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Picard-Vessiot theory of ordinary differential equation
(k, ∂) a commutative differential ring without zero divisors.
Const(k) = {c ∈ k|∂c = 0} is supposed to be a field.

(ODE ) (an∂
n + an−1∂

n−1 + . . .+ a0)y = 0, a0, . . . , an−1, an ∈ k.
a−1

n is supposed to exist.

Definition 1
1. Let y1, . . . , yn be Const(k)-linearly independent solutions of (ODE ).

Then {y1, . . . , yn} is called a fundamental set of solutions of (ODE )
and it generates a Const(k)-vector subspace of dimension at most n.

2. If 1 M = k{y1, . . . , yn} and Const(M) = Const(k) then M is called
a Picard-Vessiot extension related to (ODE )

3. Let k ⊂ K1 and k ⊂ K2 be differential rings. An isomorphism of
rings σ : K1 → K2 is a differential k-isomorphism if

∀a ∈ K1, ∂(σ(a)) = σ(∂a) and, if a ∈ k, σ(a) = a.
If K1 = K2 = K, the differential galois group of K over k is by

Galk(K) = {σ|σ is a differential k-automorphism of K}.
1. Let R1,R2 be differential rings s.t. R1 ⊂ R2. Let S be a subset of R2.

R1{S} denotes the smallest differential subring of R2 containing R1.
R1{S} is the ring (over R1) generated by S and their derivatives of all orders.
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Linear differential equations and Dyson series
Let a0, . . . , an ∈ C(z), (an(z)∂n + . . .+ a1(z)∂ + a0(z))y(z) = 0.

(ED)

 ∂q(z) = A(z)q(z), A(z) ∈Mn,n(C(z)),
q(z0) = η, λ ∈M1,n(C),
y(z) = λq(z), η ∈Mn,1(C).

By successive Picard iterations, with the initial point q(z0) = η, we get 2

y(z) = λU(z0; z)η, where U(z0; z) is the following functional expansion

U(z0; z) =
∑
k≥0

∫ z

z0

A(z1)dz1

∫ z1

z0

A(z2)dz2 . . .

∫ zk−1

z0

A(zk )dzk ,(Dyson series)

and (z0, z1 . . . , zk , z) is a subdivision of the path of integration z0  z .
In order to find the matrix Ω(z0; z) s.t.

U(z0; z) = exp[Ω(z0; z)] = > exp

∫ z

z0

A(s)ds, (Feynman’s notation)

Magnus computed Ω(z0; z) as limit of the following Lie-integral-functionals

Ω1(z0; z) =

∫ z

z0

A(z)ds,

Ωk (z0; z) =

∫ z

z0

[A(z) + [A(z),Ωk−1(z0; s)]/2

+[[A(z),Ωk−1(z0; s)],Ωk−1(z0; s)]/12 + . . .)ds.

2. Subject to convergence.
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Fuchsian linear differential equations
Let Ω be a simply connected domain and H(Ω) be the ring of holomorphic
functions over Ω (with 1H(Ω) as neutral element). Let us consider, here,

σ = {si}i=0,..,m,m ≥ 1, as set of simple poles of (ED) and Ω = C̃ \ σ.

A(z) =
m∑

i=0

Miui (z), where

{
Mi ∈Mn,n(C),

ui (z) = (z − si )
−1 ∈ C(z).

(ED)


∂q(z) =

( m∑
i=0

Miui (z)

)
q(z),

q(z0) = η,

y(z) = λq(z).
Let X ∗ be the set of words over X = {x0, . . . , xm} and

αz
z0
⊗M : C〈X 〉 ⊗ C〈X 〉 →Mn,n(H(Ω))

(z0  z is the path of integration previously introduced) s.t.
M(1X∗) = Idn and M(xi1 · · · xik ) = Mi1 . . .Mik ,

αz
z0

(1X∗) = 1H(Ω) and αz
z0

(xi1 · · · xik ) =

∫ z

z0

dz1

z1 − si1

. . .

∫ zk−1

z0

dzk

zk − sik

.

Then 3 y(z) = λU(z0; z)η with

U(z0; z) =
∑

w∈X∗

M(w)αz
z0

(w) = (M⊗ αz0 )
∑

w∈X∗

w ⊗ w .
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Examples of linear dynamical systems

Example 2 (Hypergeometric equation)
Let t0, t1, t2 be parameters and

z(1− z)ÿ(z) + [t2 − (t0 + t1 + 1)z ]ẏ(z)− t0t1y(z) = 0.
Let q1(z) = −y(z) and q2(z) = (1− z)ẏ(z). Hence, one has

y(z) =
(
1 0

)(q1(z)
q2(z)

)
and (

q̇1(z)
q̇2(z)

)
=

(
M0

z
+

M1

1− z

)(
q1(z)
q2(z)

)
= (u0(z)M0 + u1(z)M1)

(
q1(z)
q2(z)

)
,

where u0(z) = z−1, u1(z) = (1− z)−1 and

M0 = −
(

0 0
t0t1 t2

)
and M1 = −

(
0 1
0 t2 − t0 − t1

)
.
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Nonlinear differential equations

(NED)


∂q(z) =

( m∑
i=0

Ti (q)ui (z)

)
(q),

q(z0) = q0,
y(z) = f (q(z)),

where

I ui ∈ (k, ∂),

I the state q = (q1, . . . , qn) belongs the complex analytic manifold Q
of dimension n and q0 is the initial state,

I the observation f ∈ O, with O the ring of analytic functions over Q,

I for i = 0..1,Ti = (T 1
i (q)∂/∂q1 + · · ·+ Tm

i (q)∂/∂qm) is an analytic

vector field over Q,with T j
i (q) ∈ O, for j = 1, . . . , n.

With X and αz
z0

given as previously, let the morphism τ be defined by
τ(1X∗) = Id and τ(xi1 · · · xik ) = Ti1 . . .Tik . Then 4 y(z) = T ◦ f|q0

with

T =
∑

w∈X∗

τ(w)αz
z0

(w) = (τ ⊗ αz0 )
∑

w∈X∗

w ⊗ w .

4. Subject to convergence.
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Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)
Let k1, k2 be parameters and ∂2y(z) + k1y(z) + k2y

2(z) = u1(z)
which can be represented by the following state equations (with n = 1)

y(z) = q(z),
∂q(z) = A0(q)u0(z) + A1(q)u1(z),

where A0 = −(k1q + k2q
2)
∂

∂q
and A1 =

∂

∂q
.

Example 4 (Duffing equation)
Let a, b, c be parameters and ∂2y(z) + a∂y(z) + by(z) + cy3(z) = u1(z)
which can be represented by the following state equations (with n = 2)

y(z) = q1(z),(
∂q1(z)
∂q2(z)

)
=

(
q2

−(aq2 + b2q1 + cq3
1)

)
u0(z) +

(
0
1

)
u1(z)

= A0(q)u0(z) + A1(q)u1(z),

where A0 = −(aq2 + b2q1 + cq3
1)

∂

∂q2
+ q2

∂

∂q1
and A1 =

∂

∂q2
.
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Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)
Let γ, g be parameters and

∂2x(z)− γ[1 + x(z)2]∂x(z) + x(z) = g cos(ωz)
which can be tranformed into (with C is some constant of integration)

∂x(z) = γ[1 + x(z)2/3]x(z)−
∫ z

z0

x(s)ds +
g

ω
sin(ωz) + C .

Supposing x = ∂y and u1(z) = g sin(ωz)/ω + C , it leads then to
∂2y(z) = γ[∂y(z) + (∂y(z))3/3] + y(z) + u1(z)

which can be represented by the following state equations (with n = 2)
y(z) = q1(z),(

∂q1(z)
∂q2(z)

)
=

(
q2

γ(q2 + q3
2/3) + q1

)
u0(z) +

(
0
1

)
u1(z)

= A0(q)u0(z) + A1(q)u1(z),

where A0 = [γ(q2 + q3
2/3) + q1]

∂

∂q2
+ q2

∂

∂q1
and A1 =

∂

∂q2
.
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DUAL LAWS AND REPRESENTATIVE SERIES
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Dual law in bialgebra
Startting with a k−AAU (k is a ring) A. Dualizing µ : A⊗k A → A, we
get the transpose tµ : A∨ → (A⊗k A)∨ so that we do not get a
co-multiplication in general.

