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STRATEGY: RECURSIVE METHOD

Aim: Determine the generating function F(¢) for some class of
combinatorial objects, e.g. lattice walks, planar maps, trees,
permutations etc.
@ Step 1: Find a recursive decomposition of each object in your
class
@ Step 2: Write functional equations which characterise the
generating function F(r)
@ Step 3: Solve the functional equations
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STRATEGY: THETA FUNCTION METHOD

Aim: Determine the generating function F(¢) for some class of
combinatorial objects, e.g. lattice walks, planar maps, trees,
permutations etc.
@ Step 1: Find a recursive decomposition of each object in your
class
@ Step 2: Write functional equations which characterise the
generating function F(r)
@ Step 3: Solve the functional equations using theta functions!
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PROBLEMS SOLVED WITH THIS METHOD (SO FAR)

@ Quadrant walks |Kurkova, Raschel, 2012] + [Bernardi,
Bousquet-Mélou, Raschel, 2017]

@ Walks avoiding a quadrant [Raschel, Trotignon, 2019]

@ Walks by winding number [E.P., 2020+] (generalising results of
[Budd, 2020])

@ Six vertex model on 4-valent maps [Kostov, 2000], [E.P.,
Zinn-Justin, 2020+], [Bousquet-Mélou, E.P., 2020+]

@ Properly coloured triangulations [E.P., 2020+], Previously shown
to be D-algebraic by Tutte.
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JACOBI THETA FUNCTION

All results are in terms of the series:
o

Ti(u,q) = Y (=1)"2n+ D)fq" D2 — (~1)fu™)
n=0

=w=x1)=3qu? tu™" + 53w £ u™) + 0(¢°%).
Related to Jacobi Theta function ¥(z, 7) = 91;(z, 7) by

k N . .
?9(k) (Z, 7-) = (i) 19(Z, 7_) _ 6(7”2 %) ika(eZZZ’ezer)'

Nice properties of ¥(z) = ¥(z, 7):
0 U(z) = —V(z+7) = —V(—z) = —FHY(z + 7).
@ holomorphic, zeros only when z € 7Z + n7Z.
o differentially algebraic.
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PREVIEW: KREWERAS EXCURSIONS

Q= Y e,

paths from
(0,0) to (0,0)
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PREVIEW: KREWERAS EXCURSIONS IN QUADRANT

[e.e]
Define Ti(u,q) = »_(—1)"(2n+ D)fq" D20t — (—1)ku™)
n=0
=u=+1)-3Fq? +u ")+ 5530 +u?) + 0(gd).
Letq(t) = g =3 + 1565 +279¢° + - - - satisfy

1/3 Ty(1, ‘I3)
4To(q,q°) + 6T1(q, ¢°)
The gf for Kreweras excursions (in the quadrant) is:

=4q

_2
Q) = -9 To(¢,4)? (Tl((17‘13)2 _Dg.q’) T(-l,9) | T3(l,q)  T3(1,4) )
t Ti(1,63)* \To(q,4*)*  Tolg,q*) 2To(—1,9)  6Ti(1,q) 3Ti(1,4°)
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COMPLEXITY HEIRARCHY

For a series (or a function) F(z), the following properties satisfy

Rational = Algebraic = D-finite = D-Algebraic :

e Rational: F(r) = % for polynomials P(¢) and Q(z).
@ Algebraic: P(F(t)) = 0 for some non-zero polynomial P(x).
e D-finite: F(¢) satisfies some non-trivial linear differential

equation. E.g.
PF' () +2F (1) +(t+ 1)F(t) —1=0

e D-algebraic: F(r) satisfies some non-trivial algebraic
differential equation. E.g.

PF (t) + F'(1)F(t) + tF(t) = 0

The theta function 9(z, 7) is D-algebraic.
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OUTLINE OF TALK

Part 1: Quadrant walks (with small steps)

@ problem and functional equations

@ background

@ solution to functional equations (| Kurkova, Raschel, 2012] and

[Bernardi, Bousquet-Mélou, Raschel, 2017], slighly rephrased)

Part 2: Walks by winding angle ([E.P., 2020+], generalising [Budd,
2020])

@ problem and functional equations

@ background

@ solution to functional equations
Part 3: Walks in other two-dimensional cones

@ Certain walks avoiding a quadrant (|Raschel, Trotignon, 2019])

@ Corollaries of winding angle results on infinitely many cones.
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Part 1: Quadrant walks
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EXAMPLE: KREWERAS PATHS

Q(x,y) =Q(t,x,y) Z Z rSepsyayh.

a,b=0  paths from
(0,0) to (a,b)
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KREWERAS PATHS

zytQ(z, y)
+
HQ(x,y) — Q0,y))
+
Q) — Q(x,0))

i

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




FUNCTIONAL EQUATIONS FOR QUADRANT WALKS

Kreweras paths: The generating function Q(z, x,y) = Q(x, y) is
characterised by

Q(x.) = 141Q(x. )+ (Qx.y) = QO.9)+1 (Qx.y) = Q(x,0)).

Aim: Solve this equation

More generally: Take a step set S C {—1 0, 1}2 and write
(i))€s
The generating function Qg(#,x,y) = Q(x, y) is characterised by
ny(x,y) =Xy + tPS(xvy)Q(x7y) - tPS(an)Q(Ovy)
— tPs(x,0)Q(x, 0) + #Ps(0,0)Q(0,0).

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




QUADRANT WALKS BACKGROUND

Ad-hoc methods for specific cases, e.g.:
° ; [Kreweras, 1965], [Gessel, 1986]
° ; [Gouyou-Beauchamps, 1986]

° 74 [Kauers, Koutschan and Zeilberger, 2009], [Bostan, Kauers,

2010]
Systematic methods:

@ Algebraic using group of the walk: 22 D-finite cases solved
[Bousquet-Mélou, Mishna, 2010]

o Computer algebra: All 23 D-finite cases solved explicitly
[Bostan, Chyzak, Van Hoeij, Kauers, Pech, 2017]

@ Complex analysis: Solutions as integral expressions in all cases
[Kurkova, Raschel, 2012], 9 D-algebraic (non D-finite) cases
solved [Bernardi, Bousquet-Mélou, Raschel, 2017]
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QUADRANT WALKS BACKGROUND

In total: 79 different non-trivial step sets S

Generating function Q(z, x, y) is
@ Algebraic in 4 cases (Satifies algebraic equation)
o D-finite in 19 further cases (Satifies linear differential equation)
@ D-algebraic in 9 further cases (Satifies algebraic differential

equation)
Remaining 47 cases are not D-algebraic [ Dreyfus, Hardouin, Roques,
Singer, 2020].
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Solutions for quadrant walks

(using Jacobi theta functions)
[Kurkova, Raschel, 2012] + [Bernardi, Bousquet-Mélou, Raschel, 2017]
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QUADRANT WALKS SOLUTION

Recall: § C {~1,0,1}? and Ps(x,y) = > _ 'yt
(ij)es

The g.f. Qs(t,x,y) = Q(x,y) is characterised by

K(x,y)Q(x,y) = R(x,y), where

)
K(X,y) =Xy — tPS(xvy)
R(x,y) = xy — tPs(0,y)Q(0,y) — tPs(x,0)Q(x, 0) + tPs(0,0)Q(0,0).
Plan: Step 1: Fix 7 € [0, 1/9). All series converge for |x|, [y| < 1.
Step 2: Find functions X(z), Y(z) satisfying K(X(z),Y(z)) = 0, as
then R(X(z), Y(z)) = 0. Step 3: Consider functional equations with
variable z. Step 4: Solve the new equations
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QUADRANT WALKS: PARAMETRISING KERNEL

In general*: For fixed ¢ (small), K(x,y) = 0 is parameterised by

Wz —a)d(yn —z—ap) Nz — )d(n —z— @)

YO =By a0 " TN < )
where oo
19(2) = 19(2’ 7_) — Z (_l)ne(zng—l)2i7r'r+(2n+l)iz’

and 7, ¢y, aq, 51,71, €2, A2, B2, 772 € C depend only on .
Properties of X(z):

® X(z) =X(z+m) =X(z+77) =X(n —2)

@ Zeros at a; and y; — «, poles at 81 and y; — 3

*We are ignoring the five semi-directed cases \<, \ \é. ;, E
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QUADRANT WALKS SOLUTION
Let

X(Z) = C1

Yz — o)y —z— )
Wz — Bi1)d(n —z—F)
Equation to solve for Q(x, y):

Q(x,y)K(x,y) = R(x,y),

Yz — )iy —z— )
Wz —B) (2 —2—B)’

and Y(2) =

where
R(x,y) = xy — tPs(0,y)Q(0,y) — tPs(x,0)Q(x,0) + c.
and K(X(z),Y(z)) = 0.
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QUADRANT WALKS SOLUTION

Let

_ Yz—an)d(n —z— )
Xa)=a Wz — Bi1)d(n —z—F)

Equation to solve for Q(x, y):
Q(x, y)K(x,y) = R(x,y),

Yz — )iy —z— )
Wz —B) (2 —2—B)’

and Y(2) =

where
R(x,y) = xy — tPs(0,y)Q(0,y) — tPs(x,0)Q(x,0) + c.
and K(X(z),Y(z)) = 0.

