
Average Case Analysis of NP-complete Problems:
Maximum Independent Set and Exhaustive Search Algorithms

BANDERIER Cyril§ HWANG Hsien-Kuei?

RAVELOMANANA Vlady§ ZACHAROVAS Vytas?

? Institute of Statistical Science
Academia Sinica

Taipei 115, Taiwan
{hkhwang,vytas}@stat.sinica.edu.tw

§ Laboratoire d’informatique de Paris Nord
UMR CNRS 7030 – Institut Galilée - Université Paris XIII

99, Av. J.B. Clément, 93430 Villetaneuse, France
{cb,vlad}@lipn.univ-paris13.fr

Abstract

In this article, we deal with rigorous average case analysis of NP complete problems, relying on some
mathematical tools from complex analysis and probability theory. We consider here one of the historical
prototype of such problems: Maximum Independent Set (MIS).

For a large class of exhaustive algorithms which always find exactly a MIS, their complexity is di-
rectly related to their number of iterations. Under the Γ(n,m) and G(n, p) distribution for graphs, we
give some fascinating phase transitions between exponential (An), superpolynomial (nln n), and polyno-
mial (nd) average complexities.

Our approach gives a precise picture of the “complexity landscape” of these algorithms, depending
on the average degree (or the ratio vertices/edges) of the graph, and gives access to the location of the
“hard regions” where people could then sample their inputs if they want to make some benchmarks (may
it be for the worst or average case).

The challenging associated mathematical aspects force us to introduce new analyses (for a large
class of recurrences), which will clearly be of interest for many other NP hard problems (typically,
optimization problems on graphs).

Direct applications cover graph 3-coloring (which is also a deep motivation for considering our class
of exhaustive Tarjan-Chvàtal like algorithms), and numerous constraint satisfaction problems.

1 Introduction

1.1 Some considerations on worst and average case analysis of algorithms

Recently, there have been some studies on relationships between worst case and average case complexity
(e.g. the introduction of the notion of “smoothed analysis” allowed to prove that perturbation of worst
cases of some simplex-like algorithms are easy to solve [44] ; for some discrete algorithms, it was also
be proven [2] that some natural perturbations of the worst cases don’t coincide with the hardest regions of
the algorithm ; these ideas have also been applied to Knapsack like problems [5]). This allows to have a
better understanding of complexity landscapes of algorithms: where are the “easy regions”, the hard ones?

1

This can be useful e.g. in cryptography [33], so that people don’t sample inputs (in an *easy on average*
region) for an NP-complete problem. This can also be useful in order to tune some algorithms so that they
behave faster (this kind of reverse engineering questions are in one sense the starting idea of some sampling
algorithms [3] or the Boltzman method [18]).

One of the exiting aspects of Spielman and Teng’s notion of smoothed analysis is that they succeeded
in applying this idea to combinatorial optimization, where there have been thousands of results related to
worst-case studies, but much less related to average-case complexity (let us just mention some interesting
cases: the polynomial complexity of the simplex algorithms [9], works on 2-SAT [8], and different other
success stories mainly related to random graphs with some tools from probability theory [43] or statistical
physics [37] or, in a sense, a mixture of them [32]).

The lack of average-case results in combinatorial optimization can partly be explained by the fact that
optimization problems often involved many variables, and that rigorous analysis of their complexity will
therefore often rely on multivariate asymptotics, a subject which is too difficult for the actual mathematical
technologies. This explains partly why so many articles are dedicated to heuristics/experimentations. An-
other reason is that for a lot of optimization problems, this is not clear to say that such given distribution on
the inputs is more pertinent that such other one. As average case analysis relies first on a chosen distribu-
tion (e.g. the uniform distribution), we could then have as many complexity results as assumptions on the
distribution. From a mathematical point of view, it is also often the case that the iterations of the algorithm
destroy the initial probabilistic model of the inputs, making any rigorous analysis very hard. Last but not
least, even if people agree on a probabilistic model, it could sometimes be very difficult to generate inputs
according to this distribution, and it can be almost impossible (too time-consuming, exponential complexity
of NP hard problems...) to make benchmarks.

All of this makes average-case analysis of optimization problems, a field still largely open, and deeply
challenging.

Note that we deal in this article with average-case complexity of some algorithms for an NP problem,
and not of *all* algorithms for this problem. We therefore don’t have the pretencion to bring new results on
P ?=NP, however we believe that our analysis gives more insight on this question.

In this article, we have what we believe to be an original approach to optimization NP-hard problems,
for two reasons:

• first, the tools: it is one of the first applications of analytic combinatorics (in the sense of Flajolet-
Knuth-Sedgewick [25, 35]) to optimization problems. We therefore hope to give the desire to people
from analytic combinatorics to have a look on this large field of applications, and to people from
combinatorial optimization to have a look on the kind of tools we are using, in order to recycle them!
This also leads to some new interesting mathematical challenges (e.g. asymptotics of new families of
recurrences).

• second, the results: we make a precise average case analysis of some NP-hard problems, giving
more insights on their thresholds phenomena (why and where a large class of algorithms behaves
polynomially/sub-exponientially/exponentially). This also leads to some new interesting computer
science challenges (for designing more efficient algorithms).

In this article, we consider one of prototype of NP-complete problems: the maximum independent set
problem (but our results can be applied, for free, to many more NP-complete problems!).