I Remark that when k is a field, the following arrow is into (due to
the fact that A∨ ⊗k A∨ is torsionfree)

Φ : A∨ ⊗k A∨ → (A⊗k A)∨.

I One restricts the codomain of tµ to A∨ ⊗k A∨ and then the domain
to (tµ)−1Φ(A∨ ⊗k A∨) =: A◦.

A∨ (A⊗k A)∨

A◦ A∨ ⊗k A∨

A◦◦ A◦ ⊗k A◦

tµ

∆µ

can Φ

∆µ

can j⊗j

The descent can stop at first step for a field k and then A◦◦ = A◦.
The coalgebra (A◦,∆µ) is called the Sweedler’s dual of (A, µ).

12 / 53



Case of algebras noncommutative series
I X denotes the ordered alphabets Y := {yk}k≥1 or X := {x0, x1}.

On the free monoid (X ∗, conc, 1X∗), we use the correspondences

x s1−1
0 x1 . . . x

sr−1
0 x1 ∈ X ∗x1

πY



πX

ys1 . . . ysr ∈ Y ∗ ↔ (s1, . . . , sr ) ∈ Nr
+.

Let LynX denote the set of Lyndon words generated by X .

I Let (LieA〈〈X 〉〉, [.]) and (A〈〈X 〉〉, conc) (resp. (LieA〈X 〉, [.]) and
(A〈X 〉, conc)) denote the algebras of (Lie) series (resp.
polynomials) with coefficients in the ring A, over X .

{Pl}l∈LynX (resp. {Πl}l∈LynY ) is a basis of Lie algebra of primitive
elements and {Sl}l∈LynX (resp. {Σl}l∈LynY ) is a transcendence
basis of (A〈X 〉, tt , 1X∗) (resp. (A〈Y 〉, , 1Y ∗)).

I H tt (X ) := (A〈X 〉, conc, 1X∗ ,∆ tt , e) and
H (Y ) := (A〈Y 〉, conc, 1Y ∗ ,∆ , e) with 5 (for x ∈ X , yi ∈ Y )

∆ tt x = x ⊗ 1X∗ + 1X∗ ⊗ x ,
∆ yi = yi ⊗ 1Y ∗ + 1Y ∗ ⊗ yi +

∑
k+l=i yk ⊗ yl .

I The dual law associated to conc is defined, for w ∈ X ∗, by
∆conc(w) =

∑
u,v∈X∗,uv=w u ⊗ v .

5. Or equivalently, for x , y ∈ X , yi , yj ∈ Y and u, v ∈ X ∗ (resp. Y ∗),
u tt 1X∗ = 1X∗ tt u = u and xu tt yv = x(u tt yv) + y(xu tt v),
u 1Y∗ = 1Y∗ u = u and xiu yjv = yi (u yjv) + yj (yiu v) + yi+j (u v).
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Dualizable laws in conc-shuffle bialgebras (1/2)
We can exploit the basis of words as follows

1. Any bilinear law (shuffle, stuffle or any) µ : A〈X 〉 ⊗A A〈X 〉 → A〈X 〉
can be decribed through its structure constants wrt to the basis of
words, i.e. for u, v ,w ∈ X ∗, Γw

u,v := 〈µ(u ⊗ v)|w〉 so that
µ(u ⊗ v) =

∑
w∈X∗ Γw

u,vw .

2. In the case when Γw
u,v is locally finite in w , we say that the given

law is dualizable, the arrow tµ restricts nicely to A〈X 〉 ↪→ A〈〈X 〉〉
and one can define on the polynomials a comultiplication by

∆µ(w) :=
∑

u,v∈X∗ Γw
u,vu ⊗ v .

3. When the law µ is dualizable, we have

A〈〈X 〉〉 A〈〈X ∗ ⊗X ∗〉〉

A〈X 〉 A〈X 〉 ⊗A A〈X 〉

tµ

∆µ

can Φ|A〈X〉⊗AA〈X〉

The arrow ∆µ is unique to be able to close the rectangle and
∆µ(P) is defined as above.
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Dualizable laws in conc-shuffle bialgebras (2/2)
4. Proof that the arrow A〈X 〉 ⊗A A〈X 〉 −→ A〈〈X ∗ ⊗X ∗〉〉 is into :

Let T =
∑n

i=1 Pi ⊗A Qi such that Φ(T ) = 0. Rewriting T as a
finitely supported sum T =

∑
u,v∈X∗ cu,vu⊗ v (this is indeed the iso

between A〈X 〉 ⊗A A〈X 〉 and A[X ∗ ×X ∗]), Φ(T ) is by definition of
Φ the double series (here a polynomial) s.t. 〈Φ(T )|u ⊗ v〉 = cu,v . If
Φ(T ) = 0, then for all (u, v) ∈ X ∗ ×X ∗, cu,v = 0 entailing T = 0.

We extend by linearity and infinite sums, for S ∈ A〈〈Y 〉〉 (resp. A〈〈X 〉〉), by

∆ S =
∑

w∈Y ∗

〈S |w〉∆ w ∈ A〈〈Y ∗ ⊗ Y ∗〉〉,

∆concS =
∑

w∈X∗
〈S |w〉∆concw ∈ A〈〈X ∗ ⊗X ∗〉〉,

∆ tt S =
∑

w∈X∗
〈S |w〉∆ tt w ∈ A〈〈X ∗ ⊗X ∗〉〉.

A〈〈X 〉〉 ⊗ A〈〈X 〉〉 embeds injectively in 6 A〈〈X ∗ ⊗X ∗〉〉 ∼= [A〈〈X 〉〉]〈〈X 〉〉.

6. A〈〈X 〉〉 ⊗ A〈〈X 〉〉 contains the elements of the form
∑

i∈I finite Gi ⊗ Di , for
(Gi ,Di ) ∈ A〈〈X 〉〉 ×A〈〈X 〉〉. But since elements of M ⊗N are finite combination
of mi ⊗ ni ,mi ∈ M, ni ∈ N then

∑
i≥0 u

i ⊗ v i belongs to A〈〈X ∗ ⊗X ∗〉〉 and

does not belong to A〈〈X 〉〉 ⊗ A〈〈X 〉〉, for u, v ∈ X≥1.
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Extended Ree’s theorem
Let S ∈ A〈〈Y 〉〉 (resp. A〈〈X 〉〉), A is a commutative ring containing Q.
The series S is said to be

1. a (resp. conc, tt )-character iff, for any w , v ∈ Y ∗ (resp. X ∗),
〈S |w〉〈S |v〉 = 〈S |w v〉 (resp. 〈S |wv〉, 〈S |w tt v〉) and 〈S |1〉 = 1.

2. an infinitesimal (resp. conc, tt )-character iff, for any
w , v ∈ Y ∗ (resp. X ∗), 〈S |w v〉 = 〈S |w〉〈v |1Y ∗〉+ 〈w |1Y ∗〉〈S |v〉
(resp. 〈S |wv〉 = 〈S |w〉〈v |1X∗〉+ 〈w |1X∗〉〈S |v〉,
〈S |w tt v〉 = 〈S |w〉〈v |1X∗〉+ 〈w |1X∗〉〈S |v〉).

3. a group-like series iff 〈S |1X∗〉 = 1 and ∆ S = Φ(S ⊗ S) (resp.
∆concS = Φ(S ⊗ S),∆ S = Φ(S ⊗ S)).

