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k:-Dyck paths Let 0 < r < n be a non-negative integer, then: The following limiting behaviour is observed:
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2. The tota numt_)er .of down-steps between the first and second up-step in all Note the relationship of the above to the Lambert W function,
Down-steps between pairs of up-steps ko-Dyck paths is given by 1 ;
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Sp.t.r Is the total number of down-steps between the r-th and the S n—1 == )
(r + 1)-th up-steps in all k;-Dyck paths of length (k + 1)n. 3. For all positive integers r with 1 < r < n, the following recurrence relation This is used to explain why for 0 < 5 <1, limy—, “mn—>oo%f:] = 1.
holds: Example: t =7,
For the seven 2;-Dyck paths of length 6: B | t+ 1 (k+1)r+t+1 (k,n) € {(10, 100), (40, 400), (160, 1600), (640, 6400)}
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Asymptotic results (Average/Variance)

Coding theory connection As n — o0,

1. The expected number of down-steps before the first up-step in k-Dyck

r/n
Conclusions

e Error correcting codes introduce redundancy to allow for error paths of length (k + 1)n is
correction. t+1
S £ the redundant bits utional cod X 4 X 0= L k k+tt)=+0 1 | e A bijective approach to the problem gives a recursive formula for the
: C.)?e ° t = Teaun an; s |n| ° .con\llo u;cllona cOCE Call DE TEMOVE ; t+1\(k+ 1)t L number of down-steps, while a generating function approach leads to a
Wft ol (|.e.. RGTEe) el es] € .es). | 2. For fixed 1 < r < n, the expected number of down-steps between the r-th closed form formula.
® Binary matrices are used to represent which bits are removed/kept. and (r + 1)-th up-steps in k-Dyck paths of length (k + 1)n is e Results from both methods leads to several combinatorial identities.
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® T'wo binary matrices prod.uce tne same output If they are obtainable ke 1 (k+1)j+t+1 k* ! o Asymptotic results were obtained, and unexpected limiting behaviours
from each other by a cyclic shift of columns. DY, — Z _ | .
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e Equivalence classes of (k + 1) x n binary matrices with n + 1 ones are j=1

bijective to ke-Dyck paths of length (k + 1)n, with 0 < t < k — 1 P b1 1 e A relationship between coding theory and k;-Dyck paths was
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. . . | established, along with a Cycle-lemma type result, and a new
® T[he special case of k = 1 leads to a new interpretation of the Catalan t+1\(k+1 n . . 5 Y Y
interpretation for the Catalan numbers.

numbers in terms of equivalence classes of binary matrices. 3. The average number of down-steps after the last up-step in k;-Dyck paths
of length (k + 1)n is

e Further work, i.e. k < t and asymptotics, is in progress.
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110 100 101 110 111 Code: https://gitlab.aau.at/behackl/kt-dyck-downstep-code. [1] Asinowski, A.; Hackl, B; Selkirk, S.: Down-step statistics in generalized

Go1)(011)  (or)lore)  GI)G1e)  (on)Gr1) (i) () Dyck paths. arXiv:2007.15562, 2020.


https://lipn.fr/~cb/LPC/2021/
https://gitlab.aau.at/behackl/kt-dyck-downstep-code
https://arxiv.org/pdf/2007.15562.pdf
https://arxiv.org/pdf/2007.15562.pdf