Equation to solve for Q(x,0) and Q(0, y):
R(X(z),Y(z)) = 0.
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QUADRANT WALKS SOLUTION

Let
X(Z) = C1

Yz — o)y —z— )
Iz = B)d(n —z— )
Equation to solve for Q(x, 0) and Q(0, y):

X(2)Y(z) — tPs(0,Y(2))Q(0,Y(z)) — tPs(X(z),0)Q(X(z),0) + ¢ =0

219(2 — )i —z7— )
Wz —B) (2 —2—B)’

and Y(z) =c
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QUADRANT WALKS SOLUTION

Let
X(Z) = C1

Yz — o)y —z— )

Iz = B)d(n —z— )
Equation to solve for Q(x, 0) and Q(0, y):

X(2)Y(2) — tPs(0,Y(2))Q(0, Y (2)) — tPs(X(2), 0)Q(X(2),0) + ¢ =0

Write Q;(z) := Q(X(z),0) and Q,(z) := Q(0, ¥(z)).

219(2 — )i —z7— )
Wz —B) (2 —2—B)’

and Y(z) =c

Equation to solve for Q;(z) and Qu(z):
X(2)Y(z) — tPs(0,Y(2))Qa(z) — 1Ps(X(2), 0)Qu(2) + ¢ = 0.
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QUADRANT WALKS SOLUTION

Let
X(Z) = C1

Yz — )iy —z— )

Yz — o)y —z— ) ,
Wz —B) (2 —2—B)’

Iz = B)d(n —z— )
Equation to solve for Q(x, 0) and Q(0, y):
X(2)¥(2) — tP5(0, Y(2))Q(0, ¥(2)) — tPs(X(2),0)0Q(X(2),0) + ¢ = 0

Write Q;(z) := Q(X(z),0) and Q,(z) := Q(0, ¥(z)).

and Y(z) =c

Equation to solve for Q;(z) and Qu(z):
X(2)Y(z) — tPs(0,Y(2))Qa(z) — 1Ps(X(2), 0)Qu(2) + ¢ = 0.

What information are we missing??
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UNDERSTANDING Q(X(z), 0)

Plot of {z: |X(z)| € [0, %), <;, 1), (1,3),(3,9), (9, oo]}.

Forz € Q, [X(z)] < 1= Qi(z) = Q(X(z),0) is well defined.

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




UNDERSTANDING Q(X(z), 0)

Plot of {z: |X(z)| € [0, %), <;, 1>, (1,3),(3,9), (9, oo]}.

Forz € Q, [X(z)] < 1= Qi(z) = Q(X(z),0) is well defined.
Moreover, Q;(z) = Q(X(z),0) = Q(X(v1 —2),0) = Qi (71 — 2).
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UNDERSTANDING Q(X(z), 0)

Plot of {z: |X(z)| € [0, %), <;, 1>, (1,3),(3,9), (9, oo]}.

Forz € Q, [X(z)] < 1= Qi(z) = Q(X(z),0) is well defined.
Moreover, Q;(z) = Q(X(z),0) = Q(X(v1 —2),0) = Qi (71 — 2).
Similarly, Q,(z) = Qa(72 — 2).
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QUADRANT WALKS SOLUTION

Equation to solve for Q;(z) and Q,(z):
X(2)Y(z) — tPs(0,Y(2))Qa(z) — tPs(X(2),0)Qi(2) + ¢ = 0,
assuming Q(z) = Qi (1 — z) and Qa2(z) = Qz(72 — 2).
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QUADRANT WALKS SOLUTION

Equation to solve for Q;(z) and Q;(z):
X(2)Y(z) — 1Ps(0,Y(2))Qa(z) — tPs(X(2), 0)Qu(2) + ¢ = 0,
assuming Q(z) = Qi (1 — z) and Qa2(z) = Qz(72 — 2).

Simplify further: define
A(z) :=1Ps(0,Y(2))Q(0, Y (2))
e B(z) := tPs(X(z),0)Q(X(z),0) —c.
Equation to solve for A(z) and B(z):
X(2)Y(2) = Alz) + B(2),
where A(z) = A(v) — z) and B(z) = B(72 — 2).
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SOLUTION IN GENERAL

Equation to solve for A(z) and B(z):
X(2)¥(z) = A(z) + B(2)

where
@ X(z) and A(z) are fixed under z — y; — z.
@ Y(z) and B(z) are fixed under z — v, — z.
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SOLUTION IN D-FINITE CASES (71 — 72 € n7Q)

Equation to solve for A(z) and B(z):
X(2)¥(z) = A(z) + B(2)

where
@ X(z) and A(z) are fixed under z — y; — z.
@ Y(z) and B(z) are fixed under z — v, — z.
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SOLUTION IN D-FINITE CASES (71 — 72 € n7Q)

Equation to solve for A(z) and B(z):
X(2)¥(z) = A(z) + B(2)

(X(2) = X(72 = 2)¥(2) = A(2) = Alr2 = 2)
where
@ X(z) and A(z) are fixed under z — y; — z.
@ Y(z) and B(z) are fixed under z = 72 — z.
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SOLUTION IN D-FINITE CASES (71 — 72 € n7Q)

Equation to solve for A(z) and B(z):
X(2)¥(z) = A(z) + B(2)

(X(z) = X(72—2)Y(2) =Az) — Al — 12 +2)
where
@ X(z) and A(z) are fixed under z — y; — z.
@ Y(z) and B(z) are fixed under z = 72 — z.
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SOLUTION IN D-FINITE CASES (71 — 72 € n7Q)

Equation to solve for A(z):
(X(z) = X(2 = 2)¥(2) =Ax) —A(n — 2 +2)
where

@ X(z) and A(z) are fixed under z — y; — z.
@ Y(z) and B(z) are fixed under z — v, — z.
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SOLUTION IN D-FINITE CASES (71 — 72 € n7Q)

Equation to solve for A(z):

(X(z) = X(72—2)Y(2) = A(z) —A(m1 — 12 +2)

where X(z) and Y(z) have 7 and 77 as periods.
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SOLUTION IN D-FINITE CASES (71 — 72 € n7Q)

Equation to solve for A(z):

(X(z) = X(72—2)Y(2) = A(z) —A(m1 — 12 +2)

where X(z) and Y(z) have 7 and 77 as periods.

Since v; — 12 € m7Q, we get:
F(z) =A(z) — A(nmT + 2),

where F(z) has periods 7 and 77.
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SOLUTION IN D-FINITE CASES (71 — 72 € n7Q)

Equation to solve for A(z):

(X(z) = X(72—2)Y(2) = A(z) —A(m1 — 12 +2)

where X(z) and Y(z) have 7 and 77 as periods.

Since v; — 12 € m7Q, we get:
F(z) = A(z) — A(nmT + 2),
where F(z) has periods 7 and 77.

— U(z) = ?,(—3 satisfies 1 = U(z) — U(z + nmr).

