Combinatorial functional equations and Jacobi theta functions

Andrew Elvey Price

Université de Bordeaux et Université de Tours

April 2020

STRATEGY: RECURSIVE METHOD

Aim: Determine the generating function F(t) for some class of combinatorial objects, e.g. lattice walks, planar maps, trees, permutations etc.

- **Step 1:** Find a recursive decomposition of each object in your class
- Step 2: Write functional equations which characterise the generating function F(t)
- Step 3: Solve the functional equations

STRATEGY: THETA FUNCTION METHOD

Aim: Determine the generating function F(t) for some class of combinatorial objects, e.g. lattice walks, planar maps, trees, permutations etc.

- **Step 1:** Find a recursive decomposition of each object in your class
- Step 2: Write functional equations which characterise the generating function F(t)
- Step 3: Solve the functional equations using theta functions!

PROBLEMS SOLVED WITH THIS METHOD (SO FAR)

- Quadrant walks [Kurkova, Raschel, 2012] + [Bernardi, Bousquet-Mélou, Raschel, 2017]
- Walks avoiding a quadrant [Raschel, Trotignon, 2019]
- Walks by winding number [E.P., 2020+] (generalising results of [Budd, 2020])
- Six vertex model on 4-valent maps [Kostov, 2000], [E.P., Zinn-Justin, 2020+], [Bousquet-Mélou, E.P., 2020+]
- Properly coloured triangulations [E.P., 2020+], Previously shown to be D-algebraic by Tutte.

JACOBI THETA FUNCTION

All results are in terms of the series:

$$T_k(u,q) = \sum_{n=0}^{\infty} (-1)^n (2n+1)^k q^{n(n+1)/2} (u^{n+1} - (-1)^k u^{-n})$$

= $(u \pm 1) - 3^k q (u^2 \pm u^{-1}) + 5^k q^3 (u^3 \pm u^{-2}) + O(q^6).$

Related to Jacobi Theta function $\vartheta(z,\tau) \equiv \vartheta_{11}(z,\tau)$ by

$$\vartheta^{(k)}(z,\tau) \equiv \left(\frac{\partial}{\partial z}\right)^k \vartheta(z,\tau) = e^{\frac{(\pi\tau - 2z)i}{2}} i^k T_k(e^{2iz}, e^{2i\pi\tau}).$$

Nice properties of $\vartheta(z) \equiv \vartheta(z,\tau)$:

- $\vartheta(z) = -\vartheta(z+\pi) = -\vartheta(-z) = -e^{(2z+\pi\tau)i}\vartheta(z+\pi\tau).$
- holomorphic, zeros only when $z \in \pi \mathbb{Z} + \pi \tau \mathbb{Z}$.
- differentially algebraic.

PREVIEW: KREWERAS EXCURSIONS

PREVIEW: KREWERAS EXCURSIONS IN QUADRANT

Define
$$T_k(u,q) = \sum_{n=0}^{\infty} (-1)^n (2n+1)^k q^{n(n+1)/2} (u^{n+1} - (-1)^k u^{-n})$$

 $= (u \pm 1) - 3^k q (u^2 \pm u^{-1}) + 5^k q^3 (u^3 \pm u^{-2}) + O(q^6).$
Let $q(t) \equiv q = t^3 + 15t^6 + 279t^9 + \cdots$ satisfy
$$t = q^{1/3} \frac{T_1(1,q^3)}{4T_0(q,q^3) + 6T_1(q,q^3)}.$$

The gf for Kreweras excursions (in the quadrant) is:

$$Q(t) = -\frac{q^{-\frac{2}{3}}}{t} \frac{T_0(q, q^3)^2}{T_1(1, q^3)^2} \left(\frac{T_1(q, q^3)^2}{T_0(q, q^3)^2} - \frac{T_2(q, q^3)}{T_0(q, q^3)} - \frac{T_2(-1, q)}{2T_0(-1, q)} + \frac{T_3(1, q)}{6T_1(1, q)} + \frac{T_3(1, q^3)}{3T_1(1, q^3)} \right).$$

COMPLEXITY HEIRARCHY

For a series (or a function) F(t), the following properties satisfy

Rational \Rightarrow Algebraic \Rightarrow D-finite \Rightarrow D-Algebraic :

- **Rational:** $F(t) = \frac{P(t)}{Q(t)}$ for polynomials P(t) and Q(t).
- Algebraic: P(F(t)) = 0 for some non-zero polynomial P(x).
- **D-finite:** F(t) satisfies some non-trivial linear differential equation. E.g.

$$t^{3}F''(t) + t^{2}F'(t) + (t+1)F(t) - 1 = 0$$

• **D-algebraic:** F(t) satisfies some non-trivial algebraic differential equation. E.g.

$$t^2F'(t) + F'(t)F(t) + tF(t) = 0$$

The theta function $\vartheta(z,\tau)$ is D-algebraic.

OUTLINE OF TALK

Part 1: Quadrant walks (with small steps)

- problem and functional equations
- background
- solution to functional equations ([Kurkova, Raschel, 2012] and [Bernardi, Bousquet-Mélou, Raschel, 2017], slighly rephrased)

Part 2: Walks by winding angle ([E.P., 2020+], generalising [Budd, 2020])

- problem and functional equations
- background
- solution to functional equations

Part 3: Walks in other two-dimensional cones

- Certain walks avoiding a quadrant ([Raschel, Trotignon, 2019])
- Corollaries of winding angle results on infinitely many cones.

Part 1: Quadrant walks

EXAMPLE: KREWERAS PATHS

$$Q(x, y) \equiv Q(t, x, y) := \sum_{a,b=0}^{\infty} \sum_{\substack{\text{paths from} \\ (0,0) \text{ to } (a,b)}} t^{\text{\#steps}} x^a y^b.$$

KREWERAS PATHS

FUNCTIONAL EQUATIONS FOR QUADRANT WALKS

Kreweras paths: The generating function $Q(t, x, y) \equiv Q(x, y)$ is characterised by

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Aim: Solve this equation

More generally: Take a step set $S \subset \{-1, 0, 1\}^2$ and write

$$P_S(x, y) = \sum_{(i,j) \in S} x^{i+1} y^{j+1}.$$

The generating function $Q_S(t, x, y) \equiv Q(x, y)$ is characterised by

$$xyQ(x,y) = xy + tP_S(x,y)Q(x,y) - tP_S(0,y)Q(0,y) - tP_S(x,0)Q(x,0) + tP_S(0,0)Q(0,0).$$

QUADRANT WALKS BACKGROUND

Ad-hoc methods for specific cases, e.g.:

- [Gouyou-Beauchamps, 1986]
- Kauers, Koutschan and Zeilberger, 2009], [Bostan, Kauers, 2010]

Systematic methods:

- Algebraic using group of the walk: 22 D-finite cases solved [Bousquet-Mélou, Mishna, 2010]
- Computer algebra: All 23 D-finite cases solved explicitly [Bostan, Chyzak, Van Hoeij, Kauers, Pech, 2017]
- Complex analysis: Solutions as integral expressions in all cases [Kurkova, Raschel, 2012], 9 D-algebraic (non D-finite) cases solved [Bernardi, Bousquet-Mélou, Raschel, 2017]

QUADRANT WALKS BACKGROUND

In total: 79 different non-trivial step sets *S* Generating function Q(t, x, y) is

- Algebraic in 4 cases (Satisfies algebraic equation)
- D-finite in 19 further cases (Satisfies linear differential equation)
- D-algebraic in 9 further cases (Satisfies algebraic differential equation)

Remaining 47 cases are not D-algebraic [Dreyfus, Hardouin, Roques, Singer, 2020].

Solutions for quadrant walks

(using Jacobi theta functions)

[Kurkova, Raschel, 2012] + [Bernardi, Bousquet-Mélou, Raschel, 2017]

Recall:
$$S \subset \{-1, 0, 1\}^2$$
 and $P_S(x, y) = \sum_{(i,j) \in S} x^{i+1} y^{j+1}$.

The g.f. $Q_S(t, x, y) \equiv Q(x, y)$ is characterised by

$$K(x, y)Q(x, y) = R(x, y)$$
, where

$$K(x,y) = xy - tP_S(x,y)$$

$$R(x,y) = xy - tP_S(0,y)Q(0,y) - tP_S(x,0)Q(x,0) + tP_S(0,0)Q(0,0).$$

Plan: Step 1: Fix $t \in [0, 1/9)$. All series converge for |x|, |y| < 1.

