Lattice Path Conference
21-25 June 2021
Presentation times for this poster:
Thursday $1: 30-2: 30 \mathrm{pm}, 6-7 \mathrm{pm}$

## A Continuous Analogue of Lattice Path Enumeration

Quang-Nhat Le ${ }^{a}$ Sinai Robins ${ }^{b}$ Tanay Wakhare ${ }^{c}$ Christophe Vignat ${ }^{d}$

 Estatistica, Universidade de Sao Paulo, Brazil ${ }^{\text {CL.I.D.S., M.I.T., Boston, USA }{ }^{\text {b }} \text { L.S.S., Université }}$ Paris-Saclay, France and Department of Mathematics, Tulane University, New Orleans, USA

## Lattice paths

Consider a collection of admissible directions $\mathbf{W}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{N}\right\}$ $\mathbf{w}_{i} \in \mathbb{Z}^{d}$ which all lie on the same side of some fixed hyperplane containing the origin. We define a lattice path as an ordered $(n+1)$-tuple of integer vectors $\left(\mathbf{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)$, with each $\mathbf{p}_{j} \in \mathbb{Z}^{d}$, where

$$
\begin{equation*}
\mathbf{p}_{k}:=\mathbf{p}_{k-1}+\lambda_{k} \mathbf{w}_{c_{k}}, \tag{1}
\end{equation*}
$$

for some $\mathbf{w}_{c_{k}} \in \mathbf{W}$, and $\lambda_{k} \in \mathbb{Z}_{\geq 0}$

## Directed paths

Consider the set of all directed paths from the origin to a fixed $\mathbf{q} \in \mathbb{R}^{d}$, using the set of directions from the admissible directions $\mathbf{W}$ : we define the path polytope
$P(\mathbf{q}, \mathbf{c}):=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \lambda_{1} \mathbf{w}_{c_{1}}+\cdots+\lambda_{n} \mathbf{w}_{c_{n}}=\mathbf{q}\right\}$, for some $\mathbf{w}_{c_{1}}, \ldots, \mathbf{w}_{c_{n}} \in \mathbf{W}$. We call the collection of indices $\mathbf{c}:=\left(c_{1}, \ldots, c_{n}\right)$ a pattern for the directed paths.
The set of integer points in $P(\mathbf{q}, \mathbf{c})$ can be interpreted as the set of lattice paths, with pattern $\mathbf{c}$, defined by (1): define

$$
\begin{equation*}
L(\mathbf{q}, \mathbf{c}):=\left\{P(\mathbf{q}, \mathbf{c}) \cap \mathbb{Z}^{d}\right\} \tag{3}
\end{equation*}
$$

the set of integer points in $P(\mathbf{q}, \mathbf{c})$, which is also the set of lattice paths (from $\mathbf{0}$ to $\mathbf{q}$ ) that use the subset $\mathbf{w}_{c_{1}}, \ldots, \mathbf{w}_{c_{n}}$ of the admissible directions W.

## Moduli space

The moduli space of all directed paths from the origin to $\mathbf{q} \in \mathbb{R}^{d}$ is defined in [1] as thefollowing union of polytopes:

$$
\mathcal{M}_{\mathbf{W}}(\mathbf{q})=\coprod_{n=0}^{\infty} \coprod_{\mathbf{c} \in D(n, N)} P(\mathbf{q}, \mathbf{c})
$$

and can be endowed with a natural flat metric. This suggests the natural definition for the volume of the moduli space:

$$
\operatorname{vol}\left(\mathcal{M}_{\mathrm{w}}(\mathbf{q})\right):=\sum_{n=0}^{\infty} \sum_{\mathbf{c} \in D(n, N)} \operatorname{vol} P(\mathbf{q}, \mathbf{c})
$$

## Example

In dimension $d=2$ and $\mathbf{W}:=\{(1,0),(0,1)\}$, for $\mathbf{q}:=(s, x-s) \in \mathbb{R}_{\geq 0}^{2}$, with $0<s<x$, the continuous binomial coefficient

$$
\left\{\begin{array}{l}
x  \tag{4}\\
s
\end{array}\right\}:=\operatorname{vol}\left(\mathcal{M}_{\mathbf{w}}(\mathbf{q})\right)=\sum_{n=0}^{\infty} \sum_{\mathbf{c} \in D(n, 2)} \operatorname{vol} P(\mathbf{q}, \mathbf{c}) .
$$

is computed by Cano and Díaz [1] as

$$
\left\{\begin{array}{l}
x  \tag{5}\\
s
\end{array}\right\}=2 I_{0}(2 \sqrt{s(x-s)})+\frac{x}{\sqrt{s(x-s)}} l_{1}(2 \sqrt{s(x-s)}),
$$

where $I_{\nu}(z)$ denotes the modified Bessel function of the first kind. It satisfies the differential equation

