Lattice Path Conference
21-25 June 2021
Presentation times for this poster
Wednesday $\quad 1: 30-2: 30 \mathrm{pm}$
Thursday 6-7 pm

Patterns in Shi tableaux and Dyck paths

Myrto Kallipolitia Robin Sulzgruber Eleni Tzanaki ${ }^{\text {b }}$

${ }^{\text {a }}$ Faculty of Mathematics, University of Vienna, Vienna, Austria
${ }^{\mathrm{b}}$ Department of Mathematics \& Applied Mathematics, University of Crete, Greece

Dyck paths

- Dyck path of semilength n : a path on the plane from $(0,0)$ to $(2 n, 0)$ consisting of up-steps $(1,1)$ and down-steps $(1,-1)$ that never go below the x-axis

semilength 5
- There are many ways to define poset structures on Dyck paths

\qquad N

The first few levels of the poset
$U D U \cup D U D U D D$ $U D U \cup D \cup \begin{aligned} & \text { semilength } 5 \\ & U\end{aligned}$ $U D U \cup D U D U D D$

A new poset structure on the set of Shi tableaux

 $U D \cup D U D U D$

- $T^{\prime} \preceq T$ if T^{\prime} is obtained from T after sequence of deletions d_{i}, d_{j}^{\prime}.

Shi Tableaux

- Shi arrangement for the root system $A_{n}=\mathcal{S}_{n+1}$
$\mathcal{H}=\left\{x_{i}-x_{j}=0,1: 1 \leq i<j \leq n+1\right\}$ in \mathbb{R}^{n+1}
- regions: connected components of $\mathbb{R}^{n+1} \backslash \mathcal{H}$
- dominant regions: regions in $\bigcap_{1 \leq i<j \leq 0}\left\{\mathbf{x}: x_{i}-x_{j} \geq 0\right\}$

$0 \leq x_{i}-x_{j} \leq 1$ if the cell (i, j) has $1 \leq x_{i}-x_{j} \quad$ otherwise

A new poset structure on the set of Shi tableaux (cover relations)
nill $d_{i}=$ delete i-th row $\&(i-1)$-st column of T
Int $d_{i}^{\prime}=$ delete i-th row $\& i$-th column of T

Patern avoidance

Notation: $T_{\circ \circ}^{k}=U^{k+1} D^{k+1}, T_{\bullet \bullet}^{k}=(U D)^{k+1}, \quad T_{\bullet \circ}^{k}=U^{k} D U D^{k}$
Theorem
(1) $T \in \mathcal{T}_{n}$ avoids $T_{\bullet \bullet}^{k}$ iff its bounce path has at most k return points
(2) T avoids T_{\circ}^{k} iff its height is at most 2
(3) T avoids T_{\bullet}^{k} iff it has no valley at height $\geq k$

Upper and lower covers

Theorem: If T is strongly irreducible then
\mid lower covers $(T)|=|\operatorname{peaks}(T)|+|\operatorname{valleys}(T)|$
\mid upper covers $(\mathrm{T}) \mid=$ closed expression depending on T

Shi tableaux of type A
$\left|\operatorname{Av}_{n}\left(T_{\circ \circ}\right)\right|,\left|\operatorname{Av}_{n}\left(T_{\bullet \bullet}\right)\right|$
$\left|\operatorname{Av}_{n}\left(T_{\bullet}\right)\right|,\left|\mathrm{Av}_{n}\left(T_{\bullet}\right)\right|,\left|\mathrm{Av}_{n}\left(T_{\bullet \bullet}\right)\right|$

Sequence OEIS[...] Pairs of permutations
$2^{n} \quad \mathrm{~A} 000079\left|\mathrm{Av}_{n+1}(132,123)\right|$
$\left|\operatorname{Av}_{n}\left(T_{\bullet}\right)\right|,\left|\operatorname{Av}_{n}\left(T_{\bullet}\right)\right|,\left|A \mathrm{v}_{n}\left(T_{\bullet \bullet}\right)\right|\binom{n}{2}+n+1 \mathrm{~A} 000124\left|\mathrm{Av}_{n+1}(132,321)\right|$
$\left|\operatorname{Av}_{n}\left(T_{\circ}^{k}\right)\right|,\left|\operatorname{Av}_{n}\left(T_{\bullet \bullet}^{k}\right)\right|,\left|\operatorname{Av}_{n}\left(T_{\bullet}^{k}\right)\right||\mathcal{H}(n+1, k)| \mathrm{A} 080934\left|\mathrm{Av}_{n+1}(132,12 \ldots k)\right|$

Open problems

(1) Find an explanation for (or quantify) the above phenomenon linking pattern avoidance in Shi tableaux to permutations avoiding a pair of patterns.
(2) The actions d_{i}, d_{i}^{\prime} have a strong resemblance to the deletion and contraction operations on hyperplane arrangements. Could our poset structure explained in this setting?
(3) Study the poset of Shi tableaux, its Möbius function and topology

References

[1] A. Bacher, A. Bernini, L. Ferrari, B. Gunby, R. Pinzani, and J. West, The Dyck pattern poset, Discrete Math. 321 (2014), 12-23
[2] C.Krattenthaler, Permutations with Restricted Patterns and Dyck Paths, Adv. Appl. Math. 27, Issues 2-3, (2001), 510-530
[3] A. Spiridonov, Pattern-avoidance in binary fillings of grid shapes, Discrete Math Theor. Comput. Sci. Proc. (2008),677-690