4. a primitive series iff ∆ S = 1Y ∗ ⊗ S + S ⊗ 1Y ∗ (resp.
∆concS = 1X∗ ⊗ S + S ⊗ 1X∗ ,∆ tt S = 1X∗ ⊗ S + S ⊗ 1X∗).

Then the following assertions are equivalent

1. S is a (resp. conc and tt )-character.

2. log S an infinitesimal (resp. conc and tt )-character.

3. S is group-like, for ∆ (resp. ∆conc and ∆ tt ).

4. log S is primitive, for ∆ (resp. ∆conc and ∆ tt ).
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Extension by continuity (infinite sums)
Now, suppose that the ring A (containing Q) is a field k. Then

∆ tt : k〈X 〉 → k〈X 〉 ⊗ k〈X 〉 and ∆ : k〈Y 〉 → k〈Y 〉 ⊗ k〈Y 〉
are graded for the multidegree. Then ∆ is graded for the length. Their
extension to the completions (i.e. k〈〈X 〉〉 and k〈〈X ∗ ⊗X ∗〉〉) are
continuous and then, when exist, commute with infinite sums. Hence 7, 8,

∀c ∈ k, ∆ tt (cx)∗ =
∑
n≥0

cn∆ tt xn =
∑
n≥0

cn
n∑

j=0

(
n

j

)
x j ⊗ xn−j .

For c ∈ N≥2 which is neither a field nor a ring (containing Q), we also get

(cx)∗ = (c − 1)−1
∑

a,b∈N≥1,a+b=c

(ax)∗ tt (bx)∗ ∈ N≥2〈〈X 〉〉,

∆ tt (cx)∗ 6=(c − 1)−1
∑

a,b∈N≥1,a+b=c

(ax)∗ ⊗ (bx)∗ ∈ Q〈〈X 〉〉 ⊗Q〈〈X 〉〉,

because

〈LHS|x ⊗ 1X∗〉 = c and 〈RHS|x ⊗ 1X∗〉 = (c − 1)−1

c−1∑
a=1

a =
c

2
.

For c ∈ Z (or even Q,R,C), the such decomposition is not finite.

7. For S ∈ A〈〈X 〉〉 s.t. 〈S |1X∗〉 = 0, S∗ =
∑

n≥0 S
n is called Kleene star of S .

8. ∆ tt xn = (∆ tt x)n = (1X∗ ⊗ x + x ⊗ 1X∗)n =
∑n

j=0

(
n
j

)
x j ⊗ xn−j .
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Case of rational series and of ∆conc
Arat〈〈X 〉〉 denotes the algebraic closure by 9 {conc,+, ∗} of Â.X in A〈〈X 〉〉.

A〈〈X 〉〉 A〈〈X ∗ ⊗X ∗〉〉

Arat〈〈X 〉〉 Arat〈〈X 〉〉 ⊗A Arat〈〈X 〉〉

tconc

can Φ|Arat〈〈X〉〉⊗AArat〈〈X〉〉

The dashed arrow may not exist in general, but for any R ∈ Arat〈〈X 〉〉
admitting (λ, µ, η) as linear representation of dimension n, we can get

tconc(R) = Φ(
∑n

i=1 Gi ⊗ Di ).
Indeed, since 〈R|xy〉 = λµ(xy)η = λµ(x)µ(y)η (x , y ∈ X ) then, letting
ei is the vector such that tei =

(
0 . . . 0 1 0 . . . 0

)
, one has

〈R|xy〉 =
n∑

i=1

λµ(x)ei
teiµ(y)η =

n∑
i=1

〈Gi |x〉〈Di |y〉 =
n∑

i=1

〈Gi ⊗ Di |x ⊗ y〉.

Gi (resp. Di ) admits then (λ, µ, ei ) (resp. (tei , µ, η)) as linear representation.

If A = k being a field then, due to the injectivity of Φ, all expressions of
the type

∑n
i=1 Gi ⊗ Di , of course, coincide. Hence, the dashed arrow (a

restriction of ∆conc) in the above diagram is well-defined.

9. Arat〈〈X 〉〉 is closed under tt . Arat〈〈Y 〉〉 is also closed under .
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Representative series and Sweedler’s dual
Theorem 6 (representative series)
Let S ∈ A〈〈X 〉〉. The following assertions are equivalent

1. The series S belongs to Arat〈〈X 〉〉.

2. There exists a linear representation (ν, µ, η), of rank n, for S with
ν ∈ M1,n(A), η ∈ Mn,1(A) and a morphism of monoids
µ : X ∗ → Mn,n(A) s.t., for any w ∈ X ∗, 〈S |w〉 = νµ(w)η.

3. The shifts 10 {S / w}w∈X∗ (resp. {w . S}w∈X∗) lie within a finitely
generated shift-invariant A-module.

Moreover, if A is a field k, the previous assertions are equivalent to

4. There exist (Gi ,Di )i∈F finite s.t. ∆conc(S) =
∑

i∈F finite Gi ⊗ Di .

Hence, H◦tt (X ) = (krat〈〈X 〉〉, tt , 1X∗ ,∆conc, e) and

H◦ (Y ) = (krat〈〈Y 〉〉, , 1X∗ ,∆conc, e).

Now, let Aexc〈〈X 〉〉 (resp. Arat
exc〈〈X 〉〉) be the set of exchangeable 11 series

(resp. series admitting a linear representation with commuting matrices).

10. The left (resp. right) shift of S by P is P . S (resp. S / P) defined by, for
w ∈ X ∗, 〈P . S |w〉 = 〈S |wP〉 (resp. 〈S / P|w〉 = 〈S |Pw〉).
11. i.e. if S ∈ Aexc〈〈X 〉〉 then (∀u, v ∈ X ∗)((∀x ∈ X )(|u|x = |v |x )⇒ 〈S |u〉 = 〈S |v〉).
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Kleene stars of the plane and conc-characters
For any S ∈ A〈〈X 〉〉, let ∇S denotes S − 1X∗ .

Theorem 7 (rational exchangeable series)
1. Arat

exc〈〈X 〉〉 ⊂ Arat〈〈X 〉〉 ∩ Aexc〈〈X 〉〉. If A is a field then the equality
holds and Arat

exc〈〈X 〉〉 = Arat〈〈x0〉〉 tt Arat〈〈x1〉〉 and, for the algebra of
series over subalphabets Arat

fin 〈〈Y 〉〉 := ∪F⊂finite Y A
rat〈〈F 〉〉, we get 12

Arat
exc〈〈Y 〉〉 ∩ Arat

fin 〈〈Y 〉〉 = ∪k≥0A
rat〈〈y1〉〉 tt . . . tt Arat〈〈yk〉〉 ( Arat

exc〈〈Y 〉〉.

2. ∀x ∈ X ,Arat〈〈x〉〉 = {P(1− xQ)−1}P,Q∈A[x]. If k is an algebraically
closed field then krat〈〈x〉〉 = spank{(ax)∗ tt k〈x〉|a ∈ K}.

3. If A is a Q-algebra without zero divisors, {x∗}x∈X (resp. {y∗}y∈Y )
are conc-character and algebraically independent over (A〈X 〉, tt )
(resp. (A〈Y 〉, )) within (Arat〈〈X 〉〉, tt ) (resp. (Arat〈〈Y 〉〉, tt )).

4. Let S ∈ A〈〈X 〉〉. If A = k, a field, then t.f.a.e.

a) S is groupe-like, for ∆conc.

b) There exists M :=
∑

x∈X cxx ∈ k̂.X s.t. S = M∗.

c) There exists M :=
∑

x∈X cxx ∈ k̂.X s.t. ∇S = MS = SM.