Step 2: Find functions X(z), Y(z) satisfying K(X(z), Y(z)) = 0, as then R(X(z), Y(z)) = 0. **Step 3:** Consider functional equations with variable z. **Step 4:** Solve the new equations

QUADRANT WALKS: PARAMETRISING KERNEL

In general*: For fixed t (small), K(x, y) = 0 is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(\gamma_1 - z - \alpha_1)}{\vartheta(z - \beta_1)\vartheta(\gamma_1 - z - \beta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(\gamma_2 - z - \alpha_2)}{\vartheta(z - \beta_2)\vartheta(\gamma_2 - z - \beta_2)},$$

where

$$\vartheta(z) \equiv \vartheta(z,\tau) := \sum_{n=-\infty}^{\infty} (-1)^n e^{\left(\frac{2n+1}{2}\right)^2 i\pi\tau + (2n+1)iz},$$

and $\tau, c_1, \alpha_1, \beta_1, \gamma_1, c_2, \alpha_2, \beta_2, \gamma_2 \in \mathbb{C}$ depend only on t.

Properties of X(z):

- $X(z) = X(z + \pi) = X(z + \pi \tau) = X(\gamma_1 z)$
- Zeros at α_1 and $\gamma_1 \alpha_1$, poles at β_1 and $\gamma_1 \beta_1$

*We are ignoring the five semi-directed cases

Let

$$X(z) = c_1 \frac{\vartheta(z-\alpha_1)\vartheta(\gamma_1-z-\alpha_1)}{\vartheta(z-\beta_1)\vartheta(\gamma_1-z-\beta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z-\alpha_2)\vartheta(\gamma_2-z-\alpha_2)}{\vartheta(z-\beta_2)\vartheta(\gamma_2-z-\beta_2)}.$$

Equation to solve for Q(x, y):

$$Q(x,y)K(x,y) = R(x,y),$$

$$R(x, y) = xy - tP_S(0, y)Q(0, y) - tP_S(x, 0)Q(x, 0) + c.$$

and $K(X(z), Y(z)) = 0.$

Let

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(\gamma_1 - z - \alpha_1)}{\vartheta(z - \beta_1)\vartheta(\gamma_1 - z - \beta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(\gamma_2 - z - \alpha_2)}{\vartheta(z - \beta_2)\vartheta(\gamma_2 - z - \beta_2)}.$$

Equation to solve for Q(x, y):

$$Q(x,y)K(x,y)=R(x,y),$$

where

$$R(x,y) = xy - tP_S(0,y)Q(0,y) - tP_S(x,0)Q(x,0) + c.$$
 and $K(X(z),Y(z)) = 0$.

Equation to solve for Q(x, 0) and Q(0, y):

$$R(X(z), Y(z)) = 0.$$

Let

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(\gamma_1 - z - \alpha_1)}{\vartheta(z - \beta_1)\vartheta(\gamma_1 - z - \beta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(\gamma_2 - z - \alpha_2)}{\vartheta(z - \beta_2)\vartheta(\gamma_2 - z - \beta_2)}.$$

Equation to solve for Q(x, 0) and Q(0, y):

$$X(z)Y(z) - tP_S(0, Y(z))Q(0, Y(z)) - tP_S(X(z), 0)Q(X(z), 0) + c = 0$$

Let

$$X(z) = c_1 \frac{\vartheta(z-\alpha_1)\vartheta(\gamma_1-z-\alpha_1)}{\vartheta(z-\beta_1)\vartheta(\gamma_1-z-\beta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z-\alpha_2)\vartheta(\gamma_2-z-\alpha_2)}{\vartheta(z-\beta_2)\vartheta(\gamma_2-z-\beta_2)}.$$

Equation to solve for Q(x, 0) and Q(0, y):

$$X(z)Y(z) - tP_S(0, Y(z))Q(0, Y(z)) - tP_S(X(z), 0)Q(X(z), 0) + c = 0$$

Write
$$Q_1(z) := Q(X(z), 0)$$
 and $Q_2(z) := Q(0, Y(z))$.

Equation to solve for $Q_1(z)$ and $Q_2(z)$:

$$X(z)Y(z) - tP_S(0, Y(z))Q_2(z) - tP_S(X(z), 0)Q_1(z) + c = 0.$$

Let

$$X(z) = c_1 \frac{\vartheta(z-\alpha_1)\vartheta(\gamma_1-z-\alpha_1)}{\vartheta(z-\beta_1)\vartheta(\gamma_1-z-\beta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z-\alpha_2)\vartheta(\gamma_2-z-\alpha_2)}{\vartheta(z-\beta_2)\vartheta(\gamma_2-z-\beta_2)}.$$

Equation to solve for Q(x, 0) and Q(0, y):

$$X(z)Y(z) - tP_S(0, Y(z))Q(0, Y(z)) - tP_S(X(z), 0)Q(X(z), 0) + c = 0$$

Write
$$Q_1(z) := Q(X(z), 0)$$
 and $Q_2(z) := Q(0, Y(z))$.

Equation to solve for $Q_1(z)$ and $Q_2(z)$:

$$X(z)Y(z) - tP_S(0, Y(z))Q_2(z) - tP_S(X(z), 0)Q_1(z) + c = 0.$$

What information are we missing??

Understanding Q(X(z), 0)

Plot of
$$\left\{z: |X(z)| \in \left[0, \frac{1}{3}\right), \left(\frac{1}{3}, 1\right), (1, 3), (3, 9), (9, \infty]\right\}$$
.

For
$$z \in \Omega$$
, $|X(z)| < 1 \Rightarrow Q_1(z) = Q(X(z), 0)$ is well defined.

Understanding Q(X(z), 0)

Plot of
$$\left\{z: |X(z)| \in \left[0, \frac{1}{3}\right), \left(\frac{1}{3}, 1\right), (1, 3), (3, 9), (9, \infty]\right\}.$$

For
$$z \in \Omega$$
, $|X(z)| < 1 \Rightarrow Q_1(z) = Q(X(z), 0)$ is well defined.
Moreover, $Q_1(z) = Q(X(z), 0) = Q(X(\gamma_1 - z), 0) = Q_1(\gamma_1 - z)$.

Understanding Q(X(z), 0)

Plot of
$$\left\{z: |X(z)| \in \left[0, \frac{1}{3}\right), \left(\frac{1}{3}, 1\right), (1, 3), (3, 9), (9, \infty]\right\}.$$

For
$$z \in \Omega$$
, $|X(z)| < 1 \Rightarrow Q_1(z) = Q(X(z), 0)$ is well defined.
Moreover, $Q_1(z) = Q(X(z), 0) = Q(X(\gamma_1 - z), 0) = Q_1(\gamma_1 - z)$.
Similarly, $Q_2(z) = Q_2(\gamma_2 - z)$.

Equation to solve for $Q_1(z)$ and $Q_2(z)$:

$$X(z)Y(z) - tP_S(0, Y(z))Q_2(z) - tP_S(X(z), 0)Q_1(z) + c = 0,$$
 assuming $Q_1(z) = Q_1(\gamma_1 - z)$ and $Q_2(z) = Q_2(\gamma_2 - z).$

Equation to solve for $Q_1(z)$ and $Q_2(z)$:

$$X(z)Y(z) - tP_S(0, Y(z))Q_2(z) - tP_S(X(z), 0)Q_1(z) + c = 0,$$

assuming
$$Q_1(z) = Q_1(\gamma_1 - z)$$
 and $Q_2(z) = Q_2(\gamma_2 - z)$.

Simplify further: define

$$A(z) := tP_S(0, Y(z))Q(0, Y(z))$$

and

$$B(z) := tP_S(X(z), 0)Q(X(z), 0) - c.$$

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z),$$

where
$$A(z) = A(\gamma_1 - z)$$
 and $B(z) = B(\gamma_2 - z)$.