1.2 Maximum independent set

Definitions (MIS): In a graph G, an “independent set” (also called “stable set”) is a set of vertices without
edges between them. Amongst all independent sets of G, consider those of maximum size (=those containing

2

the largest number of vertices). These are called “maximum independent set” (MIS)1. Finding such a set is a
NP-hard problem. Deciding if a graph have a MIS of size k, deciding if a subset is a MIS, are NP-complete
problems (this is typically proven via a reduction to SAT). This problem was one of Richard Karp’s original
21 problems shown NP-complete in his 1972 seminal article [34].

There are many fascinating aspects of MIS with respect to approximation: if we draw with probability
1/2 the edges of a graph, almost all such graphs have a MIS of size 2 log2 n(1 + o(1)), but it is still an open
problem to find (in polynomial time) an independent set of size (1 + ε) log2 n, while a greedy algorithm
can reach log2 n (a similar challenge exist for different distributions on the graphs) [26]. If we care for
worst-case approximation, the situation is even... worst: even when the size of the MIS is almost n, there
is no algorithm which can always say ”OK, this graph has a MIS of size larger than nε” (more rigorously,
under the technical assumption NP 6= ZPP , there is no way to find a n1−ε approximation algorithm for
the maximum independent set problem [27]). On the other hand, it is possible to detect in polynomial time
the existence of larger MIS (of size at least n(ln lnn)2/(lnn)3, see [23]). All these results may sound
anecdotal, but it is noteworthy that most of them were derived thanks the introduction of tools which have
deep repercussions on some other computer science questions.

For people not familiar with the zoo of complexity classes, we refer to [1], and for those who wants a
quick (but detailed!) overview of approximations results, we refer to [14].

For finding thousands of articles related to our work, it could be useful to mention that the size of a MIS
of a graph G is often denoted α(G) and called the “stability number” of G. Note that a MIS will always be
a maximal clique in the complement graph2, so these two problems (MIS and max clique) are “equivalent”.
Other “equivalent” questions are minimum independent dominating problem or minimal vertex cover (= the
complement of a maximal independent set, which have been studied in statistical mechanics in connection
with the hard-sphere lattice gas model, a mathematical abstraction of fluid-solid state transitions). These
are all sets that can be found by an algorithm that lists all MIS. As cliques and questions of colorability
of graphs have a strong relationships, it is not surprising that the exhaustive algorithms we study can be
used to tackle graph coloring. E.g., Lawler [36] observed that listing maximal independent sets can also
be used to find 3-colorings of graphs: a graph can be 3-colored if and only if the complement of one of
its maximal independent sets is bipartite (and then, for sure, you can test bipartiteness in linear time (and
constant memory) by a parity argument, or in constant time (and linear memory) with slight changes on the
basic algorithms).

For a lot of NPO problems, there will be the similar questions: cost of finding a set, cost of giving
(or bounding) its size, in the worst or average case, with memory concerns or not. Some results lead to a
speed-up of the algorithms/bounds by an ad-hoc structural study of the inputs, here we will consider some
exhaustive algorithms, working on graphs. The huge advantage of this is that is clearly an upper bound
to the average-complexity of algorithms for all these previous questions. If we can give upper bound for
our “stupid” scheme, then they can be applied directly to the worst and average-complexity of hundreds of
related problems !

All of this gives strong motivations for studying the exhaustive algorithms that we present hereafter.
1In the sequel, we will always abbreviate “maximum independent set” into MIS, in order to spare trees. Note that “maximal

independent set” is another notion: it is a set such that if you try to add any vertex to it, then there is an edge linking this vertex to
another vertex from the set. Any MIS is maximal IS, but a maximal IS is often not a MIS! Note that the exhaustive algorithm we
will study is immediately suitable to list all maximal IS.

2There is an edge between vertice a and b in the “complement” of a graph G if and only if there is no edge between a and b in
G. It is then clear that there is a clique of size at least k if and only if there is an independent set of size at least k in the complement
graph, since if a subgraph is complete, its complement subgraph has no edges at all.

3

2 Algorithms

ExhaustiveMIS:=procedure(G, IS) global List;
if G=empty graph then
List:=List ∪ IS //IS is a maximal IS, and the algorithm needs to end its exhaustive search to decide
if it is actually a MIS.
else //we now consider the “pivot” vertex v of smallest label:
ExhaustiveMIS(G− v, IS) //assuming v 6∈ IS.
ExhaustiveMIS(G− (v and all its neighbours), IS ∪ {v}) //assuming v ∈ IS
end if
end procedure;
BasicAlgorithm:=procedure(G);
List:={}; //will contain the list of all the maximal IS.
ExhaustiveMIS(G, {});
RETURN(the largest sets in List) // this will give the list of the MIS
end;
The Basic Algorithm can be optimized by removing, at the beginning of each iteration all the “tree com-
ponents” from the graph. It is indeed possible to find in polynomial time the MIS of these components. It
is even also possible to remove all the prunable3 nodes; we call the “optimized algorithm” the algorithm
which does these prunings. Note that this optimization won’t affect the “nature” of the complexity of this
algorithm, may it be polynomial O(nd), subexponential O(nln(n)), or exponential O(An).

We call the class of algorithm having such a scheme “algorithms of the Chvátal-Tarjan type”, as they are
directly inspired of [12] and [45]. The principle of this algorithm is at the core of many algorithms, which
all behave like (1 + α)n, and there is a quest for finding the smallest α, even for some restricted classes of
graphs (e.g., graphs of bounded degree).