12. The following identity lives in Arat
exc〈〈Y 〉〉 but not in Arat

exc〈〈Y 〉〉 ∩ Arat
fin 〈〈Y 〉〉,

(y1 + . . .)∗ = limk→+∞(y1 + . . .+ yk )∗ = limk→+∞ y∗1 tt . . . tt y∗k = tt k≥1yk .
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Triangular sub bialgebras of (Arat〈〈X 〉〉, tt , 1X ∗,∆conc, e)
Let (ν, µ, η) be a linear representation of R ∈ Arat〈〈X 〉〉 and L be the Lie
algebra generated by {µ(x)}x∈X .
Let M(x) := µ(x)x , for x ∈ X . Then R = νM(X ∗)η. If {µ(x)}x∈X are
triangular then let D(X ) (resp. N(X )) be the diagonal (resp. nilpotent)
letter matrix s.t. M(X ) = D(X ) + N(X ) then
M(X ∗) = ((D(X ∗)T (X ))∗D(X ∗)). Moreover, if X = {x0, x1} then
M(X ∗) = (M(x∗1 )M(x0))∗M(x∗1 ) = (M(x∗0 )M(x1))∗M(x∗0 ).

If A is an algabraically closed field, the modules generated by the
following families are closed by conc, tt and coproducts :

(F0) E1x1 . . .Ejx1Ej+1, where Ek ∈ Arat〈〈x0〉〉,
(F1) E1x0 . . .Ejx0Ej+1, where Ek ∈ Arat〈〈x1〉〉,
(F2) E1xi1 . . .EjxijEj+1, where Ek ∈ Arat

exc〈〈X 〉〉, xik ∈ X .
It follows then that

1. R is a linear combination of expressions in the form (F0) (resp.
(F1)) iff M(x∗1 )M(x0) (resp. M(x∗0 )M(x1)) is nilpotent,

2. R is a linear combination of expressions in the form (F2) iff L is
solvable. Thus, if R ∈ Arat

exc〈〈X 〉〉 tt A〈X 〉 then L is nilpotent.
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CONTINUITY OVER CHEN SERIES
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Iterated integrals over ωi(z) = uxi
(z)dz and along z0  z

Let Ω be a simply connected domain admitting 1H(Ω) as neutral element.

Let A := (H(Ω), ∂) and let C0 be a differential subring of A (∂C0 ⊂ C0)
which is an integral domain containing C.

C{{(gi )i∈I}} denotes the differential subalgebra of A generated by (gi )i∈I ,
i.e. the C-algebra generated by gi ’s and their derivatives

{ux}x∈X : elements in C0 ∩ A−1 in correspondence with {θx}x∈X (θx = u−1
x ∂).

The iterated integral associated to xi1 . . . xik ∈ X ∗, over the differential forms
ωi (z) = uxi (z)dz , and along a path z0  z on Ω, is defined by

αz
z0

(1X∗) = 1Ω,

αz
z0

(xi1 . . . xik ) =

∫ z

z0

ωi1 (z1) . . .

∫ zk−1

z0

ωik (zk ).

∂αz
z0

(xi1 . . . xik ) = uxi1
(z)

∫ z

z0

ωi2 (z2) . . .

∫ zk−1

z0

ωik (zk ).

spanC{∂ lαz
z0

(w)}w∈X∗,l≥0 ⊂ spanC{{(ux )x∈X }}{α
z
z0

(w)}w∈X∗

⊂ spanC{{(u±1
x )x∈X }}{α

z
z0

(w)}w∈X∗
∼= C{{(u±1

x )x∈X }} ⊗C spanC{αz
z0

(w)}w∈X∗?
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Iterated integrals and integro differential operators
Let C = C{{(u±1

x )x∈X }}. One has θx ∈ C〈∂〉, for x ∈ X , and
∀x , y ∈ X , ∀w ∈ X ∗, θxα

z
z0

(yw) = u−1
x (z)uy (z)αz

z0
(w).

Now, let Θ be the morphism C〈X 〉 −→ C〈∂〉 defined as follows

Θ(w) =

{
Id if w = 1X∗ ,

Θ(u)θx if w = ux ∈ X ∗X .
One has, for any w ∈ X ∗,

1. Θ(w̃)αz
z0

(w) = 1Ω, and then ∂(Θ(w̃)αz
z0

(w)) = 0.

2. Lwα
z
z0

(w̃) = 0, where Lw := ∂Θ(w) ∈ C〈∂〉.

For any xi ∈ X , let us consider a section of θxi : θxi ι
z0
xi

= Id, i.e.

∀f ∈ H(Ω), ιz0
xi
f (z) =

∫ z

z0

ωi (s)f (s).

The operator θy ι
z0
x , for x 6= y , admits uyu

−1
x as eigenvalue, i.e.

∀f ∈ H(Ω), (θy ι
z0
x )f = uyu

−1
x f , in particular, (θy ι

z0
x )1Ω = uyu

−1
x .

Now, let =z0 be the morphism defined as follows

=z0 (w) =

{
Id if w = 1X∗ ,

=z0 (u)ιz0
x if w = ux ∈ X ∗X .

Hence, for any w ∈ X ∗,=z0 (w)1Ω = αz
z0

(w).
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Practical example (polylogarithms)

For X = {x0, x1} and Ω = ˜C \ {0, 1}, let us consider
ux0 (z) = z−1 and ux1 (z) = (1− z)−1.

Then, on the other hand,
ω0(z) = ux0 (z)dz = z−1dz and ω1(z) = ux1 (z)dz = (1− z)−1dz ,

θx0 = u−1
x0

(z)∂ = z∂ and θx1 = u−1
x1

(z)∂ = (1− z)∂.

On the other hand 13, C = C{{(u±1
x )x∈X}} = C[z , z−1, (1− z)−1] being

closed by θx0 , θx1 and then by ∂ = θx0 + θx1 = Θ(x0 + x1). One also has

1. Θ([x1, x0]) = [θx1 , θx0 ] = ∂.

2. ∀w ∈ X ∗x1,=0(w)1Ω = αz
0(w) = Liw (z).

3. (θx0ι
z0
x1

)1Ω = z(1− z)−1 and (θx1ι
z0
x0

)1Ω = z−1 − 1.

4. [θx0ι
z0
x1
, θx1ι

z0
x0

] = 0.

5. (θx0ι
z0
x1

)(θx1ι
z0
x0

) = (θx1ι
z0
x0

)(θx0ι
z0
x1

) = Id.

For any L ∈ C〈∂〉, there is P ∈ C〈X 〉 s.t L = Θ(P), meaning that Θ is
surjective and non injective. Moreover, ker Θ is the ideal generated by
[x1, x0]− x0 − x1.

13. Any p ∈ C is polynomial on z , z−1 and (1− z)−1 and admits 0 and 1 as poles.
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Structure of iterated integrals
Proposition 1
The following assertions are equivalent

1. The morphism (C〈X 〉, tt , 1X∗)→ (spanC{αz
z0

(w)}w∈X∗ ,×, 1Ω) is
injective.

2. {αz
z0

(w)}w∈X∗ is C-linearly independent.

3. {αz
z0

(l)}l∈LynX is C-algebraically independent.

4. {αz
z0

(x)}x∈X is C-algebraically independent.

5. {αz
z0

(x)}x∈X∪{1X∗} is C-linearly independent.

If one of the above assertions holds then

1. C[{αz
z0

(w)}w∈X∗ ] forms the universal C-module of solutions of all
differential equations Ly = 0,

2. C{αz
z0

(w)}w∈X∗ forms the universal Picard-Vessiot extension related
to all differential equations Ly = 0,

where 14 L’s are linear differential operators belonging to C〈∂〉.
14. For any w ∈ X ∗, let Iw := {L ∈ C〈∂〉 s.t. Lαz

z0
(w) = 0}. Then Iw is a left ideal.
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Examples of linear differential equation
Example 8 (with C = C(z))

(∂ − z)y = 0. (1)
1. ez2/2 is solution of (1).

2. cez2/2 = ez2/2e log c is an other solution (c ∈ R \ {0}).

3. {ez2/2} is a fundamental set of solutions of (1).