SOLUTION IN GENERAL

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

$$(X(z) - X(\gamma_2 - z))Y(z) = A(z) - A(\gamma_2 - z)$$

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

$$(X(z) - X(\gamma_2 - z))Y(z) = A(z) - A(\gamma_1 - \gamma_2 + z)$$

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

Equation to solve for A(z):

$$(X(z) - X(\gamma_2 - z))Y(z) = A(z) - A(\gamma_1 - \gamma_2 + z)$$

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

Equation to solve for A(z):

$$(X(z) - X(\gamma_2 - z))Y(z) = A(z) - A(\gamma_1 - \gamma_2 + z)$$

where X(z) and Y(z) have π and $\pi\tau$ as periods.

Equation to solve for A(z):

$$(X(z) - X(\gamma_2 - z))Y(z) = A(z) - A(\gamma_1 - \gamma_2 + z)$$

where X(z) and Y(z) have π and $\pi\tau$ as periods.

Since $\gamma_1 - \gamma_2 \in \pi \tau \mathbb{Q}$, we get:

$$F(z) = A(z) - A(n\pi\tau + z),$$

where F(z) has periods π and $\pi\tau$.

Equation to solve for A(z):

$$(X(z) - X(\gamma_2 - z))Y(z) = A(z) - A(\gamma_1 - \gamma_2 + z)$$

where X(z) and Y(z) have π and $\pi\tau$ as periods.

Since $\gamma_1 - \gamma_2 \in \pi \tau \mathbb{Q}$, we get:

$$F(z) = A(z) - A(n\pi\tau + z),$$

where F(z) has periods π and $\pi\tau$.

- $\rightarrow U(z) = \frac{A(z)}{F(z)}$ satisfies $1 = U(z) U(z + n\pi\tau)$.
- \rightarrow The following all have π and $n\pi\tau$ as periods:

$$U'(z)$$
, $F(z)$, $X(z)$ and $Y(z)$,

so they are algebraically related using: *Meromorphic functions* sharing two (independent) periods are algebraically related. It follows that A(z) = U(z)F(z) is D-finite in X(z).

SOLUTION IN GENERAL

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

where

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

where

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

In D-algebraic (non D-finite) cases:

• X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .

Equation to solve for A(z) and B(z):

$$R_1(X(z)) + R_2(Y(z)) = A(z) + B(z)$$

where

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

In D-algebraic (non D-finite) cases:

• X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .

Equation to solve for A(z) and B(z):

$$I(z) = R_1(X(z)) - A(z) = B(z) - R_2(Y(z))$$

where

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

In D-algebraic (non D-finite) cases:

• X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .

Equation to solve for A(z) and B(z):

$$I(z) = R_1(X(z)) - A(z) = B(z) - R_2(Y(z))$$

where

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

In D-algebraic (non D-finite) cases:

- X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .
- I(z) is fixed under $z \to \gamma_1 z$ and $z \to \gamma_2 z$, so it has $\gamma_1 \gamma_2$ and π as periods.
- We can then solve for I(z).

Equation to solve for A(z) and B(z):

$$I(z) = R_1(X(z)) - A(z) = B(z) - R_2(Y(z))$$

where

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

In D-algebraic (non D-finite) cases:

- X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .
- I(z) is fixed under $z \to \gamma_1 z$ and $z \to \gamma_2 z$, so it has $\gamma_1 \gamma_2$ and π as periods.
- We can then solve for I(z).

Algebraic cases: $\gamma_1 - \gamma_2 \in \pi \tau \mathbb{Q}$, so I(z) and X(z) share the period $\pi \tau n \Rightarrow$ everything is agebraic in $x \equiv X(z)$

Equation to solve for A(z) and B(z):

$$I(z) = R_1(X(z)) - A(z) = B(z) - R_2(Y(z))$$

where

- X(z) and A(z) are fixed under $z \to \gamma_1 z$.
- Y(z) and B(z) are fixed under $z \to \gamma_2 z$.

In D-algebraic (non D-finite) cases:

- X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .
- I(z) is fixed under $z \to \gamma_1 z$ and $z \to \gamma_2 z$, so it has $\gamma_1 \gamma_2$ and π as periods.
- We can then solve for I(z).

Algebraic cases: $\gamma_1 - \gamma_2 \in \pi \tau \mathbb{Q}$, so I(z) and X(z) share the period $\pi \tau n \Rightarrow$ everything is agebraic in $x \equiv X(z)$

In general (non D-algebraic cases): [Kurkova, Raschel]

Same idea, but $R_1(X(z))$ and $R_2(X(z))$ are given by integrals.

Part 2: Walks by winding angle

LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at ■ by end point and winding angle around •.

Cell-centred lattices:

LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at ■ by end point and winding angle around •.

Vertex-centred lattices:

LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at ■ (by end point).

Left: Cell-centred triangular lattice **Right:** Vertex-centred square lattice

SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting and ending on an axis or diagonal) by winding angle

- Method: Matrices counting paths, eigenvalue decomposition etc.
- Solution: Jacobi theta function expressions
- Corollaries:
 - Square lattice walks in cones (eg. Gessel walks)
 - Loops around the origin (without a fixed starting point)
 - Algebraicity results, asymptotic results, etc.

SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting and ending on an axis or diagonal) by winding angle

- Method: Matrices counting paths, eigenvalue decomposition etc.
- Solution: Jacobi theta function expressions
- Corollaries:
 - Square lattice walks in cones (eg. Gessel walks)
 - Loops around the origin (without a fixed starting point)
 - Algebraicity results, asymptotic results, etc.

This work:

- Completely different method
- Slightly different set of results
- Extension to three other lattices

PREVIEW: KREWERAS ALMOST-EXCURSIONS

On each lattice: count walks \longrightarrow (\bigcirc or \bigcirc). Walks with length n and winding angle $\frac{2\pi k}{3}$ contribute $t^n s^k$.

Cell-centred:
$$E(t,s) = 1 + st + (s^2 + s^{-1})t^2 + \dots$$

Vertex-centred:
$$\tilde{E}(t,s) = 1 + (s^{-1} + 4 + s) t^3 + \dots$$

PREVIEW: KREWERAS ALMOST-EXCURSIONS

Vertex-centred Kreweras lattice

Cell-centred Kreweras lattice

On each lattice: count walks $\blacksquare \to (\blacksquare \text{ or } \blacksquare)$. Walks with length n and winding angle $\frac{2\pi k}{3}$ contribute $t^n s^k$.

Cell-centred: $E(t,s) = 1 + st + (s^2 + s^{-1})t^2 + \dots$

Vertex-centred: $\tilde{E}(t,s) = 1 + (s^{-1} + 4 + s) t^3 + \dots$

PREVIEW: KREWERAS ALMOST-EXCURSIONS

Define
$$T_k(u,q) = \sum_{n=0}^{\infty} (-1)^n (2n+1)^k q^{n(n+1)/2} (u^{n+1} - (-1)^k u^{-n})$$

= $(u \pm 1) - 3^k q (u^2 \pm u^{-1}) + 5^k q^3 (u^3 \pm u^{-2}) + O(q^6)$.

Let $q(t) \equiv q = t^3 + 15t^6 + 279t^9 + \cdots$ satisfy

$$t = q^{1/3} \frac{T_1(1, q^3)}{4T_0(q, q^3) + 6T_1(q, q^3)}.$$

The gf for cell-centred Kreweras-lattice almost-excursions is:

$$E(t,s) = \frac{s}{(1-s^3)t} \left(s - q^{-1/3} \frac{T_1(q^2, q^3)}{T_1(1, q^3)} - q^{-1/3} \frac{T_0(q, q^3) T_1(sq^{-2/3}, q)}{T_1(1, q^3) T_0(sq^{-2/3}, q)} \right).$$

The gf for vertex-centred Kreweras-lattice almost-excursions is:

$$\tilde{E}(t,s) = \frac{s(1-s)q^{-\frac{2}{3}}}{t(1-s^3)} \frac{T_0(q,q^3)^2}{T_1(1,q^3)^2} \left(\frac{T_1(q,q^3)^2}{T_0(q,q^3)^2} - \frac{T_2(q,q^3)}{T_0(q,q^3)} - \frac{T_2(s,q)}{2T_0(s,q)} + \frac{T_3(1,q)}{6T_1(1,q)} + \frac{T_3(1,q^3)}{3T_1(1,q^3)} \right).$$

Part 2a: Functional equations for Kreweras walks by winding angle

The model: Count walks starting at the red point by end point and number of times winding around the blue point.

The model: Count walks starting at the red point by end point.