It is for sure also possible to optimize the choice of the “pivot” vertex v (mostly if we care to find just a
MIS). This leads to what Chvàtal called f -driven algorithms (f being the function which chooses which v we
take after each iteration, it could e.g. be the vertex of smallest degree). Chvàtal also then considers at once
numerous possible pruning or branching/bounding4 strategies by what he calls “length of recursive proofs”:
this will correspond to the smallest part of the binary tree associated to the iterations of the algorithm that
you need in order to be sure you got a MIS.

Indeed, pruning just the “prunable” nodes remains a naive approach, and we can go to much more com-
plicated kind of prunings (as this is the case in the article by Tarjan and Trojanowski), it is also easy to
design several bounding techniques (e.g. relying on the current depth in the tree, and the size of previously
obtained IS). We don’t say more on all these possible improvements and we will in this article only consider
our “stupid” schemes (the “basic algorithm” and the “optimized algorithm”) as they give bounds for any
more cleaver algorithm, and as we believe these bounds to be more general and tight (in terms of the classi-
fication we address in this article: polynomial, superpolynomial, subexponential, exponential complexities).

Our believing relies on the analysis of the following basic recurrence for µn, the average number of
iterations of our algorithms:

µn := µn−1 +
n−1∑
k=0

pn,k µn−k−1 (1)

which mimics the fact that we always first consider the vertex v as not being in the IS (and therefore we have
3We call “prunable” any node of degree 0,1,2 (after iterations of deletion of such nodes).
4From Wikipedia: “Branch and bound is a general algorithm for finding optimal solutions of various optimization problems,

especially in discrete and combinatorial optimization. It consists of a systematic enumeration of all candidate solutions, where large
subsets of fruitless candidates are discarded en masse, by using upper and lower estimated bounds of the quantity being optimized.”

4

to pay the cost of a Tn−1 exhaustive search) and then we consider v as being in the IS and so we have to pay
the price of an exhaustive search on the graph remaining after removing v and its neighbours (pn,k being the
probability to have k neighbours). Now let us imagine that we get one day a much faster algorithm (such a
scheme is also possible for other problems than MIS) such that:

µn := µn−A + µqn

which mimics the fact that we always first remove a fixed numberA (and therefore it remains to pay the cost
of a µn−A exhaustive search) or a given proportion p (0 < p < 1) of vertices (and therefore it remains to pay
the cost of a µqn exhaustive search, where q := 1−p). We can prove that such a (yet unknown) tremendously
cleaver algorithm has still an nlnn complexity (like our stupid algorithm). This explains why we don’t
want to go into a precise analysis of deeply optimized algorithms, as it will with high probability lead to
complexities of the same order as our optimized algorithm! What is more, some of these optimizations are
however a pain in the neck from a practical point of view, as they can lead to a drastic increased need of
memory (e.g. pruning computations “already done” would lead from a polynomial (n3/3) to an exponential
n2An space complexity !). Another drawback of optimization will be that we lost some applications of
exhaustive search (like 3-colorability).

As pointed out by Scott and Sorkin [43], it is (much) more difficult to get results on expectation than
almost always true results: exponentially rare events could have an exponentially large contribution, there-
fore impacting the average cost of the algorithm ; and thus it may be possible that these rare events lead to
an exponential average-complexity for the algorithm, whereas almost all inputs give a linear complexity !

We therefore, on these aspects, improve some results of Chvàtal and Pittel. We also give (exponentially
better) bounds for several areas, and give precise locations of the phase transitions.

It is also noteworthy that our scheme of algorithms is finally not “necessarily” linked to the MIS problem
but in fact to quite a large bunch of branch and bound algorithms, a similar scheme can indeed be applied to
numerous MAX 2-CSP (binary 2-variable constraint satisfaction problems) like Max Cut, Max Dicut, Max
2 Lin, Max 2-SAT Max Ones-2-SAT and other examples from [43].

2.1 The G(n, p) graph model

This model corresponds to a probabilistic model over the graphs with n vertices for which we put (with
probability p) an edge between each pair of vertices. I.e., one has 2(n

2) graphs, and each graph with n
vertices and m edges appears with the probability

((n
2)
m

)
pn(1 − p)(

n
2)−m. We refer to [7, 31] for the nice

probabilistic methods typically used for this model. Note that under the G(n, p) model, the fundamental
recurrence (3) is rephrased as

Xn = Xn−1 +Xn−1−Bin(n−1,p) (2)

µn = µn−1 +
n−1∑
k=0

(
n− 1
k

)
pkqn−k−1µn−k−1 where µn = E[Xn] . (3)

2.2 The Γ(n, m) graph model

This model corresponds to the uniform distribution amongst all graphs with n vertices having the same
number of edges, i.e. each graph with n vertices and m edges appear with the probability 1/

((n
2)
m

)
.

We refer to [30, 25] for the nice analytic methods typically used for this model.

5

Exponential

O(n^2)n<<m<<n^2

Su
be

xp
on

en
ti

al
Su

pe
rp

ol
yn

om
ia

l
P

ol
yn

om
ia

l

Subexponential

Superpolynomial

Polynomial

Average
complexity

m = n/2 + O(n)
3/4

1/3

m = n/2 + O(1) log(n) n1/3

m = n/2 + w(n) log(n) n 2/3

2/3

n/2(1+c) < m m=#edges

Figure 1: The complexity landscape of the optimized algorithm for exhaustive search of all the maximum
independent sets.