4. C{ez2/2} is a Picard-Vessiot extension related to (1).

For θx0 = z∂ and θx1 = (1− z)∂, since Lx1x0 = ∂θx1θx0 ∈ C〈∂〉 then let

Lx1x0y = (z(1− z)∂3 + (2− 3z)∂2 − 1)y = 0. (2)

1. Lx1x0 Li2 = 0 meaning that Li2 is solution of (2).

2. c Li2 = Li2 e
log c is an other solution (c ∈ R \ {0}) but it is not

independent to Li2.

3. {Li2, log, 1Ω} is a fundamental set of solutions of (2).

4. C{Li2, log, 1Ω} is a Picard-Vessiot extension 15 related to (2).

15. C{Li2(z)} = C ⊗ C[Li2(z), log(1− z), log(z)].
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Chen series of {ωi}i≥1 and along z0  z
We get on the bialgebras H tt (X ) and H (Y ) (over a commutative
ring A containing Q)

DX :=
∑

w∈X∗
w ⊗ w =

↘∏
l∈LynX

eSl⊗Pl and DY :=
∑

w∈Y ∗

w ⊗ w =

↘∏
l∈LynY

eΣl⊗Πl .

Hence, since αz
z0

(u tt v) = αz
z0

(u)αz
z0

(v), for u, v ∈ X ∗, then the Chen
series, Cz0 z ∈ H(Ω)〈〈X 〉〉, is given by

Cz0 z :=
∑

w∈X∗
αz

z0
(w)w = (αz

z0
⊗ Id)DX =

↘∏
l∈LynX

eα
z
z0

(Sl )Pl

and then 16 ∆ tt Cz0 z = Cz0 z ⊗ Cz0 z and 〈Cz0 z |1X∗〉 = 1.

Note that Cz0 z only depends on the homotopy class of z0  z and the
endpoints z0, z . One has Cz0 zCz1 z0 = Cz1 z . Or equivalently,

∀w ∈ X ∗, 〈Cz1 z |w〉 =
∑

u,v∈X∗,uv=w

〈Cz0 z |u〉〈Cz1 z0 |v〉.

Although ∆concw =
∑

u,v∈X∗,uv=w

u ⊗ v but ∆concCz1 z 6=Cz0 z ⊗ Cz1 z0 .

16. 〈Cz0 z |u tt v〉 = 〈Cz0 z |u〉〈Cz0 z |v〉 and on the other hand,
〈Cz0 z |u tt v〉 = 〈∆ tt Cz0 z |u ⊗ v〉, 〈Cz0 z |u〉〈Cz0 z |v〉 = 〈Cz0 z ⊗ Cz0 z |u ⊗ v〉.
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More about Chen series
Note also that, for g ∈ H(Ω), one has Cg(z0) g(z) = g∗Cz0 z , i.e. the
Chen series of {g∗ωi}i≥1 along the path g∗(z0  z).

Example 9 (with ω0(z) = z−1dz and ω1(z) = (1− z)−1dz)
g(z) z z−1 (z − 1)z−1 z(z − 1)−1 (1− z)−1 1− z

g∗ω0 ω0 −ω0 −ω1 − ω0 ω1 + ω0 ω1 −ω1

g∗ω1 ω1 ω1 + ω0 −ω0 −ω1 −ω1 − ω0 −ω0

For any n ≥ 0, one has
dnCz0 z = pnCz0 z ,

where, for any S ∈ H(Ω)〈〈X 〉〉,dS ∈ H(Ω)〈〈X 〉〉 is defined as follows

dS =
∑

w∈X∗
(∂〈S |w〉)w ,

pn ∈ C〈X〉 is defined as follows

pn =
∑

wgtr=n

∑
w∈X n

deg r∏
i=1

(∑i
j=1 rj + j − 1

ri

)
τr(w)

and, for w = xi1 . . . xik ∈ X ∗ associated to the derivation multiindex

r = (r1, . . . , rk ) ∈ Nk of weight wgtr = |w |+
∑k

i=1 ri and of degree
deg r = |w |, τr(w) := τr1 (xi1 ) . . . τrk

(xik ) = (∂r1uxi1
)xi1 . . . (∂

rkuxik
)xik .
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Continuity, indiscernability and growth condition
For i = 0, 2, let (ki , ‖.‖i

) be a semi-normed space and gi ∈ Z.

Definition 10
1. Let Cl be a class of k1〈〈X 〉〉. Let S ∈ k2〈〈X 〉〉 and it is said to be

a) continuous over Cl if, for Φ ∈ Cl , the following sum is convergent∑
w∈X∗

‖〈S |w〉‖
2
‖〈Φ|w〉‖

1
.

We will denote 〈S‖Φ〉 the sum
∑

w∈X∗〈S |w〉〈Φ|w〉 and

k2〈〈X 〉〉cont the set of continuous power series over Cl .
b) indiscernable over Cl iff, for any Φ ∈ Cl , 〈S‖Φ〉 = 0.

2. Let χ1 and χ2 be real positive functions over X ∗. Let S ∈ k1〈〈X 〉〉.
a) S satisfies the χ1−growth condition of order g1 if it satisfies

∃K ∈ R+,∃n ∈ N,∀w ∈ X≥n, ‖〈S |w〉‖
1
≤ Kχ1(w) |w |!g1 .

We denote by k
(χ1,g1)
1 〈〈X 〉〉 the set of formal power series in

k1〈〈X 〉〉 satisfying the χ1−growth condition of order g1.

b) If S is continuous over k
(χ2,g2)
2 〈〈X 〉〉 then it will be said to be

(χ2, g2)-continuous. The set of formal power series which are

(χ2, g2)-continuous is denoted by k
(χ2,g2)
2 〈〈X 〉〉cont.
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Convergence condition
Proposition 2
Let χ1 and χ2 be real positive functions over X ∗.
Let g1 and g2 ∈ Z such that g1 + g2 ≤ 0.

1. Let k
(χ1,g1)
1 〈〈X 〉〉 and let P ∈ k1〈X 〉.

The right residual of S by P belongs to k
(χ1,g1)
1 〈〈X 〉〉.

2. Let R ∈ k
(χ2,g2)
2 〈〈X 〉〉 and let Q ∈ k2〈X 〉.

The concatenation QR belongs to k
(χ2,g2)
2 〈〈X 〉〉.

3. χ1, χ2 are morphisms over X ∗ satisfying
∑

x∈X χ1(x)χ2(x) < 1.

If F1 ∈ k
(χ1,g1)
1 〈〈X 〉〉 (resp. F2 ∈ k

(χ2,g2)
2 〈〈X 〉〉) then F1 (resp. F2) is

continuous over k
(χ2,g2)
2 〈〈X 〉〉 (resp. k

(χ1,g1)
1 〈〈X 〉〉).

Proposition 3
Let Cl ⊂ k1〈〈X 〉〉 be a monoid containing {etx}t∈k1

x∈X . Let S ∈ k2〈〈X 〉〉cont.

1. If S is indiscernable over Cl then for any x ∈ X , x / S and S . x
belong to k2〈〈X 〉〉cont and they are indiscernable over Cl .

2. S is indiscernable over Cl iff S = 0.
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Chen series and differential equations
Let K be a compact on Ω. There is cK ∈ R≥0 and a morphism MK s.t.

∀w ∈ X ∗, ‖〈Cz0 z |w〉‖K ≤ cKMK (w) |w |!−1.
Let R ∈ Crat〈〈X 〉〉 of minimal representation (λ, µ, η) of dimension n. Then

∀w ∈ X ∗, | 〈R|w〉 |≤ ‖λ‖1,n
∞ ‖µ(w)‖n,n

∞ ‖η‖
n,1
∞ .