— The following all have 7 and n77 as periods:
U'(z), F(z), X(z) and ¥ (2),

so they are algebraically related using: Meromorphic functions
sharing two (independent) periods are algebraically related.
It follows that A(z) = U(z)F(z) is D-finite in X(z).
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SOLUTION IN GENERAL

Equation to solve for A(z) and B(z):
X(2)¥(z) = A(z) + B(2)

where
@ X(z) and A(z) are fixed under z — y; — z.
@ Y(z) and B(z) are fixed under z — v, — z.
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SOLUTION IN D-ALGEBRAIC (NON-D-FINITE) CASES

Equation to solve for A(z) and B(z):
X(2)Y(z) = A(z) + B(2)

where
@ X(z) and A(z) are fixed under z — v — z.
@ Y(z) and B(z) are fixed under z — vy, — z.
In D-algebraic (non D-finite) cases:
@ X(z)Y(z) splits as X(z2)Y(z) = R1(X(z)) + Ra(Y(z)), for explicit
rational functions Ry, R».
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SOLUTION IN D-ALGEBRAIC (NON-D-FINITE) CASES

Equation to solve for A(z) and B(z):
Ri(X(2)) + R2(Y(2)) = A(z) + B(2)

where
@ X(z) and A(z) are fixed under z — v — z.
@ Y(z) and B(z) are fixed under z — vy, — z.
In D-algebraic (non D-finite) cases:
@ X(z)Y(z) splits as X(z2)Y(z) = R1(X(z)) + Ra(Y(z)), for explicit
rational functions Ry, R».
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SOLUTION IN D-ALGEBRAIC (NON-D-FINITE) CASES

Equation to solve for A(z) and B(z):
I(z) = Ri(X(2)) — A(z) = B(z) = Ra(Y(2))

where
@ X(z) and A(z) are fixed under z — v — z.
@ Y(z) and B(z) are fixed under z — vy, — z.
In D-algebraic (non D-finite) cases:
@ X(z)Y(z) splits as X(z2)Y(z) = R1(X(z)) + Ra(Y(z)), for explicit
rational functions Ry, R».

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
S




SOLUTION IN D-ALGEBRAIC (NON-D-FINITE) CASES

Equation to solve for A(z) and B(z):
I(z) = Ri(X(2)) — A(z) = B(z) = Ra(Y(2))

where
@ X(z) and A(z) are fixed under z — v — z.
@ Y(z) and B(z) are fixed under z — vy, — z.
In D-algebraic (non D-finite) cases:
@ X(z)Y(z) splits as X(z2)Y(z) = R1(X(z)) + Ra(Y(z)), for explicit
rational functions Ry, R».
@ [(z)isfixedunderz — v —zand z — vy, — z,s0ithas y; — 7,
and 7 as periods.
@ We can then solve for /(z).

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




SOLUTION IN D-ALGEBRAIC (NON-D-FINITE) CASES

Equation to solve for A(z) and B(z):
I(z) = Ri(X(2)) — A(z) = B(z) = Ra(Y(2))

where
@ X(z) and A(z) are fixed under z — v — z.
@ Y(z) and B(z) are fixed under z — vy, — z.
In D-algebraic (non D-finite) cases:
@ X(z)Y(z) splits as X(z2)Y(z) = R1(X(z)) + Ra(Y(z)), for explicit
rational functions Ry, R».
@ [(z)isfixedunderz — v —zand z — vy, — z,s0ithas y; — 7,
and 7 as periods.
@ We can then solve for /(z).
Algebraic cases: v; — 7, € 77Q, so I(z) and X(z) share the period
7mTn = everything is agebraic in x = X(z)
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SOLUTION IN D-ALGEBRAIC (NON-D-FINITE) CASES

Equation to solve for A(z) and B(z):
I(z) = Ri(X(z)) — A(z) = B(z) — Ro(Y(2))
where
@ X(z) and A(z) are fixed under z — v — z.
@ Y(z) and B(z) are fixed under z — vy, — z.
In D-algebraic (non D-finite) cases:
@ X(z)Y(z) splits as X(z2)Y(z) = R1(X(z)) + Ra(Y(z)), for explicit
rational functions Ry, R».
@ [(z)isfixedunderz — v —zand z — vy, — z,s0ithas y; — 7,
and 7 as periods.
@ We can then solve for /(z).
Algebraic cases: v; — 7, € 77Q, so I(z) and X(z) share the period
7mTn = everything is agebraic in x = X(z)
In general (non D-algebraic cases): [ Kurkova, Raschel]
Same idea, but R;(X(z)) and R>(X(z)) are given by integrals.
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Part 2: Walks by winding angle
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LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at m by end point and winding angle
around ®.
Cell-centred lattices:

G

Kreweras lattice Triangular Lattice
i
L[] (]
Square Lattice King Lattice
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LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at m by end point and winding angle
around ®.
Vertex-centred lattices:

/ /

Kreweras lattice Triangular Lattice
e m—e—
Square Lattice King Lattice
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LATTICE WALKS BY WINDING ANGLE

The model: count walks starting atm (by end point).

Left: Cell-centred triangular lattice
Right: Vertex-centred square lattice
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SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting
and ending on an axis or diagonal) by winding angle
@ Method: Matrices counting paths, eigenvalue decomposition etc.
@ Solution: Jacobi theta function expressions
@ Corollaries:
e Square lattice walks in cones (eg. Gessel walks)
e Loops around the origin (without a fixed starting point)
o Algebraicity results, asymptotic results, etc.
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SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting
and ending on an axis or diagonal) by winding angle
@ Method: Matrices counting paths, eigenvalue decomposition etc.
@ Solution: Jacobi theta function expressions
o Corollaries:
e Square lattice walks in cones (eg. Gessel walks)
e Loops around the origin (without a fixed starting point)
o Algebraicity results, asymptotic results, etc.
This work:
e Completely different method
@ Slightly different set of results
o Extension to three other lattices
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PREVIEW: KREWERAS ALMOST-EXCURSIONS

e

Cell-centred Kreweras lattice Vertex-centred Kreweras lattice

On each lattice: count walks m — (m or m). Walks with length n and
winding angle =5 Zrk contribute 7s*.

Cell-centred: E(t,5) = 1 + st + (s> +s5 ') 2 + ...
Vertex-centred: E(t,5) = 1+ (s7' +4+s)£ +...
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PREVIEW: KREWERAS ALMOST-EXCURSIONS

)

Cell-centred Kreweras lattice Vertex-centred Kreweras lattice

On each lattice: count walks m — (m or m). Walks with length n and

winding angle ZT”]‘ contribute #"s¥.

Cell-centred: E(t,s) = 1 + st + (s2 + s’l) £+
Vertex-centred: E(t,s) = 1 + (s_1 +4 -+ s) £+
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PREVIEW: KREWERAS ALMOST-EXCURSIONS

[e.e]
Define Ti(u,q) = »_(—1)"(2n+ D)fq" D20t — (—1)ku™)

n=0

=u=+1)-3Fq? +u ")+ 5530 +u?) + 0(gd).
Letq(t) = g =3 + 1565 +279¢° + - - - satisfy
1/3 Ty(1, ‘I3)
4To(q,4°) + 6T1(q, 4)

The gf for cell-centred Kreweras-lattice almost-excursions is:

s pTi@d) 1 aTolg, ) Ti(sg P, q)
E([,S)— 3 §S—dq 3 —q 3 —2/3
(1—s%)t Ti(1,¢%) Ti(1,4°)To(sq=*, q)
The gf for vertex-centred Kreweras-lattice almost-excursions is:

= 73(1—5')[17% To(q,4°)? (Ti(q,4°)* Tala,4’)  Ta(s,q) 73(1,q) 73(1,4°)
) = S 2 )

=4q

To(q,)?  To(g,4®) 2To(s,q) = 6T1(Lg) = 3T1(L,¢)
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Part 2a: Functional equations for

Kreweras walks by winding angle
/ /

Cell-centred Kreweras lattice Vertex-centred Kreweras lattice
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point and
number of times winding around the blue point.