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes *txy*.

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes t^2y .

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes $t^3xe^{i\alpha}$.

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes t^4y^2 .

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes t^5xy^3 .

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes t^6xy^2 .

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes t^7xy .

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes t^8x .

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes $t^9y^2e^{-i\alpha}$.

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

The model: Count walks starting at the red point by end point.

This example contributes $t^{10}xy^3e^{-i\alpha}$.

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}$$

FUNCTIONAL EQUATION

Recursion \rightarrow **functional equation:** separate by *type* of final step.

$$Q(x,y) = 1$$

$$+$$

$$xytQ(x,y)$$

$$+$$

$$+$$

$$+$$

$$\frac{t}{y}(Q(x,y) - Q(0,y))$$

$$+$$

$$+ \, e^{i\alpha}tQ(0,x) \\ \text{(Final step goes through left wall)} \\ + \, e^{-i\alpha}tyQ(y,0) \\ \text{(Final step goes through bottom wall)}$$

The model: Count walks starting at the red point by end point.

Definition:
$$Q(t, \alpha, x, y) \equiv Q(x, y) = \sum_{\text{paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i\alpha n(p)}.$$

Characterised by:

$$Q(x,y) = 1 + txyQ(x,y) + t\frac{Q(x,y) - Q(0,y)}{x} + t\frac{Q(x,y) - Q(x,0)}{y} + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0).$$

Part 2b: Solution (using theta functions)

Equation to solve:

$$\begin{split} Q(x,y) &= 1 + txy Q(x,y) + t \frac{Q(x,y) - Q(0,y)}{x} + t \frac{Q(x,y) - Q(x,0)}{y} \\ &+ e^{i\alpha} t Q(0,x) + e^{-i\alpha} t y Q(y,0). \end{split}$$

Equation to solve:

$$\begin{split} Q(x,y) &= 1 + txy Q(x,y) + t \frac{Q(x,y) - Q(0,y)}{x} + t \frac{Q(x,y) - Q(x,0)}{y} \\ &\quad + e^{i\alpha} t Q(0,x) + e^{-i\alpha} t y Q(y,0). \end{split}$$

Solution:

Step 1: Fix $t \in [0, 1/3)$, $\alpha \in \mathbb{R}$. All series converge for |x|, |y| < 1.

Equation to solve:

$$\begin{split} Q(x,y) &= 1 + txy Q(x,y) + t \frac{Q(x,y) - Q(0,y)}{x} + t \frac{Q(x,y) - Q(x,0)}{y} \\ &+ e^{i\alpha} t Q(0,x) + e^{-i\alpha} t y Q(y,0). \end{split}$$

Solution:

Step 1: Fix $t \in [0, 1/3)$, $\alpha \in \mathbb{R}$. All series converge for |x|, |y| < 1.

Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

$$\begin{split} K(x,y) &= 1 - txy - t/y - t/x \\ R(x,y) &= 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0). \end{split}$$

Equation to solve:

$$\begin{split} Q(x,y) &= 1 + txy Q(x,y) + t \frac{Q(x,y) - Q(0,y)}{x} + t \frac{Q(x,y) - Q(x,0)}{y} \\ &+ e^{i\alpha} t Q(0,x) + e^{-i\alpha} t y Q(y,0). \end{split}$$

Solution:

Step 1: Fix $t \in [0, 1/3)$, $\alpha \in \mathbb{R}$. All series converge for |x|, |y| < 1.

Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

$$\begin{split} K(x,y) &= 1 - txy - t/y - t/x \\ R(x,y) &= 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0). \end{split}$$

Step 3: Consider the curve K(x, y) = 0 (Then R(x, y) = 0).

Equation to solve:

$$\begin{split} Q(x,y) &= 1 + txyQ(x,y) + t\frac{Q(x,y) - Q(0,y)}{x} + t\frac{Q(x,y) - Q(x,0)}{y} \\ &\quad + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0). \end{split}$$

Solution:

Step 1: Fix $t \in [0, 1/3)$, $\alpha \in \mathbb{R}$. All series converge for |x|, |y| < 1.

Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

$$\begin{split} K(x,y) &= 1 - txy - t/y - t/x \\ R(x,y) &= 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0). \end{split}$$

Step 3: Consider the curve K(x, y) = 0 (Then R(x, y) = 0).

Parameterisation involves the Jacobi theta function $\vartheta(z,\tau)$.

So far: Similar to [Kurkova, Raschel 12] and [Bernardi, Bousquet-Mélou, Raschel 17] for quadrant models.

Equation to solve:

$$K(x, y)Q(x, y) = R(x, y),$$

where

$$K(x,y) = 1 - txy - t/y - t/x,$$

$$R(x,y) = 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0).$$

Equation to solve:

$$K(x,y)Q(x,y) = R(x,y),$$

where

$$K(x,y) = 1 - txy - t/y - t/x,$$

$$R(x,y) = 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0).$$

Define

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

Then $K(X(z), X(z + \pi \tau)) = 0$.

Equation to solve:

$$K(x, y)Q(x, y) = R(x, y),$$

where

$$K(x,y) = 1 - txy - t/y - t/x,$$

$$R(x,y) = 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0).$$

Define

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

Then $K(X(z), X(z+\pi\tau)) = 0$. Hence $R(X(z), X(z+\pi\tau)) = 0$ (assuming $|X(z)| \le 1$ and $|X(z+\pi\tau)| \le 1$).

Equation to solve:

$$K(x,y)Q(x,y) = R(x,y),$$

where

$$K(x,y) = 1 - txy - t/y - t/x,$$

$$R(x,y) = 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0).$$

Define

$$X(z) = \frac{e^{-\frac{4\pi\tau_1}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

Then $K(X(z), X(z+\pi\tau)) = 0$. Hence $R(X(z), X(z+\pi\tau)) = 0$ (assuming $|X(z)| \le 1$ and $|X(z+\pi\tau)| \le 1$).

New equation to solve:

$$R(X(z), X(z + \pi\tau)) = 0,$$

Equation to solve:

$$K(x, y)Q(x, y) = R(x, y),$$

where

$$K(x,y) = 1 - txy - t/y - t/x,$$

$$R(x,y) = 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0).$$

Define

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

Then $K(X(z), X(z + \pi \tau)) = 0$. Hence $R(X(z), X(z + \pi \tau)) = 0$ (assuming $|X(z)| \le 1$ and $|X(z + \pi \tau)| \le 1$).

New equation to solve:

$$R(X(z), X(z + \pi\tau)) = 0,$$

Plot of
$$\left\{z: |X(z)| \in \left[0, \frac{1}{3}\right), \left(\frac{1}{3}, 1\right), (1, 3), (3, 9), (9, \infty]\right\}$$
.

For $z \in \Omega$, $|X(z)| < 1 \Rightarrow Q(X(z), 0)$ and Q(0, X(z)) are well defined.

Plot of
$$\left\{z: |X(z)| \in \left[0, \frac{1}{3}\right), \left(\frac{1}{3}, 1\right), (1, 3), (3, 9), (9, \infty]\right\}$$
.

For $z \in \Omega$, $|X(z)| < 1 \Rightarrow Q(X(z), 0)$ and Q(0, X(z)) are well defined. Near Re(z) = 0, we have $z \in \Omega$ and $z + \pi \tau \in \Omega$.