With these data, we have

Theorem 11
If cK‖λ‖1,n

∞ ‖η‖
n,1
∞
∑

x∈X MK (x)‖µ(x)‖n,n
∞ < 1 then αz

z0
(R) = 〈R‖Cz0 z〉 and

∀x ∈ X , θxα
z
z0

(R) =
∑

x′∈X u−1
x (z)ux′(z)αz

z0
(R / x ′).

Letting y(z0, z) := 〈R‖Cz0 z〉, the following assertions are equivalent :

1. There is p ∈ C0〈X 〉 s.t. 〈R‖pCz0 z〉 = 〈R / p‖Cz0 z〉 = 0.

2. There is l = 0, .., n − 1 s.t. {∂ky}0≤k≤l is C0-linearly independent
and al , . . . , a1, a0 ∈ C0 s.t. (al∂

l + . . .+ a1∂ + a0)y = 0.

Proposition 4
Let G ∈ C〈〈X 〉〉 and H ∈ Cexc〈〈X 〉〉 s.t. αz

z0
(G ) = 〈G‖Cz0 z〉 and

h(αz
z0

(x0), αz
z0

(x1)) := αz
z0

(H) = 〈H‖Cz0 z〉 exist (X = {x0, x1}). Then

αz
z0

(HG ) = 〈G |1X∗〉αz
z0

(H) +

∫ z

z0

h(αz
s (x0), αz

s (x1))dαs
z0

(G ).
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Practical examples (eulerian functions)
For any y ∈ X ∗, n ∈ N and t ∈ C, | t |< 1, since yn = y tt n/n! then

αz
z0

(yn) =
[αz

z0
(y)]n

n!
and αz

z0
((ty)∗) = etαz

z0
(y).

Example 12 (extension of eulerian functions)
For any z ∈ Ω = C, |z |< 1, let us consider

`1(z) := γz −
∑
k≥2

ζ(k)
(−z)k

k
and ∀r ≥ 2, `r (z) := −

∑
k≥1

ζ(kr)
(−z r )k

k
.

Hence, for any k ≥ 1, letting ωk = ∂`k , one has

αz
0(y∗1 ) = e`1(z) =:

1

Γy1 (1 + z)
and ∀r ≥ 2, αz

0(y∗k ) = e`k (z) =:
1

Γyk
(1 + z)

.

Example 13 (more about extented eulerian functions)
Let us consider ωk = e`k∂`k (k ≥ 1), where `k is defined as in Ex. 12.

Then αz
0(yk ) = e`k (z) = Γ−1

yk
(1 + z) and αz

0(y∗k ) = ee`k (z)−1, k ≥ 1.

Remark 1
In Examples 12, 13, Γy1 is nothing else the eulerian Gamma function, Γ.
What are {αz

0(w)}w∈Y ∗Y ? Similarly, in the case of {αz
0(w)}w∈(Y∪{y0})∗

and with the new differential form ω0(z) = z−1dz ?
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First properties of extented eulerian functions
Let Gr (resp. Gr ) denote the set (resp. group) of solutions,
{ξ0, . . . , ξr−1}, of z r = (−1)r−1 (resp. z r = 1), for r ≥ 1. If r is odd, it is
a group as Gr = Gr otherwise it is an orbit as Gr = ξGr , where ξ is any
solution of ξr = −1 (or equivalently, ξ ∈ G2r and ξ /∈ Gr ).

Proposition 5 (Weierstrass factorization)
1. For r ≥ 1, χ ∈ Gr and z ∈ C, |z | < 1, the functions `r and e`r have

the symmetry, `r (z) = `r (χz) and e`r (z) = e`r (χz). In particular, for
r even, as −1 ∈ Gr , these functions are even.

2. For |z | < 1, we have

`r (z) =
∑
χ∈Gr

log
1

Γ(1 + χz)
and e`r (z) =

∏
χ∈Gr

eγχz
∏
n≥1

(1 +
χz

n
)e−

χz
n .

3. For any odd r ≥ 2, Γ−1
yr

(1 + z) = e`r (z) = Γ−1(1 + z)
∏

χ∈Gr\{1}

e`1(χz).

4. In general, for any odd or even r ≥ 2,

`r (z) =
∏
χ∈Gr

e`1(χz) =
∏
n≥1

(1 +
z r

nr
).
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Other practical examples (1/2)
Example 14 (ω1(z) = (1− z)−1dz and ω0(z) = z−1dz)

1. For any a, z ∈ C s.t. |a |< 1, |z |< 1, one has
Li(ax0)∗x1

(z) = αz
0((ax0)∗x1)

=

∫ z

0

ea log( z
s )ω1(s) = za

∫ z

0

∑
n≥0

sn−ads =
∑
n≥1

zn

n − a
.

2. For any n ∈ N and a, b ∈ C s.t. |a |< 1, |b |< 1, one has
Lixn

0
(z) = αz

1(xn
0 ) = logn(z)/n!, Lixn

1
(z) = αz

0(xn
1 ) = logn((1− z)−1)/n!,

Li(ax0)∗(z) = αz
1((ax0)∗) = za, Li(bx1)∗(z) = αz

0((bx1)∗) = (1− z)−b.

Let C = C[za, (1− z)b]a,b∈C and S ∈ Crat
exc〈〈X 〉〉 tt C〈X 〉 (resp.

Crat
exc〈〈X 〉〉 = Crat

exc〈〈x0〉〉 tt Crat
exc〈〈x1〉〉), we get

LiS (z) ∈ C[{Lil}l∈LynX ] (resp. C[log(z), log(1− z)]).

3. For any z , a, b ∈ C s.t. |z |< 1 and <a > 0,<b > 0, we get the
partial Beta function and the eulerian
Beta function, B(a, b) = B(1; a, b) = Γ(a)Γ(b)/Γ(a+b), as follows 17

B(z ; a, b) :=

∫ z

0

dt ta−1(1− t)b−1 =

{
Lix0[(ax0)∗ tt ((1−b)x1)∗](z)

Lix1[((a−1)x0)∗ tt (−bx1)∗](z)

}
.

17. x0[(ax0)∗ tt ((1− b)x1)∗ and x1[((a− 1)x0)∗ tt (−bx1)∗] are of the form
(F2). What is αz

0(S), for S of the form (F2) ?
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Other on practical examples (2/2)
Example 15 (Polylogarithms indexed by non positive integers)
Now, let us use the noncommutative multivariate exponential transforms,
i.e., for any rational exchangeable series, we get the following transform∑

i0,i1≥0

si0,i1x
i0
0 tt x i1

1 7−→
∑

i0,i1≥0

si0,i1

i0!i1!
logi0 (z) logi1 ((1− z)−1).

In particular, for any n ∈ N, we have xn
0 7→ logn(z)/n! and

xn
1 7→ logn((1− z)−1)/n!. Then (tx0)∗ 7→ z t and (tx1)∗ 7→ (1− z)−t .

We then obtain the following polylogarithms indexed by rational series
Lix∗0 (z) = z , Lix∗1 (z) = (1− z)−1, Li(ax0+bx1)∗(z) = za(1− z)−b

Thus, for any (s1, . . . , sr ) ∈ Nr
+, there exists an unique series Rys1

...ysr

belonging to (Z[x∗1 ], tt , 1X∗) s.t. Li−s1,...,−sr = LiRys1
...ysr

. More precisely,

Rys1
...ysr

=
s1∑

k1=0

. . .

(s1+...+sr )−
(k1+...+kr−1)∑

kr =0

(
s1

k1

)
. . .

( r∑
i=1

si −
r−1∑
i=1

ki

kr

)
ρk1

tt . . . tt ρkr ,

where, for any i = 1, . . . , r , if ki = 0 then ρki = x∗1 − 1X∗ else

ρki = x∗1 tt
ki∑

j=1

S2(ki , j)j!(x
∗
1 − 1X∗)

tt j

the S2(ki , j) being the Stirling numbers of second kind.
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NONCOMMUTATIVE PV THEORY
AND INDEPENDENCE VIA WORDS
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First step of noncommutative PV theory
The Chen series Cz0 z of {ωk}k≥1 and along the path z0  z over Ω
satisfies the following differential equation

(NCDE ) dS = MS , with M =
∑
x∈X

uxx and ux ∈ C0 ∩ A−1.