/
TAVAVAVAVAVA
WVAVAVAVAVAV
TAVAVAVAVAVA

NAVAVAVAVAV
WAVAVAVAV
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.
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The model: Count walks starting at the red point by end point.
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The model: Count walks starting at the red point by end point.
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

S =

Definition: Q(z, o, x,y) = Q(x,y) = Z 1P| P) () gion(p)
) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes £xy.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)

) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes %y.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)

) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes #>xe™®.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)

) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes 1*y?.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)
) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes xy>.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)

) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes 5xy?.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)

) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes ¢’ xy.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)

) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes 3x.
Definition: O(z, v, x,y) = O(x,y) = Z tlplxx(P)yy(P)eian(P)

) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes 1°yZe .
Definition: Q(t, o, x,y) = O(x,y) = Z P ¥ P)yy(p) gion()
) paths p
Note: Q(0,0) = E(t,¢'%)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
This example contributes '%xy’e @,
Definition: O(r, o, x,y) = Q(x,y) = »_ PlyW)y@leionts)
) paths p
Note: Q(0,0) = E(t,¢'%)
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FUNCTIONAL EQUATION

Recursion — functional equation: separate by type of final step.
Qz,y)= 1
+
aytQ(z,y)

+ e tQ(0, )
+ (Final step goes through

left wall)
HQ(z,y) — Q0,y)) oty 05,0
+ e yQly,
+ (Final step goes through

bottom wall)
Q) - Q(a,0))
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

y

xel®  (s) xe Tl (s7h
Definition: O(z, a, x,y) = O(x,y) = Z 1Pl P) )y (p) gian(p)
paths p
Characterised by:

O(x,y) =1+ txyQ(x,y) + tQ(X,y) — 0(0,y) + tQ(x’y) — 0(,0)
* y

+€10(0,x) + e 1yQ(y, 0).
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Part 2b: Solution (using theta
functions)
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

O(x,y) = 1 + txyQ(x,y) + 20 y) — 0(0,y) 4 20y) - 0(x,0)
x y

+¢10(0,x) + e “1yQ(y, 0).
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

O(x,y) = 1 + txyQ(x,y) + 20 y) — 0(0,y) 4 20y) - 0(x,0)
x y

+¢10(0,x) + e “1yQ(y, 0).

Solution:
Step 1: Fix 7 € [0, 1/3), « € R. All series converge for |x|, [y| < 1.

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
S




SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

0(.y) = 1+ 1y0(x,y) + (2 = 20y) | Oxy) — 0(x,0)
; y

+¢10(0,x) + e “1yQ(y, 0).

Solution:
Step 1: Fix 7 € [0, 1/3), « € R. All series converge for |x|, [y| < 1.
Step 2: Write equation as K(x,y)Q(x,y) = R(x,y), where

K(x,y)=1—txy—t/y—t/x
R(x,3) = 1= 10(0.) = 10(x,0) +¢10(0.2) + ¢~ *1vQ(»,0).
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

0(.y) = 1+ 1y0(x,y) + (2 = 20y) | Oxy) — 0(x,0)
; y

+¢10(0,x) + e “1yQ(y, 0).

Solution:
Step 1: Fix 7 € [0, 1/3), « € R. All series converge for |x|, [y| < 1.
Step 2: Write equation as K(x,y)Q(x,y) = R(x,y), where

K(x,y)=1—txy—t/y—t/x
R(x,3) = 1= 10(0.) = 10(x,0) +¢10(0.2) + ¢~ *1vQ(»,0).

Step 3: Consider the curve K(x,y) = 0 (Then R(x,y) = 0).
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

O(x,y) = 1 + txyQ(x,y) + 20 y) — 0(0,y) 4 20y) - 0(x,0)
x y

+¢10(0,x) + e “1yQ(y, 0).

Solution:
Step 1: Fix 7 € [0, 1/3), « € R. All series converge for |x|, [y| < 1.
Step 2: Write equation as K(x,y)Q(x,y) = R(x,y), where

K(x,y)=1—txy—t/y—t/x
R(x,3) = 1= 10(0.) = 10(x,0) +¢10(0.2) + ¢~ *1vQ(»,0).

Step 3: Consider the curve K(x,y) = 0 (Then R(x,y) = 0).
Parameterisation involves the Jacobi theta function ¥(z, 7).
So far: Similar to [ Kurkova, Raschel 12] and [Bernardi,
Bousquet-Mélou, Raschel 17] for quadrant models.

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

K(x,y)0(x,y) = R(x,y),

where
K(x,y)=1-txy—t/y—t/x,
R(x.3) = 1= 10(0.5) = 10(x,0) +¢10(0.2) + ¢~ *1yQ(»,0).
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

K(x,y)0(x,y) = R(x,y),

where
K(x,y)=1-txy—t/y—t/x,
R(x.3) = 1= 10(0.5) = 10(x,0) +¢10(0.2) + ¢~ *1yQ(»,0).

Define o
e 3 ¥(z,37)9 (z — 77, 37)
Y (z+77,37)0 (z — 277, 37)

Then K(X(z),X(z + 77)) = 0.

X(z) =
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

K(x,y)0(x,y) = R(x,y),

where

K(x,y) = 1 —txy — t/y — t/x,

! ! 1 —ix

R(X,y) =1- ;Q(Ouy) - ;Q(Xa 0) + elatQ(va) +e ZyQ(y,O)
Define o

e 3 ¥(z,37)9 (z — 77, 37)
Y (z+77,37)0 (z — 277, 37)

Then K(X(z),X(z + 77)) = 0. Hence R(X(z), X(z+ 7n7)) =0
(assuming |X(z)| < land |X(z + 77)| < 1).

X(z) =
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

K(x,y)Q(x,y) = R(x,y),

where

K(x,y) =1 —ixy—t/y—t/x,

R(x.3) = 1= 10(0.5) = 10(x,0) +¢10(0.2) + ¢~ *1yQ(»,0).
Define o
e 3 V(2,370 (z — 77, 37)
Y (z+77,37)0 (z — 277, 37)
Then K(X(z),X(z + 77)) = 0. Hence R(X(z), X(z+ 7n7)) =0
(assuming |X(z)| < land |X(z + 77)| < 1).

New equation to solve:

R(X(2),X(z + 7)) =0,

X(z) =
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

K(x,y)Q(x,y) = R(x,y),

where

K(x,y) =1 -ty —t/y—t/x,

R(x.3) = 1= 10(0.5) = 10(x,0) +¢10(0.2) + ¢~ *1yQ(»,0).
Define o
e 3 V(2,370 (z — 77, 37)
Y (z+77,37)0 (z — 277, 37)
Then K(X(z),X(z+ 77)) = 0. Hence R(X(z),X(z + 77)) =0
(assuming |X(z)| < land |X(z + 77)| < 1).

New equation to solve:

R(X(2),X(z + 7)) =0,

X(z) =
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Plot of {z: |X(z)| € [0, %), <;, 1>, (1,3),(3,9), (9, oo]}.

Forz € Q, [X(z)] <1= 0(X(z),0) and Q(0, X(z)) are well defined.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Plot of {z: |X(z)| € [0, %), <;, 1>, (1,3),(3,9), (9, oo]}.

Forz € Q, [X(z)] <1= 0(X(z),0) and Q(0, X(z)) are well defined.
Near Re(z) = 0, we have z € Q and z + 77 € Q.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

R(X(z),X(z+7T1)) =0

where

_ArmTi

e 3 9z,37)0 (z — 77, 37)
9 (z+ 7w7,37) 9 (z — 277,37)

R(x,3) = 1= 10(0.) = 10(x,0) +¢10(0,2) +¢~*1yQ(»,0).