Equation to solve: (near Re(z) = 0)

$$R(X(z), X(z + \pi\tau)) = 0$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

$$R(x,y) = 1 - \frac{t}{x}Q(0,y) - \frac{t}{y}Q(x,0) + e^{i\alpha}tQ(0,x) + e^{-i\alpha}tyQ(y,0).$$

Equation to solve: (near Re(z) = 0)

$$\begin{split} 1 = & \frac{t}{X(z)} Q(0, X(z+\pi\tau)) + \frac{t}{X(z+\pi\tau)} Q(X(z), 0) \\ & - e^{i\alpha} t Q(0, X(z)) - e^{-i\alpha} t X(z+\pi\tau) Q(X(z+\pi\tau), 0), \end{split}$$

where

$$X(z) = \frac{e^{-\frac{\pi \pi \tau}{3}} \vartheta(z, 3\tau) \vartheta(z - \pi \tau, 3\tau)}{\vartheta(z + \pi \tau, 3\tau) \vartheta(z - 2\pi \tau, 3\tau)}.$$

Equation to solve: (near Re(z) = 0)

$$\begin{split} 1 = & \frac{t}{X(z)} Q(0, X(z + \pi \tau)) + \frac{t}{X(z + \pi \tau)} Q(X(z), 0) \\ & - e^{i\alpha} t Q(0, X(z)) - e^{-i\alpha} t X(z + \pi \tau) Q(X(z + \pi \tau), 0), \end{split}$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$\begin{split} 1 = & \frac{t}{X(z)} Q(0, X(z + \pi \tau)) + \frac{t}{X(z + \pi \tau)} Q(X(z), 0) \\ - & e^{i\alpha} t Q(0, X(z)) - e^{-i\alpha} t X(z + \pi \tau) Q(X(z + \pi \tau), 0), \end{split}$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$1 = \frac{t}{X(z)}Q(0, X(z + \pi\tau)) + L(z)$$
$$-e^{-i\alpha}tX(z + \pi\tau)Q(X(z + \pi\tau), 0),$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$1 = \frac{t}{X(z)}Q(0, X(z + \pi\tau)) + L(z)$$
$$-e^{-i\alpha}tX(z + \pi\tau)Q(X(z + \pi\tau), 0),$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$1 = \frac{t}{X(z)}Q(0, X(z + \pi\tau)) + L(z) - e^{-i\alpha}tX(z + \pi\tau)Q(X(z + \pi\tau), 0),$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$\begin{split} 1 = & \frac{t}{X(z)} Q(0, X(z+\pi\tau)) + L(z) \\ & - \frac{e^{-i\alpha}t}{X(z)X(z+2\pi\tau)} Q(X(z+\pi\tau), 0), \end{split}$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$\begin{split} 1 = & \frac{t}{X(z)} Q(0, X(z+\pi\tau)) + L(z) \\ & - \frac{e^{-i\alpha}t}{X(z)X(z+2\pi\tau)} Q(X(z+\pi\tau), 0), \end{split}$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$1 = -\frac{e^{-i\alpha}}{X(z)}L(z + \pi\tau) + L(z).$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$1 = -\frac{e^{-i\alpha}}{X(z)}L(z + \pi\tau) + L(z).$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

For z near 0, define

$$L(z) = \frac{t}{X(z+\pi\tau)}Q(X(z),0) - e^{i\alpha}tQ(0,X(z)).$$

Equation to solve: (near Re(z) = 0)

$$1 = -\frac{e^{-i\alpha}}{X(z)}L(z + \pi\tau) + L(z).$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau_1}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

Equation to solve: (near Re(z) = 0)

$$1 = -\frac{e^{-i\alpha}}{X(z)}L(z + \pi\tau) + L(z).$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

We can solve this exactly:

$$L(z) = -\frac{e^{3i\alpha}}{1 - e^{3i\alpha}} \left(1 + \frac{e^{-i\alpha}}{X(z)} + e^{-2i\alpha}X(z - \pi\tau) \right)$$
$$-\frac{e^{i\alpha + \frac{5i\pi\tau}{3}} \vartheta(\pi\tau, 3\tau)\vartheta'(0, \tau)}{(1 - e^{3i\alpha})\vartheta(\frac{\alpha}{2} - \frac{2\pi\tau}{3}, \tau)\vartheta'(0, 3\tau)} \frac{\vartheta(z - 2\pi\tau, 3\tau)\vartheta(z - \frac{\alpha}{2} + \frac{2\pi\tau}{3}, \tau)}{\vartheta(z, \tau)\vartheta(z, 3\tau)}$$

Equation to solve: (near Re(z) = 0)

$$1 = -\frac{e^{-i\alpha}}{X(z)}L(z + \pi\tau) + L(z).$$

where

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}.$$

We can solve this exactly:

$$L(z) = -\frac{e^{3i\alpha}}{1 - e^{3i\alpha}} \left(1 + \frac{e^{-i\alpha}}{X(z)} + e^{-2i\alpha}X(z - \pi\tau) \right)$$
$$-\frac{e^{i\alpha + \frac{5i\pi\tau}{3}} \vartheta(\pi\tau, 3\tau)\vartheta'(0, \tau)}{(1 - e^{3i\alpha})\vartheta(\frac{\alpha}{2} - \frac{2\pi\tau}{3}, \tau)\vartheta'(0, 3\tau)} \frac{\vartheta(z - 2\pi\tau, 3\tau)\vartheta(z - \frac{\alpha}{2} + \frac{2\pi\tau}{3}, \tau)}{\vartheta(z, \tau)\vartheta(z, 3\tau)}$$

We can extract $E(t, e^{i\alpha}) = Q(0, 0)...$

KREWERAS WALKS BY WINDING NUMBER: SOLUTION

Recall: τ is determined by

$$t = e^{-\frac{\pi\tau i}{3}} \frac{\vartheta'(0,3\tau)}{4i\vartheta(\pi\tau,3\tau) + 6\vartheta'(\pi\tau,3\tau)}.$$

The gf $E(t, e^{i\alpha}) = Q(0, 0) \equiv Q(t, \alpha, 0, 0)$ is given by:

$$E(t,e^{i\alpha}) = \frac{e^{i\alpha}}{t(1-e^{3i\alpha})} \left(e^{i\alpha} - e^{\frac{4\pi\pi i}{3}} \frac{\vartheta'(2\pi\tau,3\tau)}{\vartheta'(0,3\tau)} - e^{\frac{\pi\tau i}{3}} \frac{\vartheta(\pi\tau,3\tau)\vartheta'(\frac{\alpha}{2} - \frac{2\pi\tau}{3},\tau)}{\vartheta'(0,3\tau)\vartheta(\frac{\alpha}{2} - \frac{2\pi\tau}{3},\tau)} \right).$$

KREWERAS WALKS BY WINDING NUMBER: SOLUTION

Recall: τ is determined by

$$t = e^{-\frac{\pi\tau i}{3}} \frac{\vartheta'(0,3\tau)}{4i\vartheta(\pi\tau,3\tau) + 6\vartheta'(\pi\tau,3\tau)}.$$

The gf $E(t, e^{i\alpha}) = Q(0, 0) \equiv Q(t, \alpha, 0, 0)$ is given by:

$$E(t,e^{i\alpha}) = \frac{e^{i\alpha}}{t(1-e^{3i\alpha})} \left(e^{i\alpha} - e^{\frac{4\pi\tau i}{3}} \frac{\vartheta'(2\pi\tau,3\tau)}{\vartheta'(0,3\tau)} - e^{\frac{\pi\tau i}{3}} \frac{\vartheta(\pi\tau,3\tau)\vartheta'(\frac{\alpha}{2} - \frac{2\pi\tau}{3},\tau)}{\vartheta'(0,3\tau)\vartheta(\frac{\alpha}{2} - \frac{2\pi\tau}{3},\tau)} \right).$$

Equivalently:

Let $q(t) \equiv q = t^3 + 15t^6 + 279t^9 + \cdots$ satisfy

$$t = q^{1/3} \frac{T_1(1, q^3)}{4T_0(q, q^3) + 6T_1(q, q^3)}.$$

The gf for cell-centred Kreweras-lattice almost-excursions is:

$$E(t,s) = \frac{s}{(1-s^3)t} \left(s - q^{-1/3} \frac{T_1(q^2,q^3)}{T_1(1,q^3)} - q^{-1/3} \frac{T_0(q,q^3) T_1(sq^{-2/3},q)}{T_1(1,q^3) T_0(sq^{-2/3},q)} \right).$$

Part 2c: Winding on other lattices

CELL-CENTRED LATTICES

Important property: Decomposable into congruent sectors

CELL-CENTRED LATTICES

Important property: Decomposable into congruent sectors

VERTEX-CENTRED LATTICES

Decompose into rotationally congruent sectors

VERTEX-CENTRED LATTICES

Decompose into rotationally congruent sectors

RECALL: Kreweras almost-excursions

Define
$$T_k(u,q) = \sum_{n=0}^{\infty} (-1)^n (2n+1)^k q^{n(n+1)/2} (u^{n+1} - (-1)^k u^{-n})$$

= $(u \pm 1) - 3^k q (u^2 \pm u^{-1}) + 5^k q^3 (u^3 \pm u^{-2}) + O(q^6)$.