Proposition 2.1 (The decreasing property). The average-complexity of the basic algorithm (=its number of
iterations) is decreasing, going from 2n (when p = 0) to 2n+ 1 (when p = 1).

Proof. Looking at the basic recurrence (3), it is no so easy to prove analytically. It becomes however trivial
to prove if you remember the combinatorial meaning of this recurrence ; indeed, the more we increase p,
the more we have chances to have neighbours (as the graphs are still obeying the G(n, p) model, even after
iterations), the more we will delete vertices, and so the algorithm is then faster. When p = 0 or p = 1, the
analysis is deterministic, and looking the trace of the algorithm (=the associated binary tree) for an input
which a set of isolated vertices (p = 0) or the complete graph (p = 1) directly gives the values of the
proposition.

For the optimized algorithm, we don’t have at all this decreasing property: there is a counterbalance
between the fact the algorithm is fast if you are able to kill a lot of neighbours (which is the case if p is
large) and the fact the algorithm is fast if you are able to kill a lot of prunable nodes (which is the case if
p is small), what is more, after few iterations of the algorithm (in fact, just one iteration), we don’t have
anymore a G(n, p) distribution, so the situation is much more messy to analyse than for the basic algorithm
and it sounds difficult to give asymptotics. However the following claim will be useful:

Proposition 2.2 (The upper-bound property). The average-complexity of the optimized algorithm is always
smaller (modulo a polynomial factor) than the average-complexity of the basic algorithm.

Proof. Here again, considering the binary tree associated to the recursive calls of the algorithm is the key
point: the optimized algorithm is just pruning some part of the binary tree associated to the recursive calls
of the basic algorithm, so it will always have less iterations. But there is a price for pruning, and as this price
is always bounded by a polynomial cost, we have our claim.

3 Sparse graphs (almost forests): a polynomial complexity

Theorem 3.1. For graphs which are almost a forest (i.e. for m < n/2), it is possible to find a MIS in
polynomial time.

Proof. Direct consequence of a dynamic programming approach.

6

It is in fact possible to extend this result to graphs for which all nodes are prunable, but such graphs
become exponentially rare for large values of m. Note that the optimized algorithm is in fact of polynomial
complexity until m = n/2 +O((lnn)1/3)n2/3 as can be proven more via more complicated arguments, see
the theorem in the next section.

4 Sparse graphs (few cycles): a superpolynomial complexity

This Section and the 2 next ones are covering the case of sparse graphs with number of edges m ranging
from n

2 to n
2 (1 + ε) for some ε > 0. We will show some “smooth” phase transitions occurring during a

relatively short window :

• from polynomial to superpolynomial as m ranges from n
2 +O(log n1/3)n2/3 to n

2 +O(ω(n))n2/3,

• from superpolynomial to subexponential as m ranges from n
2 +O(ω(n))n2/3 to n

2 + o(n),

• finally, from subexponential to exponential as m ranges from n
2 + o(n) to n

2 +O(n),

where ω(n) is such that log n1/3 � ω(n)� n1/3.

Theorem 4.1. If m = n
2 + µn2/3 with µ = o(n1/3) then the average cost of the optimized algorithm is at

most

exp
(

2 log 2
3

(5 log 2 + 4) µ3

)(
1 + o(1)

)
. (4)

To obtain our results, we shall use exponential generating functions (EGFs) to study random graphs. We
recall briefly the main EGFs needed for our purposes and for which we refer the reader to the celebrated
“giant paper” of Janson, Knuth, Łuczak and Pittel for more details (namely [30, Section 6]).

Let T (z) be the EGF of rooted trees, that is

T (z) = zeT (z) =
∞∑
n=1

nn−1 z
n

n!
. (5)

The EGF of unrooted trees is given by U(z) = T (z) − T (z)2

2 . The EGF of unicyclic components is given
by5

W0(z) =
1
2

log
1

1− T (z)
− T (z)

2
− T (z)2

2
. (6)

More generally, E. M. Wright [46] was able to compute the EGFs Wr, r ≥ 1. He has shown that for each
r ≥ 1, there exists rational coefficients (wr,d)d∈{0,··· , 3r+2} such that

Wr(z) =
3r+2∑
d=0

wr,d

(1− T (z))3r−d
. (7)

Let Er(z) be the EGF all complex graphs having exactly r edges more than vertices. The sequence (Er)r≥0

can be computed recursively as shown by [30, equations (6.7), (6.8), (6.9)], satisfies E0(z) = 1 and

Er(z) =
∑
d≥0

erd
T (z)5r−d

(1− T (z))3r−d
. (8)

5We remove the widehat notations associated with graphs from [30] for sake of brevity and clarity.

7

Let Pr(n, m) be the probability that a random graph with n vertices andm edges has excess r, then we have

Pr(n, m) =
n!((n
2)
m

) [zn]
U(z)n−m+r

(n−m+ r)!
eW0(z)Er(z) , (9)

where [zn]F (z) denotes the n-th coefficient of the EGF F (z). To get our results, we use a saddle point
approach which gives estimates or upper-bounds of Pr(n, m) for values of m such thatm ≤ n

2 +O(n) (full
details omitted in this extended abstract, see however the next section and the Appendix).