X(z) =
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

t I3
1 :mg(o,x(z + 7)) + WQ(X(ZL 0)

— €°10(0,X(z)) — e X (z + 77)Q(X(z + 77),0),

where i
_4nTi
X(2) e 3 I(z,37)0 (z — 77, 37)
)= .
I (z+ 77,37) 9 (z — 277, 37)
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

t t
1 :mg(o,x(z +77)) + WQ(X(ZL 0)
— €°10(0,X(z)) — e X (z + 77)Q(X(z + 77),0),

where

_4rmTi

e 3 I(z,37)0 (z — 77, 37)
9 (z+7w7,37) 9 (z — 277, 37)

X(2) =

For z near 0, define
t ia
L(Z) = mQ(X(Z)vo) —e€ tQ(()vX(Z))

Both L(z) and L(z + 77) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

t t
1 :mQ(O,X(Z+TFT))+WQ(X(Z)7O)
—e10(0,X(z)) — e "X (z + 77)Q(X(z + 77),0),

where

_4rmTi

e 3 I(z,37)0 (z — 77, 37)
9 (z+7w7,37) 9 (z — 277, 37)

X(2) =

For z near 0, define
t ia
L(Z) = mQ(X(Z)vo) —e€ tQ(()vX(Z))

Both L(z) and L(z + 77) converge.

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
1 —X(tZ)Q(O,X(z +77)) + L(2)
— e X (z+ m7)Q(X(z + 77),0),

where

_4rmTi

e 3 I(z,37)0 (z — 77, 37)
9 (z+7w7,37) 9 (z — 277, 37)

X(2) =

For z near 0, define
t ia
L(Z) = mQ(X(Z)vo) —e€ tQ(()vX(Z))

Both L(z) and L(z + 77) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
1 —X(tZ)Q(O,X(z +77)) + L(2)
— e X (z+ m7)Q(X(z + 77),0),

where

_4rmTi

e 3 I(z,37)0 (z — 77, 37)
9 (z+7w7,37) 9 (z — 277, 37)

X(2) =

For z near 0, define
t ia
L(Z) = mQ(X(Z)vo) —e€ tQ(()vX(Z))

Both L(z) and L(z + 77) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
1 —X(IZ)Q(O,X(Z + 7)) + L(2)
— e "X (z + 77)Q(X(z + 77), 0),

where

_4rmTi

e 3 I(z,37)0 (z — 77, 37)
9 (z+7w7,37) 9 (z — 277, 37)

X(2) =

For z near 0, define
t ia
L(Z) = mQ(X(Z)vo) —e€ tQ(()vX(Z))

Both L(z) and L(z + 77) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

1 —XEZ)Q(O,X(Z +77)) + L(z)
e—iat
_ mQ(X(z + 77),0),

where o
e 3 9(z,37)9 (z — 77, 37)

X(z) = .
@) I (z+ n7,37) Y (z — 277, 37)

For z near 0, define

L(z) = ——

Xt 7 QX (2,0 = €100, X().

Both L(z) and L(z 4 77) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

1 —XZZ)Q(O,X(Z +77)) + L(z)
e—iat
_ mQ(X(Z + 77),0),

where o
e 3 9(z,37)9 (z — 77, 37)

X(z) = .
@) I (z+ n7,37) Y (z — 277, 37)

For z near 0, define

L(z) = ——

Xt 7 QX (2,0 = €100, X().

Both L(z) and L(z 4 77) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
efia
1= —mL(z + 1) + L(2).

e‘yﬁ‘(z, 31)9 (z — 77, 37)

where

X(2) = I(z+77,37)0 (z — 277, 37)
For z near 0, define
4 ia
L(z) = WQ(X(Z),O) —€"10(0,X(2)).

Both L(z) and L(z + 77) converge.

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
S




SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
efia
1= —mL(z +77) 4+ L(2).

e‘yﬁ‘(z, 31)9 (z — 77, 37)

where

X(2) = I(z+77,37)0 (z — 277, 37)
For z near 0, define
4 ia
L(z) = WQ(X(Z),O) —€"10(0,X(2)).

Both L(z) and L(z + 77) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

—i

e
l=———=L(z+77)+ L(2).
XLt ™)+ LE)
where i
TTL
e 3 9(z,37)9 (z — 77, 37)
X(z) = .
I (z+ n7,37) 0 (z — 277, 37)
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
efia
1= —%L(z +77) 4+ L(2).

e_ﬁﬁ‘(z, 31)9 (z — 77, 37)

where

X(7) = .
@) I (z+ n7,37) 0 (z — 277, 37)
We can solve this exactly:
L) = - (14 € iy ey
z) = [ _ gdia X(2) <
- za+5”"19( 77, 37)9'(0, 7) Wz —2m7,37)0(z — § + 27%, T)
(1 — edio)p(2 — 2ﬂ 7)0'(0,37) ¥z, 7)9(z,37)
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
efia
1= —%L(z +77) 4+ L(2).

e_ﬁﬁ‘(z, 37)0 (z — T, 37)

where

X(z) = .
@) I (z+ n7,37) 0 (z — 277, 37)
We can solve this exactly:
L= (140 ey )
A g X(2) ¢
B eia+5i%'l9(ﬂ'7', 37)9'(0,7) Wz —2m7,37)0(z — § + 27%, T)
(1 — edia)y(2 — 217 7)/(0, 37) 0(z,7)0(z,37)

We can extract E(t, ¢'%) = Q(0,0)...
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KREWERAS WALKS BY WINDING NUMBER: SOLUTION

Recall: 7 is determined by
azi ¥(0,37)

4i9 (77, 37) + 69/ (77,37)
The gf E(t, %) = Q(0,0) = Q(t,a, 0,0) is given by:

tr=e

i 2
E(t,é®) = e’a3. io i’ (2m7,37) o7 I(mr,37)0' (% —2%,7-) .
(1= &%) 9/(0,37) 9(0,31)0(% — =7, 7)
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KREWERAS WALKS BY WINDING NUMBER: SOLUTION

Recall: 7 is determined by
azi ¥(0,37)

4i9 (77, 37) + 69/ (77,37)
The gf E(t, %) = Q(0,0) = Q(t,a, 0,0) is given by:

tr=e

iy eia i @ 19/(27”-7 3T) _ % 19(7”—’ 37-)19/(% — LTTT’T)
Elt,e™) = t(1 — e¥iv) < C003n) ¢ w0sneE - = )
Equivalently:
Letq(t) = g =3 + 1565 + 279¢° + - - - satisfy

1/3 T, (1 ) q3)
4To(q.4°) + 6T1(q, 4°)
The gf for cell-centred Kreweras-lattice almost-excursions is:

E(t,s)= —— [s— SaNle ) T To(q,¢*)Ti(sq %3, q)
’ <1 53)l T1(17q3) T1(1743)T0(Sq_2/3,q) .

=

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




Part 2c: Winding on other lattices
/ /

Kreweras lattice Triangular Lattice

|

I

Square Lattice King Lattice
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CELL-CENTRED LATTICES

Important property: Decomposable into congruent sectors

/ /

Kreweras lattice Triangular Lattice

|

I

Square Lattice King Lattice
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CELL-CENTRED LATTICES

Important property: Decomposable into congruent sectors

Square Lattice King Lattice
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VERTEX-CENTRED LATTICES

Decompose into rotationally congruent sectors

/ /

Kreweras lattice Triangular Lattice

|

|

Square Lattice King Lattice
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VERTEX-CENTRED LATTICES

Decompose into rotationally congruent sectors

Square Lattice King Lattice
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RECALL: KREWERAS ALMOST-EXCURSIONS

[e.e]
Define Ti(u,q) = »_(—1)"(2n+ D)fq" D20t — (—1)ku™)

n=0

=u=+1)-3Fq? +u ")+ 5530 +u?) + 0(gd).
Letq(t) = g =3 + 1565 +279¢° + - - - satisfy
1/3 Ty(1, ‘I3)
4To(q,4°) + 6T1(q, 4)

The gf for cell-centred Kreweras-lattice almost-excursions is:

s pTi@d) 1 aTolg, ) Ti(sg P, q)
E([,S)— 3 §S—dq 3 —q 3 —2/3
(1—s%)t Ti(1,¢%) Ti(1,4°)To(sq=*, q)
The gf for vertex-centred Kreweras-lattice almost-excursions is:

= 73(1—5')[17% To(q,4°)? (Ti(q,4°)* Tala,4’)  Ta(s,q) 73(1,q) 73(1,4°)
) = S 2 )

