21-25 June 2021

Presentation times for this poster:
Wednesday $\quad 1: 30-2: 30 \mathrm{pm}$ Thursday $\quad 6-7 \mathrm{pm}$

Sarah.Selkirk@aau.at

Down-step statistics in generalized Dyck paths

Andrei Asinowskia
Benjamin Hackla, b
Sarah J. Selkirk ${ }^{\text {a }}$

FUF

${ }^{\text {a }}$ Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Austria
${ }^{\text {b }}$ Department of Mathematics, Uppsala University, Sweden

UPPSALA UNIVERSITET

A family of generalized Dyck paths

k_{t}-Dyck paths

- Let $k \in \mathbb{N}$ and $0 \leq t \leq k-1, t \in \mathbb{Z}$.
- Step set: $\mathcal{S}=\{(1, k),(1,-1)\}$.
- Length $(k+1) n$: starts at $(0,0)$, ends at $(0,(k+1) n), n \in \mathbb{N}$.
- Restrictions: paths stay (weakly) above $y=-t$.

Down-steps between pairs of up-steps

s_{n+r} is the total number of down-steps between the r-th and the $(r+1)$-th up-steps in all k_{t}-Dyck paths of length $(k+1) n$.

For the seven 2_{1}-Dyck paths of length 6 :

$$
\begin{array}{lll}
s_{2,1,0}=3 & s_{2,1,1}=9 & s_{2,1,2}=16
\end{array}
$$

$(0,0,4) \quad(0,1,3)$
$(1,0,3)$
$(0,2,2)$
$\wedge \sqrt{N} \wedge$

Coding theory connection

- Error correcting codes introduce redundancy to allow for error correction.
- Some of the redundant bits in a convolutional code can be removed without (i.e. punctured convolutional codes).
- Binary matrices are used to represent which bits are removed/kept.
- Two binary matrices produce the same output if they are obtainable from each other by a cyclic shift of columns.
- Equivalence classes of $(k+1) \times n$ binary matrices with $n+1$ ones are bijective to k_{t}-Dyck paths of length $(k+1) n$, with $0 \leq t \leq k-1$.
- The special case of $k=1$ leads to a new interpretation of the Catalan numbers in terms of equivalence classes of binary matrices.

Enumerative results

Let $0 \leq r \leq n$ be a non-negative integer, then:

1. The total number of down-steps before the first up-step in all k_{t}-Dyck paths of length $(k+1) n$ is given by

$$
s_{n, t, 0}=\sum_{j=0}^{t-1} \frac{j+1}{(k+1) n+j+1}\binom{(k+1) n+j+1}{n}
$$

2. The total number of down-steps between the first and second up-step in all k_{0}-Dyck paths is given by

$$
s_{n, 0,1}=\frac{k}{n}\binom{(k+1)(n-1)}{n-1} .
$$

3. For all positive integers r with $1 \leq r \leq n$, the following recurrence relation holds

$$
\begin{aligned}
& s_{n, t, r}=s_{n, t, r-1}+\frac{t+1}{(k+1) r+t+1}\binom{(k+1) r+t+1}{r} \\
& \times\left(s_{n-r+1,0,1}-t \llbracket r=n \rrbracket\right) .
\end{aligned}
$$

Proofs via bijective and generating function methods.

Asymptotic results (Average/Variance)

As $n \rightarrow \infty$,

1. The expected number of down-steps before the first up-step in k_{t}-Dyck paths of length $(k+1) n$ is

$$
\mathbb{E} X_{n, t, 0}=\frac{k}{t+1}\left(\frac{k^{t+1}}{(k+1)^{t}}-k+t\right)+O\left(\frac{1}{n}\right)
$$

2. For fixed $1 \leq r<n$, the expected number of down-steps between the r-th and $(r+1)$-th up-steps in k_{t}-Dyck paths of length $(k+1) n$ is

$$
\begin{aligned}
\mathbb{E} X_{n, t, r}= & \frac{k^{t+2}}{(k+1)^{t}} \sum_{j=1}^{r} \frac{1}{(k+1) j+t+1}\binom{(k+1) j+t+1}{j}\left(\frac{k^{k}}{(k+1)^{k+1}}\right)^{j} \\
& +\frac{k}{t+1}\left(\frac{k^{t+1}}{(k+1)^{t}}-k+t\right)+O\left(\frac{1}{n}\right)
\end{aligned}
$$

3. The average number of down-steps after the last up-step in k_{t}-Dyck paths of length $(k+1) n$ is

$$
\mathbb{E} X_{n, t, n}=\frac{(k+1)^{k+1}}{k^{k}}-(t+1)+O\left(\frac{1}{n}\right)
$$

Given values of k, t, r, n, there is an algorithm to determine the variance. Code: https://gitlab.aau.at/behackl/kt-dyck-downstep-code

Limiting behaviour

The following limiting behaviour is observed:

- $\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{n, 0, r}}{k}=\sum_{j=1}^{r} \frac{j^{j-1}}{j!} \frac{1}{e^{j}}$
- $\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{n, k, r}}{k}=\sum_{j=0}^{r} \frac{(j+1)^{j}}{(j+1)!} \frac{1}{e^{j+1}}$
- $\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{n, t, n}}{k}=e-\frac{2 t+2-e}{2 k}+O\left(\frac{1}{k^{2}}\right)$
- $\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{n, t, n-r}}{k}=e-\sum_{j=1}^{r} \frac{(j-1)^{j-1}}{j!} \frac{1}{e^{j-1}}$

Note the relationship of the above to the Lambert W function

$$
-W(-x)=\sum_{j \geq 1} \frac{j^{j-1}}{j!} x^{j}
$$

This is used to explain why for $0<\beta<1, \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{s_{n, t}[\mid \beta n]}{k C_{n, t}}=1$. Example: $t=7$,
$(k, n) \in\{(10,100),(40,400),(160,1600),(640,6400)\}$

Conclusions

- A bijective approach to the problem gives a recursive formula for the number of down-steps, while a generating function approach leads to a closed form formula
- Results from both methods leads to several combinatorial identities
- Asymptotic results were obtained, and unexpected limiting behaviours explained.
- A relationship between coding theory and k_{t}-Dyck paths was established, along with a Cycle-lemma type result, and a new interpretation for the Catalan numbers.
- Further work, i.e. $k \leq t$ and asymptotics, is in progress.

References

[1] Asinowski, A.; Hackl, B; Selkirk, S.: Down-step statistics in generalized Dyck paths. arXiv:2007.15562, 2020.