5 Sparse graphs (more cycles): a subexponential complexity

First, we focus on values ofm such thatm = n
2 +o(n3/4) which we shall call the polynomial-superpolynomial-

subexponential ranges. In fact, our results show that the optimized algorithm changes its complexity there
from polynomial to superpolynomial and then from superpolynomial to subexponential. Next, we will study
the subexponential-exponential ranges, that is whenever the number of edges m ranges from n

2 + O(n3/4)
to n

2 (1 + µ) (with fixed µ > 0).
Pittel and Wormald [40] were able to obtain the limit joint distribution of the number of vertices in the

2-core6, the excess of the 2-core, and the number of vertices not in the 2-core. More precisely, let Bn be
the event that “there is a unique component of size between 0.5bn and 2bn, and none larger”, where b is
defined as b := b(c) = 1 − t

c , and t ∈ (0, 1) is the unique root of te−t = ce−c (see [40, equations (2.14),
(2.15)]). Then, Pittel and Wormald [40, Theorem 6] gave a local limit theorem for the joint distribution of
these three parameters in Γ(n,m) conditioned upon Bn. In what follows, we offer an alternative approach
to prove that the limit distribution of excess of random graphs is Gaussian when the number of edges m
satisfies m = n

2 + o(n3/4). Contrary to [40, Theorem 6], our result does not rely on the event Bn defined
above.

Theorem 5.1. The probability that a graph with n vertices and m = n
2 + µn2/3 edges has excess r =

16
3 µ

3 +O(µ3/2) is given by

Pr(n, m) =
(

3
160πµ3

)1/2

exp

(
− 3

160

(
r − 16

3 µ
3
)2

µ3

)

×

(
1 +O

((
r − 16

3 µ
3
)

µ3

)
+O

(
1
r3/4

)
+O

(
µ4

n1/3

)
+O

(
r4/3

n1/3

)
+O

(µr

n1/3

))
(10)

uniformly as r, µ, n→∞ and |r − 16
3 µ

3| ≤ O(µ3/2), r ≤ O(n1/4) and µ ≤ O(n1/12).

6 Sparse graphs (large linear number of edges): an exponential complexity

Theorem 6.1. For a large linear number of edges, the optimized algorithm has an exponential complexity,
more precisely if m = n

2 (1 + ε) with n−1/4 ≤ ε < δ and fixed δ then the number of iterations of the
algorithm is at most

exp
(

5(log 2)2

12
ε3 n+

log 2(ε2 − σ2)
4(1 + ε)

n

)(
1 + o(1)

)
, (11)

where σ = σ(ε) is defined by the formula

(1 + ε)e−ε = (1− σ)eσ . (12)
6The 2-core is the largest subgraph of minimum degree 2 or more.

8

7 Sparse-dense graphs: a subexponential complexity

For this Section and the next ones, the asymptotics are given for the basic algorithm, under the G(n, p)
probabilistic model. Let us call “sparse-dense graphs”, the graphs which have more than a linear number
of edges, but less than a quadratic number of edges (for sure, this makes sense only by considering some
asymptotic families of graphs). An extrapolation of the Theorem 8.1 (in the next Section) then gives that it
costs a subexponential number of iterations to list all the MIS in any family of sparse-dense graphs. With
respect to G(n, p), this covers the area p = c(n)/n (for any function 1 � c(n) � n), and a full variety of
subexponential behaviour.

Theorem 7.1. As p→ 0, we have

µn =
1− W (np−p)

np−p
1 +W (np− p)

(
1− W (np− p)

np− p

)−n
(1 +O(p)) , (13)

where W (z) = ze−W (z) is the Lambert W function.

Example 1 : p = logn
n . We obtain an average cost growing as exp

(
n log logn

logn

)
.

Example 2 : p = 1
n1/2 . The average cost grows as exp

(
1
2n

1/2 log n
)

8 Dense graphs: a superpolynomial complexity

Theorem 8.1. The average number µn of iterations of the basic algorithm is of the type nlnn. (Much) more
precisely, with ρ = 1/ log(1/q) and r = W (n/ρ)

n/ρ , where W is Lambert-W function (principal solution of the

equation W (z)eW (z) = z) then µn satisfies

µn ∼
e(ρ/2)(log(1/r))2G(ρ log(1/r))

rρ+1/2
√

2πρ log(1/r)
, (14)

as x→∞, where G is continuous periodic function with period 1:

G(u) = q({u}
2+{u})/2

∑
−∞<j<∞

qj(j+1)/2

1 + qjq−{u}
q−(j+1){u}.

In Equation (2), the random variables Xj are dependent. This makes it very difficult to obtain any
information about asymptotics of the higher moments of Xj as j → ∞. What will happen if we assume
that the variables Xj are independent (which seems to be asymptotically true in numerous examples)? The
answer to this question is provided by the following theorem.

Theorem 8.2. Suppose a sequence of independent random variables Sn satisfies a recurrence

Sn
d= Sn−1 + S∗n−1−Binom(n−1;p), (15)

with S0 = 0 and S1 = 1, where d= stands for equality in distribution, S∗n has the same distribution as Sn
and Binom(n − 1; p) is an independent binomial distribution with parameters n − 1 and p. Then Sn is
asymptotically normal, that is

Sn − µn
σn

d→ N (0, 1),

where d→ denotes convergence in distribution, while µn = ESn and σn =
√

VSn.

