)

“Desktop grid”: Seti@Home, BOINC, XtremWeb, etc.

INTERNET

user
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Threats...
Rather open infrastructures and public networks ;

Scans, DoS, DDoS, intrusion

Applicative vulnerabilities
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Malwares

worms, virus (need host program to replicate), trojan horses...

The “Seti@Home” problem

In 2000, modified client to improve FFT computation but
introduced rounding errors that canceled months of world-wide
computation... /
A node can reply “not found” to keep a good result for her own
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... And security concerns

General constraints: CAIN + AD

Confidentiality

Authentication

Integrity

(Non-repudiation)

+
Availability

Delegation

Availability for fault tolerance (crash-fault...)

Delegation for access right

Specific constraints:

Interaction between global/local security policies

Single Sign On

Rely on standards + scalability
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...Trust scalability issue
Secure grid computing in a real (hostile) environment

No confidence in the remote computers that run our own programs

What proves the remote computers are reliable and trustworthy?

The remote administrator or a pirate can spy computations

The remote administrator or a pirate can modify computations and
results

Distributed computing

; Asymmetry in the trust from the user point of view

A remote computer can trust a user with secure authentication

...but how to be sure the remote program is fairplay?

The remote computer should be able to verify the policy usage
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In this talk

Guidelines for a secured large scale computing platform

↪→ ensure general/specific security concern

Explicit construction of strongly secured resources

↪→ used to ensure computation resilience against tasks forgery
↪→ combine both software and hardware approaches

Application within the SAFESCALE project
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Guidelines for a secure computing grid (I)

Build Safe Resources

Control user rights, limit available services, enforce quotas

Ensure up-to-date system, enable firewall, monitoring and audit

Sandboxing

Hard drive encryption

Anti-virus, etc.

... and more in the sequel
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Guidelines for a secure computing grid (II)

Ensure confidentiality

Communications:

↪→ Cluster/grid of cluster: VPN, SSH, eventually IPSec...
↪→ “Globus” grids: SSL/TLS, WS-Security, WS-SecureConversation

[ Source | Executed ] code

↪→ encrypted computation
↪→ code obfuscation
↪→ time-limited blackbox security
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Guidelines for a secure computing grid (III)

Ensure authentication & (eventually) access control

Clusters: SSH + authentication agents, Kerberos, KryptoKnight,
LDAP(s)-based

Globus: GSI (Grid Security Infrastructure) module
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Guidelines for a secure computing grid (IV)

Short−term Certificat
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Guidelines for a secure computing grid (V)

Ensure integrity

Communications: Modification Detection Code, Message
Authentication Code, etc.

Parallel execution resilience against crash-faults/task forgery

↪→ based on macro-dataflow graph analysis
↪→ graph stored on a secure checkpoint server for checkpoint/rollback
↪→ task context extracted for safe re-execution and result checking
↪→ assume partition of the resources (reliable ∪ unreliable)
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Guidelines for a secure computing grid (VI)

Monte-Carlo certification by partial duplication [Varrette07]

Efficient certification of independent tasks: MCT (E )

Certification of dependent tasks

↪→ EMCT (E): low-overhead certification for Trees/Fork-Join graphs
↪→ EMCT (E) variants to limit worst case cost:

EMCTα(E), EMCTK (E)
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; Execution platform in SAFESCALE for safe
execution
Unreliable Resources 

INTERNET

user

Checkpoint Server 

Reliable Resources 

R 

Verifiers

Distributed Computing platform

WorkersU 

Resources partitionning |Reliable| � |Unreliable|
Reliable system for task re-execution

R need to be trusted...

=⇒ Effective construction of strongly secured resources?
Hybrid solution: software + hardware
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Software environment

Programming model ≡ Task oriented parallelism to cope with
SAFESCALE model

KAAPI C++ framework (TBB-like language) developed at LIG to
express task parallelism and work stealing

Task creation
Shared types to hide communications if needed
Parallel iterators

Current development of an automatic parallelizer based on PIPS
source-to-source compiler

Use directives to delimit task creation
Use PIPS semantics analysis to parallelize the code
Use of array region analysis to compute data to be changed into
shared object

http://www.cri.ensmp.fr/pips
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Needs for some hardware support

The verifiers must be trusted...

A trusted and secure architecture may be used for computation
without verification

A node may want to verify what alien program is running

Is the usage contract respected?
Does the binary correspond to a given program or even source?

Difficult to hide secrets into binaries against reverse-engineering

; Useful to have some secure hardware too...
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Some definitions (I)

About what we want to protect into a secure processor

Definition

A secure process

Is protected against physical action outside

Is protected against logical action inside

Has memory spaces enciphered outside

Has a partially randomized address space

Definition

A secure execution of a secure process is

Correct (no attack on its states detected up to now...)

Or aborted (active attack detected and all the internal states are deleted)
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Some definitions (II)

About the attackers

Definition

An attacker of a secure process is

Another process (secure or not, the operating system...) that spies or
modifies internal states (registers, caches...) or external states (memory,
peripherals...)