=4q

To(q,)?  To(g,4®) 2To(s,q) = 6T1(Lg) = 3T1(L,¢)
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SQUARE LATTICE ALMOST-EXCURSIONS

[e.e]
Define Tic(u,q) = Y _(—1)"(2n+ D)fq" D20t — (—1)ku™)
n=0
=u=+1)-3Fq? +u ")+ 5530 +u?) + 0(gd).
Let q(t) = g =t + 4 + 34+ + 3607 + - - - satisfy

t: qTo(q*,¢*)T1(1,4%)
2To(q*,4°*)(To(a, 4*) + 2T1 (4, 4*))
The gf for cell-centred Square-lattice almost-excursions is:
s? ( 1 Tghdh) TO(CI4aC]8)T1(S_IC]aCI2)>
(1—s*)t qTi(1,4%)  qTi(1,4%)To(s™'q,4°)
The gf for vertex-centred Square-lattice almost-excursions is:
sTo(q*, 4*) < 2T1(¢%,¢%) , (1-9)T (sl,q2)>
qt(1+s*)T1(1,4%) To(q*.q%) ~ (1+8)To(s7'.q%) )
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Part 3: Walks in cones
4 \ BN

A 4

\

A
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WALKS IN CONES WITH SMALL STEPS

@ Quarter plane walks: Completely classified into rational,
algebraic, D-finite, D-algebraic cases.
[Mishna, Rechnitzer 09], [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10],
[Fayolle, Raschel 10], [Kurkova, Raschel 12], [Melczer, Mishna 13], [Bostan,
Raschel, Salvy 14], [Bernardi, Bousquet-Mélou, Raschel 17], [Dreyfus,
Hardouin, Roques, Singer 18]

o Half plane walks: Easy

@ Three quarter plane walks: Active area of research
(Previously) solved in 6-12 of the 74 non-trivial cases
[Bousquet-Mélou 16], [Raschel-Trotignon 19], [Budd 20], [Bousquet-Mélou,
Wallner 20+]

e Walks on the slit plane C \ R_(: solved in all cases
[Bousquet-Mélou, 01], [Bousquet-Mélou, Schaeffer, 02]
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WALKS IN THE 3/4-PLANE: SOLVED CASES

D-finite Not D-finite
This work

[R.T 19]

7)12%;4
JEE:

[Bousquet-Mélou 16],[Raschel, Trotignon 19], , [Bousquet-Mélou,
Wallner 20+]
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WALKS IN THE 5/4-PLANE: SOLVED CASES

D-finite
This work

X+
Ko
L%

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




WALKS IN THE 6/4-PLANE: SOLVED CASES

D-finite
This work

X+
Ko
L%
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WALKS IN THE 7/4-PLANE: SOLVED CASES

D-finite
This work

X+
Ko
L%
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COUNTING KREWERAS WALKS IN A CONE

In the upper half plane: Use reflection principle
#(Walks from A to B above R)
= #(Walks from A to B) — #(Walks from A to B through R)
= #(Walks from A to B) — #(Walks from A to B)
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

New model: ~ 2\-excursions avoiding a quadrant.

p \ DY
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New model: ~ 2\-excursions avoiding a quadrant.
First step: Transform to half plane
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

New model: ~ 2\-excursions avoiding a quadrant.
First step: Transform to half plane
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

New model: ~ 2\-excursions avoiding a quadrant.
First step: Transform to half plane
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

New model: ~ 2\-excursions avoiding a quadrant.
First step: Transform to half plane — whole (punctured) plane

A,
P
Y

%
R
X
=
AR
RIS
R

%’#
4

5
&S
o

<,
7

o
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

#(Kreweras excursions in 5/6-plane)
#(Walks A — A in upper half plane)
#(Walks A — A) — #(Walks A — B)

(XY
“k

v,
.
R

s%v

A
/X
N
AR
S

K
]

VA
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

Walks A — B with winding angle
= Kreweras almost-excursions with winding angle %

<8
IESE
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

Walks A — B with winding angle 27k — 4Z
= Kreweras almost-excursions with winding angle % (27rk — 4?“)

<8
IESE
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

Walks A — B with winding angle 27k — 4Z
= Kreweras almost-excursions with winding angle % — %’r.

<8
IESE
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

Walks A — B with winding angle 27k — 4Z
= Kreweras almost-excursions with winding angle % — %’r.
Counted by: s*2E(1,s)

<8
IESE
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

(Kreweras excursions in 5/6-plane)
(Walks A — A in upper half plane)
(Walks A — A) — #(Walks A — B)

SIsME, s>> - (Z[ﬁ“m(x, s>>
kEZ kEZ
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

(Kreweras excursions in 5/6-plane)
(Walks A — A in upper half plane)
(Walks A — A) — #(Walks A — B)

SIsME, s>> - (Z[ﬁ“}ﬁ(n s>>
kEZ kEZ

More generally: The gf Cy () for excursions in the k/6-plane is
1 k—1 i i
Cir(1) = ¢ 2 (1 - eT’) E (z,eT’) .
=
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Final comments
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FUNCTIONAL EQUATION THETA SOLUTION METHOD

Project: develop this method of solving functional equations.
Problems solved so far:
@ Quadrant walks |[Kurkova, Raschel, 2012] + [Bernardi,
Bousquet-Mélou, Raschel, 2017]
@ Some walks avoiding a quadrant [Raschel, Trotignon, 2019]
@ Some walks by winding number [E.P., 2020+]
@ Six vertex model on 4-valent maps [Kostov, 2000], [E.P.,
Zinn-Justin, 2020+], [Bousquet-Mélou, E.P., 2020+]
@ Properly coloured triangulations [E.P., 2020+]
To do:
@ Solve more problems.
@ Streamline the method.
@ Convert techniques to world of formal power series.
o find a good name for the method.
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Thank you!
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BONUS SLIDE: PROPERLY COLOURED TRIANGULATIONS

To solve:
T(x,y)K(x,y) = R(x,y),
where

t 2yt
K()C,y) =1 —thT(l,y) - % - it

1—x
R(x,y) = (s — 1) = 27(x,0) + 22yr T2
y x—1

Want to parametrise K(x,y) = 0, as then R(x,y) = 0.
Guess: There is some pair X(z), Y(z) satisfying

@ K(X(z),Y(z)) = 0 and therefore R(X(z), Y(z)) = 0.

® X(z+m) =X(z) and Y(z + ) = Y(2).

@ X(—z) =X(z)and Y(7r7 — z) = Y(2).
Guess: Solve under this assumption then check the solution.
Kernel not explicit, but method still works.
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BONUS SLIDE: ANOTHER WINDING ANGLE

For self-avoiding walks, a different parameter is sometimes called the
winding angle (e.g. in work of Duminil-Copin and Smirnov). I’ll call
it the turning angle.

Definition: Imagining a walker taking the walk, the turning angle is
the total anti-clockwise angle they turn during the walk.

Relation to winding angle: The turning angle is the winding angle of
the walk minus the winding angle of the reversed walk.
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BONUS SLIDE: ANOTHER TURNING ANGLE

For self-avoiding walks, a different parameter is sometimes called the
winding angle (e.g. in work of Duminil-Copin and Smirnov). I’ll call
it the turning angle.

Definition: Imagining a walker taking the walk, the turning angle is
the total anti-clockwise angle they turn during the walk.

Relation to winding angle: The turning angle is the winding angle of
the walk minus the winding angle of the reversed walk.
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ASYMPTOTICS OF E(t,€®) AND Cy.,(t)

Fix a € (0,7) \ {&}.
Writing 7 = —% andg=e
corresponds to g = 0.

27T

, the dominant singularity r = 1/3
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ASYMPTOTICS OF E(t,€®) AND Cy.,(t)
Fix a € (0, ) \ {51

Writing 7 = 3 and ¢ = ¢*™", the dominant singularity t = 1/3
corresponds to g = 0.
Series in §:

1
t=3-3+ 184 + 0(&)

o ) 27 e o o 3o
tE(t;e ) =ao +Cllq - 271_(1 _|_e[a _|_32l'06) +O (qz )

— E(t, ') as a series in (1 — 31),
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ASYMPTOTICS OF E(t,€®) AND Cy.,(t)

Fix a € (0,7) \ {&}.