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y}\left\{\begin{array}{c}
x+y  \tag{6}\\
x
\end{array}\right\}=\left\{\begin{array}{c}
x+y \\
x
\end{array}\right\},
$$

a continuous analogue of the usual identity

$$
\Delta_{n} \Delta_{k}\binom{n+k}{k}=\binom{n+k}{k}
$$

## The d-dimensional extension

Consider all lattice paths from the origin $\mathbf{0}$ to any $\mathbf{q} \in \mathbb{Z}^{d}$, using the standard basis as the set of admissible directions $\mathbf{E}:=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right\}$. The number of such lattice paths equals the multinomial coefficient

$$
\binom{q_{1}+\cdots+q_{d}}{q_{1}, \ldots, q_{d}}:=\frac{\left(q_{1}+\cdots+q_{d}\right)!}{q_{1}!\ldots q_{d}!}
$$

We fix any $\mathbf{q} \in \mathbb{R}_{\geq 0}^{d}$, and as above we consider all directed paths between the origin and $\mathbf{q}$. Fixing a pattern $\mathbf{c}:=\left(c_{1}, \ldots, c_{n}\right)$, we get a path polytope $P(\mathbf{q}, \mathbf{c})$ with dimension $n-d$. A natural definition for the continuous multinomial coefficient would then be:

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{d}  \tag{7}\\
x_{1}, \ldots, x_{d}
\end{array}\right\}:=\operatorname{vol}\left(\mathcal{M}_{\mathbf{E}}(\mathbf{x})\right)=\sum_{n=0}^{\infty} \sum_{\mathbf{c} \in D(n, d)} \operatorname{vol} P(\mathbf{q}, \mathbf{c}) .
$$

It can be characterized by its multivariate Borel transform. The Borel transform of a multi-variable analytic function
$f(x)=\sum_{i_{1}, \ldots, i_{d}=0}^{\infty} k_{i_{1} \ldots i_{d}} x^{i_{1}} \ldots x^{i_{d}}$ is defined as

$$
\mathcal{B}(f)\left(x_{1}, \ldots, x_{d}\right):=\sum_{i_{1}, \ldots, i_{d}=0}^{\infty} \frac{k_{i_{1} \ldots i_{d}}}{i_{1}!\ldots i_{d}!} x^{i_{1}} \ldots x^{i_{d}}
$$

## Theorem

Let

$$
F\left(x_{1}, \ldots, x_{d}\right):=\frac{1}{1-\left(\frac{x_{1}}{1+x_{1}}+\cdots+\frac{x_{d}}{1+x_{d}}\right)}
$$

Then the continuous multinomial is equal to

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{d} \\
x_{1}, \ldots, x_{d}
\end{array}\right\}=\frac{\partial}{\partial x_{1}} \cdots \frac{\partial}{\partial x_{d}} \mathcal{B}(F)\left(x_{1}, \ldots, x_{d}\right) .
$$

It satisfies thes partial differential equation
$\prod_{j=1}^{d}\left(1+\frac{\partial}{\partial x_{j}}\right)\left\{\begin{array}{l}x_{1}+\cdots+x_{d} \\ x_{1}, \ldots, x_{d}\end{array}\right\}=\sum_{i=1}^{d} \prod_{j \neq i}\left(1+\frac{\partial}{\partial x_{j}}\right)\left\{\begin{array}{l}x_{1}+\cdots+x_{d} \\ x_{1}, \ldots, x_{d}\end{array}\right\}$.

## Recovering discrete objects

The Todd operator is defined as

$$
\operatorname{Todd}_{h}:=\frac{d / d h}{1-e^{-d / d h}}=\sum_{k \geq 0}(-1)^{k} \frac{B_{k}}{k!}\left(\frac{d}{d h}\right)^{k}
$$

where $B_{k}$ are the Bernoulli numbers.
We show that the usual (discrete) multinomial coefficients can be recovered from their continuous counterpart using the
Khovanskii-Pukhlikov theorem: for a unimodular polytope $P$,

$$
\#\left(P \cap \mathbb{Z}^{d}\right)=\left.\operatorname{Todd}_{\mathbf{h}} \operatorname{vol}(P(\mathbf{h}))\right|_{\mathbf{h}=0}
$$

## Analytical characterizations

For more results about the continuous multinomial coefficients (such as integral representations, Chu-Vandermonde convolution identity) and the continuous Catalan numbers, see the companion article [3].

References
1] L. Cano and R. Díaz, Indirect Influences on Directed Manifolds, Advanced Studies in Contemporary Mathematics, 28-1, 93-114, 2018
2] T. Wakhare, C. Vignat, Q.-N. Le, and S. Robins, A continuous analogue of lattice path enumeration, The Electronic Journal of Combinatorics, 26-3, P.3-57, 2019
3] T. Wakhare and C. Vignat, A continuous analog of lattice path enumeration: Part II, Online Journal of Analytic Combinatorics, 14 2019.