A human being with logical or physical means to forge or spy anything
outside the processor
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CryptoPage: the big picture
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Performance simulations on SpecINT2000

On SimpleScalar/CryptoPage
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CryptoPage use case

To run a secure process remotely

The compute owner enciphers her program by using the public key
of the remote processor

The remote processor executes the process

The remote owner can authenticate the process against a given
binary or a given source with a a given compilation chain
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SAFESCALE application

(0) To store
DB1

Storage grid

DB2 DB3

Computing grid
D2

(1) To analyse

D1

(2) score computation

(3) Results

Breast cancer lesions detection in mammograms [Varrette& al.06]

Statistical comparison on a database of studied cases
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Experimental protocol

(8) The first 10% entries of T are sent back to the user  

DB1 DB2 DBm

Storage grid (PACS)

meta­data
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+
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INTERNET user

C C
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CERTIFICATION PROCESS

Hostmanager Hostmanager Hostmanager

r2r1 rn

Comparison Tasks

Sorting tasks

Scores

CERTIFICATION PROCESS

UNSAFE RESOURCES

SAFE RESOURCES

Front−End

Grid5000

(1)

(8)

(1)

(2)

(8)

(3)

(4)

(4)

(5)

(6)

(7)

(3) Using metadata of I, index of n images are selected on the storage grid    

(2) A new mammogram I is send for analyse    

(4) Farmanager submits n comparison jobs to hostmanagers 
Input images are anonymized

(5) Scores are certified to be correct using result−checking algorithms

(1) User authenticate to the front−end server

(6) Farmanager submits sorting jobs to hostmanagers

(7) The sorting process is certified correct using result−checking algorithms 

is produced

A table T containing sorted scores with pointers to corresponding images 
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Experimental results (I)

Try to detect corruption with ratio of wrong nodes q = 0.01 with a
probability of ε = 0.001

With only 1 reliable processor to do the verification of 688 tasks
needed by EMCT

The execution on CryptoPage is estimated with an overhead of
7.4% (worst case on SpecINT 2000)

The data-base access is not yet parallelized
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Experimental results (II)

Time required to deploy the images on the grid
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Experimental results (III)

Scores computation + certification: 1000 tasks
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Experimental results (IV)

Scores computation + certification: 10000 tasks
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Experimental results (V)

Scores computation + certification: 100000 tasks
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Conclusion

Security, reliability and trust need to be addressed for global
acceptance of distributed computing at large

Probabilistic verification ≡ good trade-off result quality/overhead

Efficient even with only 1 verifier

HPC confidentiality and remote trust needs hardware support

SAFESCALE architecture embraces different amounts of secure
hardware

Pure software execution with verification on her own well controlled
machines
Pure software execution with verification on some (remote)
hardware secured machines
Software execution on hardware secured (remote) machines, no
need for verification

KAAPI C++ framework to ease task parallelism

PIPS-based tool to generate KAAPI code for legacy applications
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Thanks for your attention...

Questions?
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Monte-Carlo certification (1)

Definition (certification Monte-Carlo algorithm)

A : (E , ε) −→
{

CORRECT (with error probability ≤ ε)

FALSIFIED (with falsification proof)

Cf. Miller-Rabin

Interests:

↪→ ε fixed by the user
↪→ a limited number of controller calls (ideally o(n))
↪→ can be done in parallel on R!

Efficient detection of massive attack (nF ≥ nq = dq.ne)
↪→ the application should tolerate a limited number of faults [cf. chap.7]

↪→ no assumption on attackers behaviour
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Resources avg. speed/proc total speed

U ΠU Πtot
U

R ΠR Πtot
R

Scheduling by on-line work-stealing

↪→ execution (on U): W1 �W∞
↪→ certification (on R) : W C

1 and W C
∞

Theorem (Executing and Certification Time)

w.h.p:

TEC ≤
[

W1

Πtot
U

+O
(

W∞
ΠU

)]
+

[
W C

1

Πtot
R

+O
(

W C∞
ΠR

)]
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EMCT algorithm

Extended Monte-Carlo Test EMCT (E ) 17

Input: Execution E represented by G composed of dependent tasks.
Output: The correctness of E (FALSIFIED or CORRECT)
Uniformly choose one task T in G;
// Re-execution of G≤(T) on R to detect initiators
forall Tj ∈ G≤(T) / Tj as not yet been checked do

ô(Tj , E) ← ReexecuteOnVerifier(Tj, i(Tj , E));
if o(Tj , E) 6= ô(Tj , E) then

return FALSIFIED;
end
return CORRECT;

Figure 9. EMCT algorithm: certification of dependent tasks.

by the certification algorithm (i.e in G≥(Tj) ∩ G≤(T)). As nF ≥ q.n,
P (EMCT = CORRECT ) ≤ n−nF

n ≤ 1 − q. The average number of
verifications is simply the average number of tasks in the predecessor
graph checked in EMCT . Note that once T is selected, the cost can be
specified exactly as |G≤(T)|.

