Lattice Path Conference
21-25 June 2021
Presentation times for this poster: Wednesday 1:30-2:30 pm
Thursday $\quad 6-7 \mathrm{pm}$

LLT polynomials in a nutshell: on Schur expansion of LLT polynomials

Jisun Huh ${ }^{\text {a }}$ Sun-Young Nam ${ }^{\text {b }}$ Meesue Yoo ${ }^{\text {c }}$

${ }^{\text {a }}$ Ajou University, South Korea
${ }^{\text {b }}$ Sogang University, South Korea
${ }^{c}$ Chungbuk National University, South Korea

LLT polynomials

- LLT polynomials are a family of symmetric functions introduced by Lascoux, Leclerc and Thibon in '1997
- The original definition uses cospin statistic of ribbon tableaux
- A ribbon tableau maps to a tuple of skew tableaux via quotient map.

Variant of Bylund and Haiman using inversion statistic:

- Consider a k-tuple of skew diagrams $\boldsymbol{\nu}=\left(\nu^{(1)}, \ldots, \nu^{(k)}\right)$, and let

$$
\operatorname{SSYT}(\boldsymbol{\nu})=\operatorname{SSYT}\left(\nu^{(1)}\right) \times \cdots \times \operatorname{SSYT}\left(\nu^{(k)}\right) .
$$

- The content of a cell $u=$ (row, column $)=(i, j)$ is the integer

$$
c(u)=i-j .
$$

- Given $T \in\left(T^{(1)}, \ldots, T^{(k)}\right) \in \operatorname{SSYT}(\boldsymbol{\nu})$, a pair of entries
$T^{(i)}(u)>T^{(j)}(v)$ form an inversion if either
(i) $i<j$ and $c(u)=c(v)$ or
- $\operatorname{inv}(T)=$ the number of inversions in T

Definition of LLT polynomials

The LLT polynomial indexed by $\boldsymbol{\nu}=\left(\nu^{(1)}, \ldots, \nu^{(k)}\right)$ is

$$
\operatorname{LLT}_{\nu}(x ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T)} x^{T}
$$

Properties of LLT polynomials

- LLT polynomials are symmetric
- When $q=1, \operatorname{LLT}_{\nu}(x ; 1)=\prod_{i=1}^{k} s_{v^{(i)}}(x)$
- Furthermore, they are Schur positive. [Grojnowski-Haiman, '2007]
- However, combinatorial description for Schur coefficients are not known.
- Macdonald polynomials $\tilde{H}_{\mu}(x ; q, t)$ can be expanded positively in terms of LLT polynomials.
- Hence, the Schur expansion of LLT polynomial gives a combinatorial formula for q, t-Kostka polynomials.

(1) LLT polynomials indexed by ribbons

To read the inversion statistic:

Macdonald polynomials can be expanded positively in terms of ribbon LLT's:
Theorem [Haglund-Haiman-Loehr, '2005]

$$
\begin{aligned}
\tilde{H}_{\mu}(X ; q, t) & =\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+}} q^{\operatorname{inv}(\sigma)} t^{\operatorname{maj}(\sigma)} x^{\sigma} \\
& =\sum_{D \subseteq\{(i, j) \in \mu: i>1\}} q^{-a(D)} t^{\operatorname{maj}(\sigma)} \operatorname{LLT}_{\nu(\mu, D)}(X ; q)
\end{aligned}
$$

where $\boldsymbol{\nu}(\mu, D)=\left(\nu^{(1)}, \ldots, \nu^{(k)}\right)$, a tuple of ribbons.
(2) LLT polynomials indexed by vertical strips

Shuffle Conjecture [HHLRU, '2005]
\Rightarrow Shuffle Theorem [Carlsson-Mellit, '2017]

$$
\begin{aligned}
\nabla e_{n} & =\sum_{\sigma \in \mathcal{W} \mathcal{P}_{n}} q^{\operatorname{dinvv}(\sigma)} t^{\operatorname{area}(\sigma)} X^{\sigma} \\
& =\sum_{P} \operatorname{LLT} T_{p}(X ; q),
\end{aligned}
$$

where P 's are Schröder paths of size n.
(3) Unicellular LLT polynomials

Linear relation [Lee, '2021]:

- [HNY, '2020] In the case of LLT diagrams corresponding to the class of melting lollipop graphs, explicit combinatorial formula is given.

$$
11 \quad .0
$$

- [Lee, '2021] LLT polynomials with bandwidth ≤ 2 is proved to be 2-Schur positive.
- [Miller, '2019] LLT polynomials with bandwidth ≤ 3 is proved to be 3-Schur positive.
Note. k-Schur positivity is stronger than Schur positivity.

Remark

- [Alexandersson-Sulzgruber, '2018] In the unicellular case, power-sum expansion is known.
- [Alexandersson-Sulzgruber, '2020] Unicellular and vertical-strip case, after substituting $q \mapsto q+1$, e-expansion is proved.
- [Novelli-Thibon, '2019] introduced a non-commutative lift of the unicellular LLT polynomials and prove that they are positive in a non-commutative analogue of the Gessel quasisymmetric basis, and the relation to chromatic quasisymmetric function via (non-commutative) plethysm.