Let $q(t) \equiv q = t^3 + 15t^6 + 279t^9 + \cdots$ satisfy

$$t = q^{1/3} \frac{T_1(1, q^3)}{4T_0(q, q^3) + 6T_1(q, q^3)}.$$

The gf for cell-centred Kreweras-lattice almost-excursions is:

$$E(t,s) = \frac{s}{(1-s^3)t} \left(s - q^{-1/3} \frac{T_1(q^2, q^3)}{T_1(1, q^3)} - q^{-1/3} \frac{T_0(q, q^3) T_1(sq^{-2/3}, q)}{T_1(1, q^3) T_0(sq^{-2/3}, q)} \right).$$

The gf for vertex-centred Kreweras-lattice almost-excursions is:

$$\tilde{E}(t,s) = \frac{s(1-s)q^{-\frac{2}{3}}}{t(1-s^3)} \frac{T_0(q,q^3)^2}{T_1(1,q^3)^2} \left(\frac{T_1(q,q^3)^2}{T_0(q,q^3)^2} - \frac{T_2(q,q^3)}{T_0(q,q^3)} - \frac{T_2(s,q)}{2T_0(s,q)} + \frac{T_3(1,q)}{6T_1(1,q)} + \frac{T_3(1,q^3)}{3T_1(1,q^3)} \right).$$

SQUARE LATTICE ALMOST-EXCURSIONS

Define
$$T_k(u,q) = \sum_{n=0} (-1)^n (2n+1)^k q^{n(n+1)/2} (u^{n+1} - (-1)^k u^{-n})$$

 $= (u \pm 1) - 3^k q (u^2 \pm u^{-1}) + 5^k q^3 (u^3 \pm u^{-2}) + O(q^6).$
Let $q(t) \equiv q = t + 4t^3 + 34t^5 + 360t^7 + \cdots$ satisfy
 $t = \frac{qT_0(q^2, q^8)T_1(1, q^8)}{2T_0(q^4, q^8)(T_0(q^2, q^8) + 2T_1(q^2, q^8))}.$

The gf for cell-centred Square-lattice almost-excursions is:

$$\frac{s^2}{(1-s^4)t}\left(s-s^{-1}+\frac{T_0(q^4,q^8)}{qT_1(1,q^8)}-\frac{T_0(q^4,q^8)T_1(s^{-1}q,q^2)}{qT_1(1,q^8)T_0(s^{-1}q,q^2)}\right).$$

The gf for vertex-centred Square-lattice almost-excursions is:

$$\frac{sT_0(q^4,q^8)}{qt(1+s^2)T_1(1,q^8)}\left(1+\frac{2T_1(q^2,q^8)}{T_0(q^2,q^8)}+\frac{(1-s)T_1(s^{-1},q^2)}{(1+s)T_0(s^{-1},q^2)}\right).$$

Part 3: Walks in cones

WALKS IN CONES WITH SMALL STEPS

• Quarter plane walks: Completely classified into rational, algebraic, D-finite, D-algebraic cases.

[Mishna, Rechnitzer 09], [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10], [Fayolle, Raschel 10], [Kurkova, Raschel 12], [Melczer, Mishna 13], [Bostan, Raschel, Salvy 14], [Bernardi, Bousquet-Mélou, Raschel 17], [Dreyfus, Hardouin, Roques, Singer 18]

- Half plane walks: Easy
- Three quarter plane walks: Active area of research (Previously) solved in 6-12 of the 74 non-trivial cases [Bousquet-Mélou 16], [Raschel-Trotignon 19], [Budd 20], [Bousquet-Mélou, Wallner 20+]
- Walks on the slit plane $\mathbb{C}\setminus\mathbb{R}_{<0}$: solved in all cases [Bousquet-Mélou, 01], [Bousquet-Mélou, Schaeffer, 02]

WALKS IN THE 3/4-PLANE: SOLVED CASES

[Bousquet-Mélou 16], [Raschel, Trotignon 19], [Budd 20], [Bousquet-Mélou, Wallner 20+]

WALKS IN THE 5/4-PLANE: SOLVED CASES

[Budd 20]

WALKS IN THE 6/4-PLANE: SOLVED CASES

[Budd 20]

WALKS IN THE 7/4-PLANE: SOLVED CASES

[Budd 20]

COUNTING KREWERAS WALKS IN A CONE

In the upper half plane: Use reflection principle

- $\#(Walks from A to B above \mathbb{R})$
- $= \#(\text{Walks from } A \text{ to } B) \#(\text{Walks from } A \text{ to } B \text{ through } \mathbb{R})$
- $= \#(\text{Walks from } A \text{ to } B) \#(\text{Walks from } A \text{ to } \overline{B})$

New model: -excursions avoiding a quadrant.

New model: -excursions avoiding a quadrant.

New model: -excursions avoiding a quadrant.

New model: -excursions avoiding a quadrant.

New model: -excursions avoiding a quadrant.

New model: -excursions avoiding a quadrant.

First step: Transform to half plane \rightarrow whole (punctured) plane

#(Kreweras excursions in 5/6-plane)

- $= \#(\operatorname{Walks} A \to A \text{ in upper half plane})$
- $= \#(\operatorname{Walks} A \to A) \#(\operatorname{Walks} A \to B)$

Walks $A \to B$ with winding angle β \equiv Kreweras almost-excursions with winding angle $\frac{5\beta}{3}$.

Walks $A \to B$ with winding angle $2\pi k - \frac{4\pi}{5}$ \equiv Kreweras almost-excursions with winding angle $\frac{5}{3} \left(2\pi k - \frac{4\pi}{5} \right)$.

Walks $A \to B$ with winding angle $2\pi k - \frac{4\pi}{5}$ \equiv Kreweras almost-excursions with winding angle $\frac{10\pi k}{3} - \frac{4\pi}{3}$.

Walks $A \to B$ with winding angle $2\pi k - \frac{4\pi}{5}$ \equiv Kreweras almost-excursions with winding angle $\frac{10\pi k}{3} - \frac{4\pi}{3}$. **Counted by:** $s^{5k-2}\tilde{E}(t,s)$

$$\#(\text{Kreweras excursions in 5/6-plane})$$

$$= \#(\text{Walks } A \to A \text{ in upper half plane})$$

$$= \#(\text{Walks } A \to A) - \#(\text{Walks } A \to B)$$

$$= \left(\sum_{k \in \mathbb{Z}} [s^{5k}] \tilde{E}(t, s)\right) - \left(\sum_{k \in \mathbb{Z}} [s^{5k-3}] \tilde{E}(t, s)\right)$$

$$= \frac{1}{5} \sum_{i=1}^{4} \left(1 - e^{\frac{4\pi i j}{5}}\right) \tilde{E}\left(t, e^{\frac{2\pi i}{5}}\right)$$

$$\#(\text{Kreweras excursions in 5/6-plane})$$

$$= \#(\text{Walks } A \to A \text{ in upper half plane})$$

$$= \#(\text{Walks } A \to A) - \#(\text{Walks } A \to B)$$

$$= \left(\sum_{k \in \mathbb{Z}} [s^{5k}] \tilde{E}(t, s)\right) - \left(\sum_{k \in \mathbb{Z}} [s^{5k-3}] \tilde{E}(t, s)\right)$$

$$= \frac{1}{5} \sum_{k=1}^{4} \left(1 - e^{\frac{4\pi i j}{5}}\right) \tilde{E}\left(t, e^{\frac{2\pi i}{5}}\right)$$

More generally: The gf $C_{k,r}(t)$ for excursions in the k/6-plane is

$$C_{k,r}(t) = \frac{1}{k} \sum_{i=1}^{k-1} \left(1 - e^{\frac{2\pi i j r}{k}} \right) \tilde{E}\left(t, e^{\frac{2\pi i j}{k}}\right).$$

Final comments

FUNCTIONAL EQUATION THETA SOLUTION METHOD

Project: develop this method of solving functional equations.

Problems solved so far:

- Quadrant walks [Kurkova, Raschel, 2012] + [Bernardi, Bousquet-Mélou, Raschel, 2017]
- Some walks avoiding a quadrant [Raschel, Trotignon, 2019]
- Some walks by winding number [E.P., 2020+]
- Six vertex model on 4-valent maps [Kostov, 2000], [E.P., Zinn-Justin, 2020+], [Bousquet-Mélou, E.P., 2020+]
- Properly coloured triangulations [E.P., 2020+]

To do:

- Solve more problems.
- Streamline the method.
- Convert techniques to world of formal power series.
- find a good name for the method.