9

9 Dense (almost complete) graphs: a polynomial complexity

When p is very near from 1, even the basic algorithm is very fast: most of the nodes have a linear number
of neighbours, and we get all the (very small) independent sets in a polynomial number of iterations (e.g.
the algorithm is linear if p = 1 − c/n). It is in fact possible to argue a little more, and bootstrapping a
polynomial behaviour in the recurrence for the basic algorithm (3) allows to prove that if p = 1 − c/n1/d

(for c = O(1)) then we have an µn = O(nd) complexity. If we let d going to lnn, we then have a behaviour
coherent with the superpolynomial phase (that we got in Section 9 for any fixed p independent of n). All
of this is consistent with our simulations and concludes our description of the complexity landscape of this
family of algorithms.

10 Conclusion

Why to give so ”precise” analysis (with so much math involved) for our “stupid” algorithms whereas we
claim that one of their main use is to bound the complexity of many other algorithms ? Well, because we
believe that these bounds are “robust”, they should (with high probability) give the *exact* order of the
complexity of many other algorithms, because most of the optimizations that one could imagine will (with
high probability) only affects marginally the recurrence (i.e., a polynomial speed up, no more) : our clas-
sification into the four complexity types (polynomial/superpolynomial/subexponential/exponential) should
remain the same. For sure, it is more a matter of believing because it is very hard to *prove* lower bounds
for *any* (yet unknown) algorithm (cf P 6= NP). But, at least, our analyses suggest that it is a dead-end
to look for more and more intricate reductions/prunings, IF you hope to get a tremendous speedup (i.e., a
change of complexity type). However, from a practical point of view, there are not a dead-end as it is always
very useful to kill e.g. a n3 factor in front of a superpolynomial average-complexity (as for e.g. n = 500,
we can then reach in one second what would have taken 4 years before, and therefore doing experiments on
larger values of n).

We can apply our approach to a natural extension of the recurrence we studied :

Xn
d= Xn−b +X∗n−b−Binom(n−b;p),

with Xn = 0 for n < b and Xb = 1, where b > 1. It makes sense to link these quantities to some kind
of internal right path length in digital search trees, or to problems like maximum clique partition. We could
also go to recurrences with e.g. a disjunction into 3 cases instead of 2 (the trace of the algorithm would then
be ternary trees). It could be interesting to see what can be obtained with the contraction method [38].

Further similar approaches can be done for studying the average size of the MIS, the number of MIS,
and approximation schemes (e.g. : what happens if one cuts the recursion tree at a given depth). Here also,
the approaches should hold for a much more general class of problems than MIS.

References

[1] Scott Aaronson and Christopher Kuperberg, Gregand Granade. Complexity Zoo.
http://qwiki.stanford.edu/wiki/Complexity Zoo, 2008.

[2] Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three combinatorial problems.
In Mathematical foundations of computer science 2003, volume 2747 of Lecture Notes in Comput.
Sci., pages 198–207. Springer, Berlin, 2003.

10

[3] Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, and Michèle Soria. Random maps, coalescing
saddles, singularity analysis, and Airy phenomena. Random Structures Algorithms, 19(3-4):194–246,
2001. Analysis of algorithms (Krynica Morska, 2000).

[4] Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. The resolution complexity of independent
sets and vertex covers in random graphs. Comput. Complexity, 16(3):245–297, 2007.

[5] Rene Beier and Berthold Vöcking. An experimental study of random knapsack problems. Algorith-
mica, 45(1):121–136, 2006.

[6] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP problems.
SIAM J. Comput., 36(4):1119–1159 (electronic), 2006.

[7] Béla Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, second (first ed. in 1985) edition, 2001.

[8] Béla Bollobás, Christian Borgs, Jennifer T. Chayes, Jeong Han Kim, and David B. Wilson. The scaling
window of the 2-SAT transition. Random Structures Algorithms, 18(3):201–256, 2001.

[9] K.-H. Borgwardt. The average number of pivot steps required by the simplex-method is polynomial.
Z. Oper. Res. Ser. A-B, 26(5):A157–A177, 1982.

[10] Neil Calkin and Alan Frieze. Probabilistic analysis of a parallel algorithm for finding maximal inde-
pendent sets. Random Structures Algorithms, 1(1):39–50, 1990.

[11] A. Cayley. A theorem on trees. Quart. J. XXIII., pages 376–378, 1888.

[12] V. Chvátal. Determining the stability number of a graph. SIAM J. Comput., 6(4):643–662, 1977.

[13] S.A. Cook. The complexity of theorem proving procedures. In Proceedings, Third Annual ACM
Symposium on the Theory of Computing, pages 151–158. ACM, New York, 1971.

[14] Pierluigi Crescenzi and Viggo Kann. A compendium of NP optimization problems.
http://www.csc.kth.se/ṽiggo/wwwcompendium/, 2008.

[15] H. Daudé and V. Ravelomanana. Random 2-xorsat at the satisfiability threshold. In E. S. Laber, C. F.
Bornstein, L. T. Nogueira, and Faria L., editors, Proceedings of LATIN 2008: Theoretical Informatics,
8th Latin American Symposium (Lecture Notes in Computer Science 4957), pages 12–23. Springer,
2008.

[16] N. G. de Bruijn. On Mahler’s partition problem. Nederl. Akad. Wetensch., Proc., 51:659–669 =
Indagationes Math. 10, 210–220 (1948), 1948.

[17] N. G. de Bruijn. Asymptotic methods in analysis. Dover Publications Inc., New York, third (1st
ed.:1958) edition, 1981.

[18] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann samplers for the
random generation of combinatorial structures. Combin. Probab. Comput., 13(4-5):577–625, 2004.

[19] Philippe Dumas and Philippe Flajolet. Asymptotique des récurrences mahlériennes: le cas cyclo-
tomique. J. Théor. Nombres Bordeaux, 8(1):1–30, 1996.