Writing 7 = —3- and g = €™, the dominant singularity t = 1/3
corresponds to g = 0.

Series in §:

1
t=3-3+ 184 + 0(&)

~ ia n 27aei“ L 3a 3a
E(t €)= do + g = 27(1 + el 4 %) " ( ) ’

— E(t, ') as a series in (1 — 3f), —

~ . T e .O[ 3a
"E(t,e') ~ — . - n" 213
I71E( ) 27(1 + e + 2T (—3%)
2351 gin?

["]Cier(2) ~

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price




ASYMPTOTICS OF E(t,€®) AND Cy.,(t)

Fix a € (0, ) \ {Z}.

Writing 7 = 3 and ¢ = ¢*™", the dominant singularity t = 1/3
corresponds to g = 0.
Series in §:

1
t=3-3+ 184 + 0(&)

27 et L 3a ( 3a )
27 s

tE(ta eia) =ao+aq— 27 (1 + ef 4 e2ir)

— E(t, ') as a series in (1 — 3f), —

ME(t,e®) ~ — . n" 213
I7EC ) 27(1 + e + 2T (—3%)
235 ¥ sin? (%%
[l”]Ck r(t) ~ — ksin ( k ) l’l_]_%:&n.
' wk? (1+2(:os (7)

— ~—
=
—~
|
1w
~—

Alternatively: Terms 3" and n_l_% known [Denisov, Wachtel, 2015].
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ANALYSIS OF SOLUTION: ALGEBRAICITY

Recall: ¥(z, 7) is differentially algebraic — so are E(t,s) and
Q(t7 a? x7 y)'

For o € § (Q )\ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):
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ANALYSIS OF SOLUTION: ALGEBRAICITY

Recall: ¥(z, 7) is differentially algebraic — so are E(t,s) and
Q(tv Q, X, y)'
For o € § (Q )\ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):
e O(t,,X(z),0) and X(z) are elliptic functions with the same
periods = Q(t, a, x,0) is algebraic in x.
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ANALYSIS OF SOLUTION: ALGEBRAICITY

Recall: 9(z, 7) is differentially algebraic — so are E(t, s) and
Q(tv Q, X, y)'
For o € § (Q )\ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):
e O(t,,X(z),0) and X(z) are elliptic functions with the same
periods = Q(t, a, x,0) is algebraic in x.
e E(t(7),e®) and t(7) are modular functions of T
= E(t,¢'®) is algebraic in ¢. Same for E(¢(7), /).

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
S




ANALYSIS OF SOLUTION: ALGEBRAICITY

Recall: 9(z, 7) is differentially algebraic — so are E(t, s) and
Q(tv Q, X, y)'
For o € § (Q )\ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):
e O(t,,X(z),0) and X(z) are elliptic functions with the same
periods = Q(t, a, x,0) is algebraic in x.
e E(t(7),e®) and t(7) are modular functions of T
= E(t,¢'®) is algebraic in ¢. Same for E(¢(7), /).
e Combining these ideas: Q(t, «v, x,y) is algebraic in 7, x and y.
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ANALYSIS OF SOLUTION: ALGEBRAICITY

Recall: 9(z, 7) is differentially algebraic — so are E(t, s) and
Q(tv Q, X, y)'
For o € § (Q )\ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):
e O(t,,X(z),0) and X(z) are elliptic functions with the same
periods = Q(t, a, x,0) is algebraic in x.
e E(t(7),e®) and t(7) are modular functions of T
= E(t,¢'®) is algebraic in ¢. Same for E((7), /).
e Combining these ideas: Q(t, «v, x,y) is algebraic in 7, x and y.
Recall: The gf for excursions in the k/6-plane is

k—1
1 Tijr ~ Tij
Crr(t) = p E (1 s )E (t,ezkj) .

Jj=1
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ANALYSIS OF SOLUTION: ALGEBRAICITY

Recall: 9(z, 7) is differentially algebraic — so are E(t, s) and
Q(tv Q, X, y)'
For o € § (Q )\ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):
@ O(t,c,X(z),0) and X(z) are elliptic functions with the same
periods = Q(t, a, x,0) is algebraic in x.
e E(t(7),e'®) and t(7) are modular functions of T
= E(t,¢'®) is algebraic in ¢. Same for E((7), /).
e Combining these ideas: Q(t, a, x,y) is algebraic in ¢, x and y.
Recall: The gf for excursions in the k/6-plane is

k—1
1 27ijr ~ 2mij
Cr(1) = %Z (1 —ek )E(l‘,e k’) .
j=1
Algebraic iff 3 t k. (always D-finite).
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

Write K (x,y) = A(x)y> + B(x)y + C(x), then

Y(x) = —B(x) & v/B(x)* — 4A(x)C(x)
2A(x)
parameterizes K (x, Y(x)) = 0. Typically, Y, (x) is meromorphic on:
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

Write K (x,y) = A(x)y? + B(x)y + C(x), then
_ —B(x) £ \/B(x)? — 4A(x)C(x)
Y = 24(x)

parameterizes K (x, Y(x)) = 0. Typically, Y, (x) is meromorphic on:
A

€ X9 3 54
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

Write K (x,y) = A(x)y? + B(x)y + C(x), then
_ —B(x) £ \/B(x)? — 4A(x)C(x)
Y = 24(x)

parameterizes K (x, Y(x)) = 0. Typically, Y, (x) is meromorphic on:
A

o—— 9 T
T+ 5

&

T1 T3 L3 54 <
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

5
g

o —F— 0 T
T+ 5

=
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

Same?
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

e .
4 L}
/ )
! 1
) ]
] 1
' ]
A ’
A 4

-~ .

~__—'

Andrew Elvey Price

Combinatorial functional equations and Jacobi theta functions
S




BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

1
p '
' 1
' L]
L]
b 1
A}
’
Ad
’
A
N ’
:> '
* A
’ .
. A}
1 A}
] 1
I 1
1 1
’ 1
Al
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

S e
~
S
-
-

— <2

-
-="
-
-
-
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

A
s
] % T+7TT ] g + 2
X(z 1 2 1
X(0) X (=) © { '
o ® ® o 1 1
X(3) X(5) : :
*e—o——0
0 s T
2
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

A

 IT T+TT |7T + %
X(z 1 2 1
X(0) X (=) é © ' ? '
X(3) X (%) : :
*——=o0—0
0 g T

By symmetry, for » € R:
e X(r)=X(m—r)=X(-r)
o X(F +r)=X("5 —r)
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

A

 IT T+TT |7T + %
X(z 1 2 1
X(0) X (=) é © ' ? '
X(3) X (%) : :
*——=o0—0
0 g T

Forz € C:
® X(z) =X(m—2z) =X(—2z)
° X(z) =X(n1 —2)
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

A

 IT T+TT |7T + %
X(z 1 2 1
X(0) X (=) é © ' ? '
X(3) X (%) : :
*——=o0—0
0 g T

For z € C:
® X(z) =X(m—z) =X(—z) =X(77 + 2)
° X(z) =X(n1 —2)
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

A
 IT T+7TT |7T+ %
X(0) X (=) <X(Z) E i : E
— e 00 > i A
x(3) X (%) : :
*——=0—0
0 g T
Forz € C:
® X(z) =X(m—z2) =X(—z) =X(77 +2)
Iz — a)d(z+ )
X =
) OB+ B)
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

b e L
X(0) X (=7) e Z o
XF - xX® < ; ;
S %

Recall:

(x) = —B(x) + /B(x)? — 4A(x)C(x)
Y 24(%) :
Consider Y(z) = y(X(z)). By symmetry, for r € R:

e X(r)=X(—r),s0Y(r)+Y(—r) = B(X(r))

S AX(n)”
- T TN BX(F+7)
@ Similarly, Y (7 + r) +Y (7 - ”) = *W'
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

% U+
X(0) X (m47) A Z E
%%

Recall:

x) + v/B(x)2 — 4A(x)C(x)
2A(x) '
Consider Y(z) = y(X(z)). For z € C:
TR )
B(X(2))

CAX@)

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price

y(x) =

e Y(z)+Y(rr—2) =




BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

b e R
X(0) X (m47) A Z E
%%

Forz € C:
o ¥(z) +¥(~2) = 2
o Y (z)+Y(nT—2z2) = —m.