∆ tt M =
∑
x∈X

ux (1X∗ ⊗ x + x ⊗ 1X∗) = 1X∗ ⊗M + M ⊗ 1X∗ .

The space of solutions of (NCDE ) is a right free C〈〈X 〉〉-module of rank 1.
By a theorem of Ree, Cz0 z is a tt −group-like solution 18 of (NCDE ).
Moreover, if G ,H are tt −group-like solutions there is a constant Lie
series C s.t. G = HeC (and conversely). From this, it follows that

I the Hausdorff group {eC}C∈LieC〈〈X〉〉, group of characters of
H tt (X ), plays the role of the differential Galois group of
(NCDE )+ tt −group-like.

Which leads us to the following definition

I the PV extension related to (NCDE ) is Ĉ0.X{Cz0 z}.

It, of course, is such that Const(C0〈〈X 〉〉) = ker d = C.1Ω〈〈X 〉〉.
18. It can be obtained as the limit of a convergent Picard iteration, initialized
at 〈Cz0 z |1X∗〉 = 1H(Ω), for ultrametric distance.
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Basic triangular theorem over a differential ring (BTT)
Let S ∈ A〈〈X〉〉 be a group-like solution of (NCDE ) in the following form

S =
∑

w∈X∗
〈S |w〉w =

∑
w∈X∗

〈S |Sw 〉Pw =

↘∏
l∈LynX

e〈S|Sl〉Pl .

Then

1. If H ∈ A〈〈X〉〉 is another grouplike solution then there exists
C ∈ LieA〈〈X 〉〉 such that S = HeC (and conversely).

2. The following assertions are equivalent 19

a) {〈S |w〉}w∈X∗ is C0-linearly independent,

b) {〈S |Sl〉}l∈LynX is C0-algebraically independent,

c) {〈S |x〉}x∈X is C0-algebraically independent,

d) {〈S |x〉}x∈X∪{1X∗} is C0-linearly independent,

e) {ux}x∈X is such that, for f ∈ Frac(C0) and (cx )x∈X ∈ C(X ),∑
x∈X

cxux = ∂f =⇒ (∀x ∈ X )(cx = 0).

f) (ux )x∈X is free over C and ∂Frac(C0) ∩ spanC{ux}x∈X = {0}.

19. In particular, for S = Cz0 z =
∑

w∈X∗ α
z
z0

(w)w .
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Examples of positive cases over X = {x},A = (H(Ω), ∂)

1. Ω = C, ux (z) = 1Ω, C0 = C{{u±1
x }} = C.

αz
0(xn) = zn/n!, for n ≥ 1. Thus, dS = xS and

S =
∑
n≥0

αz
0(xn)xn =

∑
n≥0

zn

n!
xn = ezx .

Moreover, αz
0(x) = z which is transcendent over C0

and the family {αz
0(xn)}n≥0 is C0-free. Let f ∈ C0 then ∂f = 0. Thus,

if ∂f = cux then c = 0.

2. Ω = C\]−∞, 0], ux (z) = z−1, C0 = C{{z±1}} = C[z±1] ⊂ C(z).

αz
1(xn) = logn(z)/n!, for n ≥ 1. Thus dS = z−1xS and

S =
∑
n≥0

αz
1(xn)xn =

∑
n≥0

logn(z)

n!
xn = zx .

Moreover, αz
1(x) = log(z) which is transcendent over C(z) then

over C[z±1]. The family the family {αz
1(xn)}n≥0 is C(z)-free and

then C0-free. Let f ∈ C0 then ∂f ∈ spanC{z±n}n 6=1. Thus,
if ∂f = cux then c = 0.
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Examples of negative cases over X = {x},A = (H(Ω), ∂)

1. Ω = C, ux (z) = ez , C0 = C{{e±z}} = C[e±z ].

αz
0(xn) = (ez − 1)n/n!, for n ≥ 1. Thus, dS = ezxS and

S =
∑
n≥0

αz
0(xn)xn =

∑
n≥0

(ez − 1)n

n!
xn = e(ez−1)x .

Moreover, αz
0(x) = ez − 1 which is not transcendent over C0 and

and {αz
0(xn)}n≥0 is not C0-free. If f (z) = cez ∈ C0 (c 6= 0) then

∂f (z) = cez = cux (z).

2. Ω = C\]−∞, 0], ux (z)= za(a /∈ Q),
C0 = C{{z , z±a}} = spanC{zka+l}k,l∈Z.

αz
0(xn) = (a + 1)−nzn(a+1)/n!, for n ≥ 1. Thus, dS = zaxS and

S =
∑
n≥0

αz
0(xn)xn =

∑
n≥0

zn(a+1)

(a + 1)nn!
xn = e(a+1)−1z(a+1)x .

Moreover, αz
0(x) = za+1/(a + 1) which is not transcendent over C0

and {αz
0(xn)}n≥0 is not C0-free. If f (z) = cza+1/(a + 1) ∈ C0

(c 6= 0) then ∂f (z) = cza = cux (z).
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Independence over C of extended eulerian functions

Proposition 6
Let L := spanC{`r}r≥1 and E := spanC{e`r }r≥1. One has

1. The families (`r )r≥1 and (e`r )r≥1 are C-linearly free and free from
1H(Ω). Hence, with the differential forms {uyrdz}r≥1 and 20

a) uyr = e`r∂`r , the restriction αz
0 : CY → E is injective.

b) uyr = ∂`r , the restrictions of αz
0, spanC{yr}r≥1 → L and

spanC{y∗r }r≥1 → E are injective.

2. The families (`r )r≥1 and (e`r )r≥1 are C-algebraically independent.

3. For any r ≥ 1, one has

a) The functions `r and e`r C-algebraically independent.
b) The function `r is holomorphic on the open unit disc, D<1,
c) The function e`r (resp. e−`r ) is entire (resp. meromorphic),

and admits a countable set of isolated zeroes (resp. poles) on
the complex plane which is expressed as

⊎
χ∈Gr

χZ≤−1.

20. see Examples 13 and 12, respectively.
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Proof of independence over C of eulerian functions
1. Since (`r )r≥1 is triangular 21 then (`r )r≥1 is C-linearly free. So is

(e`r − e`r (0))r≥1, being triangular, we get that (e`r )r≥1 is C-lin. free
and free from 1H(Ω). Since {x∗}x∈X are alg. free over
(C〈X 〉, tt , 1X∗) then we get the next results.

2. To prove the C-algebraic independence of {e`r }r≥1 and (`r )r≥1,
using the result of the first item, we apply BTT with uyr defined as
in a) and b), respectively.

3. a) Since `r (0) = 0, ∂e`r = e`r∂`r then `r , e
`r are C-alg. free.

b) We have e`1(z) = Γ−1(1 + z) which proves the claim for r = 1.
For r ≥ 2, note that 1 ≤ ζ(r) ≤ ζ(2) which implies that the
radius of convergence of the exponent is 1 and means that `r

is holomorphic on the open unit disc. This proves the claim.
c) e`r (z) = Γ−1

yr
(1 + z) (resp. e−`r (z) = Γyr (1 + z)) is entire (resp.

meromorphic) as finite product of entire (resp. meromorphic)
functions and Weierstrass factorization yields zeroes (resp. poles).

21. (gi )i≥1 is said to be triangular if the valuation of gi , $(gi ), equals i ≥ 1. It
is easy to check that such a family is C-lin. free and that is also the case of
families s.t. (gi − g(0))i≥1 is triangular.
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Independence of {e`r}k≥1 over differential subalgebra

The algebra C[L] (resp. C[E ]) is generated freely by (`r )r≥1 (resp.
(e`r )r≥1) which are holomorphic on D<1 (resp. entire) functions.
Moreover, any f ∈ C[L] \ C.1H(Ω) (resp. g ∈ C[E ] \ C.1H(Ω)) is
holomorphic on D<1 (resp. entire) and then f /∈ C[E ] (resp. g /∈ C[L]).
Hence, E ∩ L = {0} and more generally, C[E ] ∩ C[L] = C.1H(Ω).