Theorem 2 (Probabilistic certification using EMCT ). Let E be an ex-
ecution with only dependent tasks and assume that E is either correct or
massively attacked with ratio q. ∀ǫ ∈ ]0, 1[, the number of independent
executions of algorithm EMCT sufficient to achieve a certification of
E with probability of error less than or equal to ǫ is Nǫ,q = ⌈ log ǫ

log(1−q)⌉.
Yet in the worst case, W C

1 = Ω(W1) and W C∞ = Ω(W∞).

Proof. The demonstration relative to Nǫ,q is similar to the one described
for theorem 1. It then follows from lemma 7 that the certification cost
can be written W C

1 = Nǫ,qCG = Nǫ,q

n

∑
T∈G

∣∣G≤(T)
∣∣. This cost directly

depends on the underlying graph. In the worst case, the certification
performs a complete re-execution on R. This is the case for instance if
G is a chain of n unit tasks. In such context, the average number of

verifiers calls is CG =
∑

T∈G|G≤(T)|
n = n(n−1)

2n = n−1
2 = Θ(W1) which

leads to W C
1 = Θ(W1). In addition, W C∞ = W∞ on average.

The impact of parameters ǫ and q in EMCT on the number of
verifiers calls remains identical to MCT (see Fig 6).

If some graphs conduct to the worst-case cost during the certification
by EMCT with W C

1 = Θ(W1), there exist numerous graphs with
a much lower overhead. This is the case for instance with trees and
Fork-Join graphs as the next theorem states. Such graphs are common
in distributed computing as they typically represent parallel recursive
programs based on a Divide & Conquer strategy.

jos2008.tex; 20/12/2007; 15:22; p.17
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Theorem (Probabilistic certification by EMCT (E ))

A(E , ε) : Nε,q = d log ε
log(1−q)e calls to EMCT (E )

Expected cost per call: CG = 1
n

∑
T∈G |G≤(T)|

Worst case: W C
1 = Ω(W1) and W C

∞ = Ω(W∞)

Yet (Trees/F-J graphs): W C
1 = O (hW∞) where h is the height

EMCT (E ) variants to limit worst case cost

1 EMCTα(E ): check a proportion α of G≤(T)

2 EMCTK (E ): check min
(
K , |G≤(T)|) tasks in G≤(T)

39 / 40Building Secure Resources to Ensure Safe Computations in Distributed and Potentially Corrupted Environments



Certification algorithms comparison23

Table II. Comparison of the certification algorithms dealing with tasks dependencies.

Test T : MCT §4 EMCT §5.2 EMCTα §5.3 EMCT 1 §5.4

#T detected
faulty

nI ≥⌈
(d−1)nF

dh−1

⌉ nq = ⌈n.q⌉ nqαΓT(nq) or
nq

nqΓT(nq)

Perror (T ) 1− ΓG(nq) ≤
1−

⌈
q (d−1)

dh−1

⌉ 1− q 1− qαΓT(nq)
or 1− q

1− qΓT(nq)

NT :
convergence to ǫ

⌈
log ǫ

log(1−ΓG(nq))

⌉ ⌈
log ǫ

log(1−q)

⌉ ⌈
log ǫ

log(1−qαΓG(nq))

⌉
or
⌈

log ǫ
log(1−q)

⌉
⌈

log ǫ
log(1−qΓG(nq))

⌉

exact CG 1 |G≤(T)| ⌈α|G≤(T)|⌉ 1

avg. CG

(n tasks,
height h)

G 1 |G≤|
⌈
α|G≤|

⌉
1

Tree 1 h + 1 =
Θ(log n)

⌈α(h + 1)⌉ =
Θ(α log n)

1

Fork-
Join

1 h + 3 =
Θ(log n)

⌈α(h + 3)⌉ =
Θ(α log n)

1

WC
1 :

NT calls
to T

G NMCT W∞ NTW∞|G≤| αNTW∞|G≤| NEMCT 1
W∞

Tree NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1
W∞

Fork-
Join

NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1
W∞

WC∞ O(W∞) O(W∞) O(W∞) O(W∞)

based on MCT is only able to detect with certainty initiators
while in EMCT , any falsified task in the re-executed predecessor
subgraph is always found, if it exists;

− the probability of error when applying the test i.e. the probability
for the considered test to answer CORRECT while G is massively
attacked with ratio q;

− the convergence to ǫ, noted NT , i.e. the minimal number of in-
dependent invocations of the specified test required to certify an
execution E with error probability bound by ǫ, therefore leading to
the complete certification algorithm A(E, ǫ). This value depends
on the probability of error contributed by a single invocation of
the considered test;

− the exact and average number CG of calls to verifiers needed by a
single evocation of the considered test;

jos2008.tex; 20/12/2007; 15:22; p.23
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