SoY(z) =Y(z+n7) =Y(z+ )
Uz =)0z = 9)

:>Y(Z):cq9(z—e)19(z—’y—5+e)'
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

Equation characterising Q(x,y) = Q(t, x,y) for quadrant walks:

K(x,y)Q(x,y) + R(x7y) =0.
K(x,y) = 0 is parameterised by
Yz —a1)d(z— B) Iz — ap)¥(z — Ba)
Y9 —m)d(z— 1) Iz— )iz =)

where the constants satisfy o + 3; = ;4 §; forj = 1, 2.
So, R(X(2), Y(z)) = 0.

X(z) = and Y(z) =

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

In general: K(x,y) = 0 is parameterised by
X(2) = ¢ U(z — a1)d(z— Bi)

Iz =)0z - 1)
WithOéj—i—ﬂj = ’)/j+5jf0rj = 1,2

Iz — ap)d(z — Ba)
Iz —7)0(z— )’

and Y(z) =

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:

0(x,y) = 1+910(x, )+ (0(x.¥) =~ (0. (Q(x.y) ~ @(x,0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by

Pz —a)d(z— B) Pz — )iz )
X&) =g e —a) ™ YO =G0 =6

Withaijﬁj:’}/ij&ijI'j: 1,2

Combinatorial functional equations and Jacobi theta functions
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:

0(x,y) = 1+910(x, )+ (0(x.¥) =~ (0. (Q(x.y) ~ @(x,0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by

Wz —an)d(z— Br) Yz —a2)¥(z— )
XO =y e —o) ™ TP = =)
Withaijﬁj = ’}/j+5jf0rj = 1,2

e K(0,0) =0, s0 WLOG o = ay = 0.
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by
Hz)Hz — Hz)H(z —
X(2) = e (2)9(z = Br) ()0 —B)
Wz =)oz —61) Wz —72)0(z — 02)
Withaijﬁj = ’}/j+5jf0rj = 1,2
e K(0,0) = 0,50 WLOG ] = a» = 0.

and Y(z) =

Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
S




BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by
X(Z) = 7‘9(Z)’L9(Z - /81) 19(2)19(1 - BZ) 7
Hz=m)d(z =) Dz = )iz —02)
Withaj+ﬁj = ’yj+5jforj =1,2.
e K(0,0) = 0,50 WLOG ] = a» = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —x%, so Y(z) has a
double pole at z = f;.

and Y(z) =
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by
X(Z) = 19(2)79(2 - Bl) Czﬂ(z)ﬁ(z - BZ)
Wz —n)d(z—d1) Wz — p1)?

Withaj+ﬁj = ’yj+5jforj =1,2.

e K(0,0) = 0,50 WLOG ] = a» = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —x%, so Y(z) has a
double pole at z = f;.

and Y(z) =
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by
o @)~ Bi) o, V@)V —2B1)
Iz —m)d(z—d1) Iz—P1)*
Withaj+ﬁj = ’yj+5jforj =1,2.
e K(0,0) = 0,50 WLOG ] = a» = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —x%, so Y(z) has a
double pole at z = f;.

X(z) = and Y(z) =
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by

o @)~ Bi) o, V@)V —2B1)
Wz =m)d(z— 1) Wz=p)*
Withaj+ﬁj = ’yj+5jforj =1,2.
e K(0,0) = 0, 50 WLOG a; = as = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —x%, so Y(z) has a
double pole at z = f;.
e Similarly: X(z) has a double pole at z = /5, = 2/3;.

X(z) = and Y(z) =
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by

LI LA Satil), o, M)z~ 2B1)
Iz + B1)d(z —251) Vz—p)?
Withaj+ﬁj = ’yj+5jforj =1,2.
e K(0,0) = 0, 50 WLOG a; = as = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —x%, so Y(z) has a
double pole at z = f;.
e Similarly: X(z) has a double pole at z = /5, = 2/3;.

X(z) = and Y(z) =
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by

LI LA Satil), o, M)z~ 2B1)
Iz + B1)d(z — 2p1) Vz—p)?
Withaj+ﬁj = ’yj+5jforj =1,2.
e K(0,0) = 0,50 WLOG ] = a» = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —x%, so Y(z) has a
double pole at z = f;.
e Similarly: X(z) has a double pole at z = /5, = 2/3;.
@ So308 =nT.

X(z) = and Y(z) =
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
t t
Qx,y) = 1+xy1Q(x, )+ (Q(x,y) — Q(O,y))+§ (Q(x,y) — Q(x,0)).
Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by
92)9 (z — & 9(z)9 (z — 2T
(erT (Z 3 )27”_ and Y(Z) =0 (Z) (Z 32 )
9 (z+5) 0 (z— 57) 9 (2= %)
with o + 3; = ~; + ¢ forj = 1,2.
e K(0,0) =0,s0 WLOG o = a; = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —é, so Y(z) hasa
double pole at z = f.

@ Similarly: X(z) has a double pole at z = 5, = 2[3.
e So308, =nT.

X(Z) =C]
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by

ey S0 5) sl )
T+ 5) 0 ) T %) e )

with o + Bj = v; + d; forj = 1,2.

e K(0,0) =0, s0 WLOG o) = as = 0.

@ asx — 0, we have y(x) ~ —xor y(x) ~ — %, 50 ¥(z) has a

double pole at z = f;.
@ Similarly: X(z) has a double pole at z = 5, = 2.
@ So3p3 =wT.

and Y(z) = 2
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:
0(x.y) = 1+1Q(x. )+ (Q(x.) = Q0.3)+ | (0(x.3) ~ 0(x.0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by
@)Y (- 5F) 9(2)9 (z+ 5T)

I (z+5)0 (2 %57) I(z— %) (c+%57)
with o + Bj = v; + d; forj = 1,2.

e K(0,0) =0, s0 WLOG o) = as = 0.

@ asx — 0, we have y(x) ~ —x or y(x) ~ —x%, so Y(z) has a

double pole at z = f;.
e Similarly: X(z) has a double pole at z = 3, = 20;.
@ So3p3 =wT.

X(z) = ¢ and Y(z) = &
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

For Kreweras paths:

O(x,y) = 1+21Q(x, )+~ (O(x,¥) - Q<o,y>>+; (Q(x,y) — 0(x,0)).

Then K(x,y) = xy — tx*>y? — tx — ty = 0 is parameterised by
471(')7'179( )fﬂ(z_ﬂ) 47:)7'119( )ﬂ(Z_Fﬂ'T)

and Y(z) =

O g0 )
with o + 3; = ~; + ¢ forj = 1,2.
e K(0,0) =0,s0 WLOG o) = a; = 0.
@ asx — 0, we have y(x) ~ —x or y(x) ~ —Y%, so Y(z) has a
double pole at z = f;. “
e Similarly: X(z) has a double pole at z = 3, = 2/3;.
e So308 =nT.

19( - 5) 2+ 57)
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

2 _

Then K(x,y) = xy — tx*y? — tx — ty = 0 is parameterised by

_4mTi

e 3 9(z,37)0 (z — 7T, 37)

X(z) = d Y(z) =X
(@) Y (z+ 77, 37) ¥ (z — 277, 37) an (2) (z+77),
where
. 1
CX@Y(2) +X(2) T+ Y ()
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BONUS SLIDE: PARAMETERIZATION OF K(x,y) =0

Then K(x,y) = xy — tx’>y? — tx — ty = 0 is parameterised by

_4nmTi

e 3 ¥z,37)0 (z — 77, 37)

X(z) = and Y(z) =X
@) 9 (z+ 7w7,37) 9 (z — 277, 37) (@) (z+77),
where
, _ani ¥(0,37)
= e .
4id(mr,37) + 6 (T, 37)
Combinatorial functional equations and Jacobi theta functions Andrew Elvey Price
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Part 4: Analysis of solutions
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