Let L := C{{(`±1
r )r≥1}} = C[{`±1

r , ∂ i`r}r ,i≥1] and E := C{{(e±`r )r≥1}}.
Let L+:= C[{∂ i`r}r ,i≥1], being integral domain generated by holomorphic
functions, and then Frac(L+) is generated by meromorphic functions.
Since there is 0 6= qi,l,k ∈ L+ s.t. (∂ ie±`k )l = qi,l,ke

±l`k , i , l , k ≥ 1 then
E+ := spanC{(∂ i1e±`r1 )l1 . . . (∂ ik e±`rk )lk}(i1,l1,r1),...,(ik ,lk ,rk )∈(N≥1)3,k≥1

= spanC{qi1,l1,r1 . . . qik ,lk ,rk
e l1`r1

+...+lk`rk }(i1,l1,r1),...,(ik ,lk ,rk )∈N≥1×Z6=0×N≥1,k≥1

⊂ spanL+{e l1`r1
+...+lk`rk }(l1,r1),...,(lk ,rk )∈Z∗×N≥1,k≥1 =: C.

Note that E+ ∩ E = {0} and C is a differential subring 22 of A = H(Ω).

Theorem 16
1. The algebras C[E ] and C[L] are alg. disjoint, within A.

2. The family (e`r )r≥1 (resp. (`r )r≥1) is alg. free over E+ (resp. L+).

22. Frac(C) is a differential subfield of Frac(A).
44 / 53



Proof of independence of eulerian functions
Considering the Chen series of the differential forms {uyrdz}r≥1, with
uyr = e`r∂`r , let Q ∈ Frac(L) (resp. Frac(C)) and let {cy}y∈Y ∈ C(Y ) be
a sequence of complex numbers, non simultaneously vanishing, s.t.

∂Q =
∑
y∈Y

cyuy =
∑
r≥1

cyr e
`r∂`r .

If ∂Q 6= 0 then, integrating, Q ∈ E and then E ⊃ Frac(L) ⊃ L ⊃ C[L]
(resp. E ⊃ Frac(C) ⊃ C ⊃ E+) contradicting with E ∩ C[L] = {0} (resp.
E ∩ E+ = {0}). It remains that ∂Q = 0.
Since {e`r }r≥1 and then {∂e`r }r≥1 are C-lin. free, then cyr = 0 (r ≥ 1).
By BTT, {αz

0(Sl )}l∈LynY and then {αz
0(Sy )}y∈Y are, respectively,

1. L-alg. free yielding the C[L]-alg. independence of (e`r )r≥1. It follows
that C[E ] and C[L] are alg. disjoint 23, within H(Ω).

2. C-alg. free yielding the alg. independence of (e`r )r≥1 over E+.

3. Now, suppose there is an algebraic relation among (`r )r≥1 over L+.
By differentiating and substituting ∂`r by e−`r∂e`r in this relation,
we obtain an algebraic relation among {e`r }r≥1 over C[L] and E+

contradicting with two first items. Hence, (`r )r≥1 is L+-alg. free.
23. C[E ] = C[{e`r }r≥1] and C[L] = C[{`r}r≥1] are free and since {e`r }r≥1

(resp. {`r}r≥1) is alg. free over C[L] (resp. C[E ]) then C[E + L] is freely
generated by {e`r , `r}r≥1 and C[E ] ∩ C[L] = C.1H(Ω).
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Dom(Li•) AND Dom(H•)
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Chen series of ω0(z) = z−1dz and ω1(z) = (1− z)−1dz

Let γ0(ε) and γ1(ε) be the circular paths of radius ε encircling 0 and 1
clockwise, respectively. In particular, letting β = β1 − β0, one considers

γ0(ε, β) = εeiβ0  εe iβ1 ⊂ γ0(ε),
γ1(ε, β) = 1− εeiβ0  1− εeiβ1 ⊂ γ1(ε).

On the one hand, one has, for any i = 0 or 1 and w ∈ X+,
| 〈Cγi (ε,β)|w〉 |≤ ε|w|xi β|w||w |!−1.

It follows then
Cγi (ε,β) = eiβxi + o(ε) and Cγi (ε) = e2iπxi + o(ε).

Hence 24, for R ∈ Crat〈〈X 〉〉 of minimal representation (λ, µ, η), one has

〈R‖Cγi (ε,β)〉 = λ

( ↘∏
l∈LynX

eαγi (ε,β)(Sl )µ(Pl )

)
η,

〈R‖Cγi (ε)〉 = λ

( ↘∏
l∈LynX

eαγ0(ε)(Sl )µ(Pl )

)
η.

24. Recall that the map αz
z0

: Crat〈〈X 〉〉 → H(Ω) is not injective. For example,
αz

z0
(z0x

∗
0 + (1− z0)(−x1)∗ − 1X∗) = 0.
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Dom(Li•),DomR(Li•) and Domloc(Li•)
Let C := C[za, (1− z)b]a,b∈C and Ω := C \ (]−∞, 0] ∪ [1,+∞[).

Let [S ]n =
∑

w∈X∗,|w|=n

〈S |w〉w denotes the homogeneous components of S

(of degree n). Then Dom(Li•) is the set of S =
∑
n≥0

[S ]n s.t.
∑
n≥0

Li[S]n
is

unconditionally convergent for the standard topology on H(Ω).
Denoting the open disk by D<R (0 < R ≤ 1), let

DomR (Li•) := {S ∈ C〈〈X 〉〉x1 ⊕ C1X∗ |
∑
n≥0

Li[S]n
is unconditionally

convergent for the standard topology on H(D<R )}.
Domloc(Li•) :=

⋃
0<R≤1

DomR (Li•).

Proposition 7 (L(z) = Cz0 zL(z0))
Let ρ := 〈R‖L〉 (R ∈ Dom(Li•)). Then ∂nρ = 〈R‖dnL〉 and dnL = pnL,
where {pn}n≥0 are given previously, using

τr (x0) = −r !(−z)−(r+1)x0 and τr (x1) = r !(1− z)−(r+1)x1.
The following assertions are equivalent :

1. ρ satisfies a differential equation with coefficients in (C, ∂).

2. There exists P ∈ C〈X 〉 such that 〈R‖PL〉 = 〈R / P‖L〉 = 0.
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Dom(H•)
Proposition 8

1. Dom(Li•), containing Crat
exc〈〈X 〉〉 tt C〈X 〉, is closed by shuffle and

then LiS tt T = LiS LiT , for S ,T ∈ Dom(Li•).

2. Let S ∈ C〈〈X 〉〉x1 ⊕ C1X∗ and 0 < R ≤ 1 s.t.
∑
n≥0

Li[S]n
is

unconditionally convergent, for the standard topology, on H(D<R ).

Then
∑
N≥0

aNz
N =

1

1− z

∑
n≥0

Li[S]n
(z) is unconditionally convergent

in the same domain and aN =
∑
n≥0

HπY ([S]n)(N).

3. If S ∈ Domloc(Li•) then HπY (S) ∈ Dom(H•) := πY Domloc(Li•).

4. S tt T ∈ Domloc(Li•) and πX (πY (S) πY (T )) ∈ Domloc(Li•),
for S ,T ∈ Domloc(Li•). Moreover,

LiS tt T = LiS LiT .
HπY (S) πY (T )(N) = HπY (S)(N)HπY (T )(N), N ≥ 0.
LiS (z)

1− z
� LiT (z)

1− z
=

LiπX (πY (S) πY (T ))(z)

1− z
.
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