Thank you!

BONUS SLIDE: PROPERLY COLOURED TRIANGULATIONS

To solve:

$$T(x, y)K(x, y) = R(x, y),$$

where

$$K(x,y) = 1 - xytT(1,y) - \frac{xt}{y} - \frac{x^2yt}{1-x}$$

$$R(x,y) = x(s-1) - \frac{xt}{y}T(x,0) + x^2yt\frac{T(1,y)}{x-1}.$$

Want to parametrise K(x, y) = 0, as then R(x, y) = 0.

Guess: There is some pair X(z), Y(z) satisfying

- K(X(z), Y(z)) = 0 and therefore R(X(z), Y(z)) = 0.
- $X(z + \pi) = X(z)$ and $Y(z + \pi) = Y(z)$.
- \bullet X(-z) = X(z) and $Y(\pi\tau z) = Y(z)$.

Guess: Solve under this assumption then check the solution.

Kernel not explicit, but method still works.

BONUS SLIDE: ANOTHER WINDING ANGLE

For self-avoiding walks, a different parameter is sometimes called the winding angle (e.g. in work of Duminil-Copin and Smirnov). I'll call it the turning angle.

Definition: Imagining a walker taking the walk, the turning angle is the total anti-clockwise angle they turn during the walk.

Relation to winding angle: The turning angle is the winding angle of the walk minus the winding angle of the reversed walk.

BONUS SLIDE: ANOTHER TURNING ANGLE

For self-avoiding walks, a different parameter is sometimes called the winding angle (e.g. in work of Duminil-Copin and Smirnov). I'll call it the turning angle.

Definition: Imagining a walker taking the walk, the turning angle is the total anti-clockwise angle they turn during the walk.

Relation to winding angle: The turning angle is the winding angle of the walk minus the winding angle of the reversed walk.

Asymptotics of $\tilde{E}(t,e^{ilpha})$ and $C_{k,r}(t)$

Fix $\alpha \in (0,\pi) \setminus \{\frac{2\pi}{3}\}$. Writing $\hat{\tau} = -\frac{1}{3\tau}$ and $\hat{q} = e^{2\pi i \hat{\tau}}$, the dominant singularity t = 1/3 corresponds to $\hat{q} = 0$.

Asymptotics of $\widetilde{E}(t,e^{ilpha})$ and $C_{k,r}(t)$

Fix $\alpha \in (0,\pi) \setminus \{\frac{2\pi}{3}\}.$

Writing $\hat{\tau} = -\frac{1}{3\tau}$ and $\hat{q} = e^{2\pi i \hat{\tau}}$, the dominant singularity t = 1/3 corresponds to $\hat{q} = 0$.

Series in \hat{q} :

$$t = \frac{1}{3} - 3\hat{q} + 18\hat{q}^2 + O(\hat{q}^3)$$

$$t\tilde{E}(t, e^{i\alpha}) = a_0 + a_1\hat{q} - \frac{27\alpha e^{i\alpha}}{2\pi(1 + e^{i\alpha} + e^{2i\alpha})}\hat{q}^{\frac{3\alpha}{2\pi}} + o\left(\hat{q}^{\frac{3\alpha}{2\pi}}\right),$$

$$\rightarrow \tilde{E}(t, e^{i\alpha})$$
 as a series in $(1 - 3t)$,

Asymptotics of $ilde{E}(t,e^{ilpha})$ and $C_{k,r}(t)$

Fix $\alpha \in (0,\pi) \setminus \{\frac{2\pi}{3}\}.$

Writing $\hat{\tau} = -\frac{1}{3\tau}$ and $\hat{q} = e^{2\pi i \hat{\tau}}$, the dominant singularity t = 1/3 corresponds to $\hat{q} = 0$.

Series in \hat{q} :

$$t = \frac{1}{3} - 3\hat{q} + 18\hat{q}^2 + O(\hat{q}^3)$$

$$t\tilde{E}(t, e^{i\alpha}) = a_0 + a_1\hat{q} - \frac{27\alpha e^{i\alpha}}{2\pi(1 + e^{i\alpha} + e^{2i\alpha})}\hat{q}^{\frac{3\alpha}{2\pi}} + o\left(\hat{q}^{\frac{3\alpha}{2\pi}}\right),$$

$$\rightarrow \tilde{E}(t, e^{i\alpha})$$
 as a series in $(1-3t)$, \rightarrow

$$[t^n]\tilde{E}(t,e^{i\alpha}) \sim -\frac{3^{5-\frac{3\alpha}{\pi}}e^{\alpha i}\alpha}{2\pi(1+e^{\alpha i}+e^{2\alpha i})\Gamma\left(-\frac{3\alpha}{2\pi}\right)}n^{-\frac{3\alpha}{2\pi}-1}3^n,$$

$$[t^n]C_{k,r}(t) \sim -\frac{2 \cdot 3^{5-\frac{6}{k}} \sin^2\left(\frac{r\pi}{k}\right)}{\pi k^2 \left(1 + 2\cos\left(\frac{2\pi}{k}\right)\right) \Gamma\left(-\frac{3}{k}\right)} n^{-1-\frac{3}{k}} 3^n.$$

Asymptotics of $ilde{E}(t,e^{ilpha})$ and $C_{k,r}(t)$

Fix $\alpha \in (0,\pi) \setminus \{\frac{2\pi}{3}\}.$

Writing $\hat{\tau} = -\frac{1}{3\tau}$ and $\hat{q} = e^{2\pi i \hat{\tau}}$, the dominant singularity t = 1/3 corresponds to $\hat{q} = 0$.

Series in \hat{q} :

$$t = \frac{1}{3} - 3\hat{q} + 18\hat{q}^2 + O(\hat{q}^3)$$

$$t\tilde{E}(t, e^{i\alpha}) = a_0 + a_1\hat{q} - \frac{27\alpha e^{i\alpha}}{2\pi(1 + e^{i\alpha} + e^{2i\alpha})}\hat{q}^{\frac{3\alpha}{2\pi}} + o\left(\hat{q}^{\frac{3\alpha}{2\pi}}\right),$$

 $\rightarrow \tilde{E}(t, e^{i\alpha})$ as a series in (1-3t), \rightarrow

$$[t^n]\tilde{E}(t,e^{i\alpha}) \sim -\frac{3^{5-\frac{3\alpha}{\pi}}e^{\alpha i}\alpha}{2\pi(1+e^{\alpha i}+e^{2\alpha i})\Gamma\left(-\frac{3\alpha}{2\pi}\right)}n^{-\frac{3\alpha}{2\pi}-1}3^n,$$

$$[t^n]C_{k,r}(t) \sim -\frac{2 \cdot 3^{5-\frac{6}{k}} \sin^2\left(\frac{r\pi}{k}\right)}{\pi k^2 \left(1 + 2\cos\left(\frac{2\pi}{k}\right)\right) \Gamma\left(-\frac{3}{k}\right)} n^{-1-\frac{3}{k}} 3^n.$$

Alternatively: Terms 3^n and $n^{-1-\frac{3}{k}}$ known [Denisov, Wachtel, 2015].

Recall: $\vartheta(z,\tau)$ is differentially algebraic \to so are $\tilde{E}(t,s)$ and $Q(t,\alpha,x,y)$.

For $\alpha \in \frac{\pi}{3}$ ($\mathbb{Q} \setminus \mathbb{Z}$) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

Recall: $\vartheta(z,\tau)$ is differentially algebraic \to so are $\tilde{E}(t,s)$ and $Q(t,\alpha,x,y)$.

For $\alpha \in \frac{\pi}{3} (\mathbb{Q} \setminus \mathbb{Z})$ we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

• $Q(t, \alpha, X(z), 0)$ and X(z) are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.

Recall: $\vartheta(z,\tau)$ is differentially algebraic \to so are $\tilde{E}(t,s)$ and $Q(t,\alpha,x,y)$.