[20] Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse graphs. SIAM J.
Comput., 31(5):1527–1541 (electronic), 2002.

11

[21] David Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms
Appl., 7(2):131–140 (electronic), 2003.

[22] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl.,
5:17–61, 1960.

[23] Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math.,
18(2):219–225 (electronic), 2004.

[24] Philippe Flajolet, Donald E. Knuth, and Boris Pittel. The first cycles in an evolving graph. Discrete
Math., 75(1-3):167–215, 1989. Graph theory and combinatorics (Cambridge, 1988).

[25] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cam-
bridge, 2008. Available at http : //algo.inria.fr/flajolet/Publications/books.html.

[26] G. R. Grimmett and C. J. H. McDiarmid. On colouring random graphs. Math. Proc. Cambridge Philos.
Soc., 77:313–324, 1975.

[27] Johan Håstad. Clique is hard to approximate within n1−ε. Acta Math., 182(1):105–142, 1999.

[28] Russell Impagliazzo and Leonid A. Levin. No better way to generate hard np instances than picking
uniformly at random. Proc. of the 31st IEEE Symp. on Foundations of Computer Science, pages 812–
821, 1990.

[29] Svante Janson. Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian
areas. Probab. Surv., 4:80–145 (electronic), 2007.

[30] Svante Janson, Donald E. Knuth, Tomasz Łuczak, and Boris Pittel. The birth of the giant component.
Random Structures Algorithms, 4(3):231–358, 1993. With an introduction by the editors.

[31] Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[32] Mark Jerrum. Large cliques elude the Metropolis process. Random Structures Algorithms, 3(4):347–
359, 1992.

[33] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Designs, Codes, and Cryp-
tography, 20(3):269 – 280, 2000.

[34] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer compu-
tations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages
85–103. Plenum, New York, 1972.

[35] Donald E. Knuth. The art of computer programming. Volume 1: Fundamental algorithms. Addison-
Wesley, third (1st ed.: 1968 edition, 1997.

[36] E. L. Lawler. A note on the complexity of the chromatic number problem. Information Processing
Lett., 5(3):66–67, 1976.

[37] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror Troyansky. Deter-
mining computational complexity from characteristic “phase transitions”. Nature, 400(6740):133–137,
1999.

12

[38] Ralph Neininger and Ludger Rüschendorf. A survey of multivariate aspects of the contraction method.
Discrete Math. Theor. Comput. Sci., 8(1):31–56 (electronic), 2006.

[39] B. Pittel. On the probable behaviour of some algorithms for finding the stability number of a graph.
Math. Proc. Cambridge Philos. Soc., 92(3):511–526, 1982.

[40] B. Pittel and N. Wormald. Counting connected graphs inside-out. Journal of Combinatorial Th., Series
B., 93:127 – 172, 2005.

[41] Y. V. Prohorov. Asymptotic behavior of the binomial distribution. Select. Transl. Math. Statist. Prob.,
1:87 – 95, 1961.

[42] Vlady Ravelomanana. Another proof of Wright’s inequalities. Inform. Process. Lett., 104(1):36–39,
2007.

[43] Alexander D. Scott and Gregory B. Sorkin. Solving sparse random instances of Max Cut and Max
2-CSP in linear expected time. Combin. Probab. Comput., 15(1-2):281–315, 2006.

[44] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex algo-
rithm usually takes polynomial time. J. ACM, 51(3):385–463 (electronic), 2004.

[45] Robert Endre Tarjan and Anthony E. Trojanowski. Finding a maximum independent set. SIAM J.
Comput., 6(3):537–546, 1977.

[46] E. M. Wright. The number of connected sparsely edged graphs. J. Graph Theory, 1(4):317–330, 1977.

11 Appendix

11.1 Proof of Theorem 5.1 [sketch]

Proof. The idea is to analyse the average number of iteration of the optimized algorithm with random graphs
from Γ(n,m) as input.

For theoretical purposes, it proves important to partition a random graph into its acyclic part (trees) and
its cyclic part. Then in its turn, the cyclic part can be partitioned into the unicyclic part (consisting of entirely
of unicyclic components) and the complex part with connected components that have more edges than
vertices. These decompositions allow penetrating and stringent analyses by means of generating functions
as shown in [24, 30]

The process of pruning recursively all vertices of degree 1 and folding all vertices of degree 2 is called
reduction. The obtained graph (possibly a multigraph) after a reduction is said reduced. Apart the isolated
vertices, the minimum degree of the reduced graph is 3. The algorithm transforms the original graph into a
reduced one in polynomial time as explained in [43] (see also Section 1 and 2).

As in [30, Section 13], define the excess of a graph as its number of edges plus the number of acyclic
components, minus the number of vertices. The proof of our results rely on the most probable excesses
of the reduced graph. More precisely, we will show that the probability that the excess of the underlying
random graphs is not of order magnitude O(µ3) is exponentially small whenever the number of edges
satisfies m = n

2 (1 + µ) for all values of µ ranging from 0 ≤ µ ≤ O(n). By [43, Theorem 5], in time
O(
√

2
excess

) the algorithm finds the optimal solution. Therefore, the average cost of the algorithm is at most

roughly
√

2
O(µ3)

. More precisely, by [43, Theorem 5] the average cost is bounded by

m∑
r=0

√
2
rPr(n, m) , (16)

13

where Pr(n, m) is the probability that a random graph with n vertices and m edges has excess r. Then, by
computing the asymptotic values of Pr(n, m) according to the stated ranges, we get theorem (4.1).