For $\alpha \in \frac{\pi}{3}$ ($\mathbb{Q} \setminus \mathbb{Z}$) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and X(z) are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E(t(\tau), e^{i\alpha})$ and $t(\tau)$ are modular functions of τ $\Rightarrow E(t, e^{i\alpha})$ is algebraic in t. Same for $\tilde{E}(t(\tau), e^{i\alpha})$.

Recall: $\vartheta(z,\tau)$ is differentially algebraic \to so are $\tilde{E}(t,s)$ and $Q(t,\alpha,x,y)$.

For $\alpha \in \frac{\pi}{3}$ ($\mathbb{Q} \setminus \mathbb{Z}$) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and X(z) are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E(t(\tau), e^{i\alpha})$ and $t(\tau)$ are modular functions of τ $\Rightarrow E(t, e^{i\alpha})$ is algebraic in t. Same for $\tilde{E}(t(\tau), e^{i\alpha})$.
- Combining these ideas: $Q(t, \alpha, x, y)$ is algebraic in t, x and y.

Recall: $\vartheta(z,\tau)$ is differentially algebraic \to so are $\tilde{E}(t,s)$ and $Q(t,\alpha,x,y)$.

For $\alpha \in \frac{\pi}{3}$ ($\mathbb{Q} \setminus \mathbb{Z}$) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and X(z) are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E(t(\tau), e^{i\alpha})$ and $t(\tau)$ are modular functions of τ $\Rightarrow E(t, e^{i\alpha})$ is algebraic in t. Same for $\tilde{E}(t(\tau), e^{i\alpha})$.
- Combining these ideas: $Q(t, \alpha, x, y)$ is algebraic in t, x and y.

Recall: The gf for excursions in the k/6-plane is

$$C_{k,r}(t) = rac{1}{k} \sum_{i=1}^{k-1} \left(1 - e^{rac{2\pi i j r}{k}}
ight) \tilde{E}\left(t, e^{rac{2\pi i j}{k}}
ight).$$

Recall: $\vartheta(z,\tau)$ is differentially algebraic \to so are $\tilde{E}(t,s)$ and $Q(t,\alpha,x,y)$.

For $\alpha \in \frac{\pi}{3}$ ($\mathbb{Q} \setminus \mathbb{Z}$) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and X(z) are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E(t(\tau), e^{i\alpha})$ and $t(\tau)$ are modular functions of τ $\Rightarrow E(t, e^{i\alpha})$ is algebraic in t. Same for $\tilde{E}(t(\tau), e^{i\alpha})$.
- Combining these ideas: $Q(t, \alpha, x, y)$ is algebraic in t, x and y.

Recall: The gf for excursions in the k/6-plane is

$$C_{k,r}(t) = \frac{1}{k} \sum_{i=1}^{k-1} \left(1 - e^{\frac{2\pi i j r}{k}} \right) \tilde{E}\left(t, e^{\frac{2\pi i j}{k}}\right).$$

Algebraic iff $3 \nmid k$. (always D-finite).

Bonus slide: Parameterization of K(x, y) = 0

Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then
$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

parameterizes K(x, Y(x)) = 0. Typically, $Y_{+}(x)$ is meromorphic on:

Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then
$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

parameterizes K(x, Y(x)) = 0. Typically, $Y_+(x)$ is meromorphic on:

Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then
$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

parameterizes K(x, Y(x)) = 0. Typically, $Y_+(x)$ is meromorphic on:

By symmetry, for $r \in \mathbb{R}$:

$$\bullet \ X(r) = X(\pi - r) = X(-r)$$

$$\bullet \ X(\frac{\pi\tau}{2} + r) = X(\frac{\pi\tau}{2} - r)$$

$$\bullet \ X(z) = X(\pi - z) = X(-z)$$

•
$$X(z) = X(\pi\tau - z)$$

•
$$X(z) = X(\pi - z) = X(-z) = X(\pi \tau + z)$$

$$X(z) = X(\pi\tau - z)$$

•
$$X(z) = X(\pi - z) = X(-z) = X(\pi \tau + z)$$

$$X(z) = c \frac{\vartheta(z - \alpha)\vartheta(z + \alpha)}{\vartheta(z - \beta)\vartheta(z + \beta)}$$

Recall:

$$y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}.$$

Consider Y(z) = y(X(z)). By symmetry, for $r \in \mathbb{R}$:

•
$$X(r) = X(-r)$$
, so $Y(r) + Y(-r) = -\frac{B(X(r))}{A(X(r))}$.

• Similarly,
$$Y\left(\frac{\pi\tau}{2} + r\right) + Y\left(\frac{\pi\tau}{2} - r\right) = -\frac{B\left(X\left(\frac{\pi\tau}{2} + r\right)\right)}{A\left(X\left(\frac{\pi\tau}{2} + r\right)\right)}$$
.

BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Recall:

$$y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}.$$

Consider Y(z) = y(X(z)). For $z \in \mathbb{C}$:

•
$$Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$$
.

•
$$Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$$
.
• $Y(z) + Y(\pi\tau - z) = -\frac{B(X(z))}{A(X(z))}$.

•
$$Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$$

$$\bullet \ Y(z) + Y(\pi\tau - z) = -\frac{B(X(z))}{A(X(z))}.$$

So
$$Y(z) = Y(z + \pi \tau) = Y(z + \pi)$$

$$\Rightarrow Y(z) = c \frac{\vartheta(z - \gamma)\vartheta(z - \delta)}{\vartheta(z - \epsilon)\vartheta(z - \gamma - \delta + \epsilon)}.$$

Equation characterising $Q(x, y) \equiv Q(t, x, y)$ for quadrant walks:

$$K(x,y)Q(x,y) + R(x,y) = 0.$$

K(x, y) = 0 is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

where the constants satisfy $\alpha_j + \beta_j = \gamma_j + \delta_j$ for j = 1, 2.

So,
$$R(X(z), Y(z)) = 0$$
.

In general: K(x, y) = 0 is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

with $\alpha_j + \beta_j = \gamma_j + \delta_j$ for $j = 1, 2$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} (Q(x,y) - Q(0,y)) + \frac{t}{y} (Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$
with $\alpha_1 + \beta_2 = \alpha_1 + \delta_1$ for $i = 1, 2$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

•
$$K(0,0) = 0$$
, so WLOG $\alpha_1 = \alpha_2 = 0$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\gamma_2)\vartheta(z-\delta_2)},$$

with $\alpha_j + \beta_j = \gamma_j + \delta_j$ for j = 1, 2.

•
$$K(0,0) = 0$$
, so WLOG $\alpha_1 = \alpha_2 = 0$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\gamma_2)\vartheta(z-\delta_2)},$$

with $\alpha_j + \beta_j = \gamma_j + \delta_j$ for j = 1, 2.

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z+\beta_1)\vartheta(z-2\beta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z+\beta_1)\vartheta(z-2\beta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta\left(z - \frac{2\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta\left(z + \frac{\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)\left(z + \frac{2\pi\tau}{3}\right)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{c_1}{\vartheta\left(z\right)\vartheta\left(z-\frac{\pi\tau}{3}\right)} \ \ \text{and} \ \ Y(z) = \frac{c_2}{\vartheta\left(z\right)\vartheta\left(z+\frac{\pi\tau}{3}\right)} \left(z+\frac{2\pi\tau}{3}\right),$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{9}}\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \quad \text{and} \quad Y(z) = \frac{e^{-\frac{4\pi\tau i}{9}}\vartheta(z)\vartheta\left(z + \frac{\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)\left(z + \frac{2\pi\tau}{3}\right)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta\left(z-\pi\tau,3\tau\right)}{\vartheta\left(z+\pi\tau,3\tau\right)\vartheta\left(z-2\pi\tau,3\tau\right)} \quad \text{and} \quad Y(z) = X(z+\pi\tau),$$

where

$$t = \frac{1}{X(z)Y(z) + X(z)^{-1} + Y(z)^{-1}}.$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta\left(z-\pi\tau,3\tau\right)}{\vartheta\left(z+\pi\tau,3\tau\right)\vartheta\left(z-2\pi\tau,3\tau\right)} \quad \text{and} \quad Y(z) = X(z+\pi\tau),$$

where

$$t = e^{-\frac{\pi\tau i}{3}} \frac{\vartheta'(0,3\tau)}{4i\vartheta(\pi\tau,3\tau) + 6\vartheta'(\pi\tau,3\tau)}.$$

Part 4: Analysis of solutions