11.2 Proof of Theorem 6.1 [sketch]

Proof. We just have to give an upper-bound of the probability of excess form from n
2 +O(n3/4) to n

2 (1+ε).
Since there are more multigraphs (allowing self-loops and multiple edges) than graphs, by means of [30,
Theorem 13] we get an upper-bound of the probability of interest. More precisely for any ε > 0, the upper-
bound of the probability that a random graph with n vertices and m = n

2 (1 + ε) has excess r is roughly(
3

20πε3n

)
exp

(
−3(r − r0)2

20ε3n

)
(1 + o (1)) , (17)

when n−1/4 ≤ ε < δ and δ is fixed, and where r0 = ε2−σ2

2(1+ε)n and σ = σ(ε) is the solution of (1 + ε)e−ε =
(1− σ)eσ.

11.3 Proof of Theorem 7.1 [sketch]

Proof. Using the difference between the binomial and the Poisson distributions (see [41]), we get from
Equation (3),

µn = µn−1 +
n−1∑
j=0

(n− 1)jpj

j!
e−(n−1)pµn−1−j (1 +O(p)) . (18)

Thus, up to a factor (1 +O(p)) µn behaves as

µ̂n = µ̂n−1 +
n−1∑
j=0

((n− 1)p)j

j!
e−(n−1)pµ̂n−1−j (19)

whose generating function M̂(z) = 1 +
∑∞

n=1 µ̂nz
n satisfies

M̂(z) =
1

1− z − e−(n−1)p+(n−1)pz
. (20)

Using singularity analysis of generating functions [25], we find

µ̂n+1 ∼
1

1 +W (np)

(
1− W (np)

np

)−n
. (21)

Remarks. Recall the asymptotic behaviour of W (x) (see [17],

W (x) = log x− log log x+O

(
log log x

log x

)
, x→∞ . (22)

Then as np→∞, W (np−p)
np−p is of order of magnitude log (np− p)/np The “exponential” quantity of (13) is

then roughly

exp
(
−n log

(
1− log (np)

np

))
= exp

(
log (np)

p
+O

(
log np2

np2

))
(23)

14

11.4 Proof of theorem 8.1 [Sketch]

Proof. Let f(z) :=
∑

n>0 µnz
n/n! denote the exponential generating function (EGF) of µn. Then f satis-

fies the equation f ′(z) = 1 + f(z) + epzf(qz), or, equivalently, denoting by f̃(z) := e−zf(z) the Poisson
generating function (PGF) of µn, f̃ ′(z) = f̃(qz) + e−z . By taking Laplace transform

f̃?(s) :=
1
s

∫ ∞
0

e−x/sf̃(x) dx. (24)

of the above equation and iterating the obtained identity indefinitely, we obtain an explicit expression

f̃?(s) =
∑
j>0

qj(j+1)/2

1 + qjs
sj+1. (25)

By Laplace inversion formula, we have

f̃(x) =
1

2πi

∫ r+i∞

r−i∞

exs

s
f̃?
(

1
s

)
ds, (26)

where r > 0. Using (25) we can obtain an asymptotic estimate of the integral in the above expression. This
way we obtain an estimate of f̃(x) for real values of x.

Further we link the asymptotics of µn and f̃(n) by means of de-Poissonization procedure and prove that

µn = f̃(n)− n

2
f̃ ′′(n) +O

(
n−2(log n)4f̃(n)

)
= f̃(n)

(
1 +O

(
n−1(log n)2

))
(27)

11.5 Proof of Theorem 8.2 [Sketch]

Proof. The proof of this theorem is done by the method of moments. Independence of variables Sn together
with recurrence (15) allows us obtain some recurrent relations for the moments E(Sn − µn)k. For example,
computing variance of the both parts of the recurrence relation (15) we obtain

σ2
n = σ2

n−1 +
∑

06j<n

(
n− 1
j

)
qjpn−1−jσ2

j + Tn,2, (28)

where

Tn,2 =
∑

06j<n

(
n− 1
j

)
qjpn−1−j(µj + µn−1 − µn)2.

Applying now Theorem 8.1 together with (27) we prove that

Tn,2 ∼ q−1pρ4n−3(log n)4f̃(n)2.

This estimate together with the recurrence relation for variance (28) allows us to obtain an asymptotic
estimate of σ2

n. In a similar way we obtain asymptotics of higher moments, which happen to converge to the
moments of normal distribution. Which implies that Sn is asymptotically normal.

15

	Introduction
	Some considerations on worst and average case analysis of algorithms
	Maximum independent set

	Algorithms
	The G(n,p) graph model
	The (n,m) graph model

	Sparse graphs (almost forests): a polynomial complexity
	Sparse graphs (few cycles): a superpolynomial complexity
	Sparse graphs (more cycles): a subexponential complexity
	Sparse graphs (large linear number of edges): an exponential complexity
	Sparse-dense graphs: a subexponential complexity
	Dense graphs: a superpolynomial complexity
	Dense (almost complete) graphs: a polynomial complexity
	Conclusion
	Appendix
	Proof of Theorem 5.1 [sketch]
	Proof of Theorem 6.1 [sketch]
	Proof of Theorem 7.1 [sketch]
	Proof of theorem 8.1 [Sketch]
	Proof of Theorem 8.2 [Sketch]

