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Uniformization

The problem
• We are given a continuous time Markov chain (CTMC) X on a

discrete state space S . Initial distribution: α; generator: A.
• The goal is to find a closed-form of the transient distribution of X ,

which, seen as a row vector p, is p(t) = α exp(At) (assumed to exist).
• Typical application area: queuing systems.

Uniformization
• Uniformization moves the continuous time previous problem to discrete

time (differentials to differences).
• Assume supi |Ai ,i| ≤ Λ <∞ ( =⇒ exp(A) exists); let U = I + A/Λ.
• Let q = transient distribution of the discrete time Markov chain on S

with initial distribution α and transition probability matrix U . Then,

p(t) =
∑
n≥0

exp(−Λt)
(Λt)n

n!
q(n). (1)

Finding q using Lattice Path Combinatorics is often pretty hard.

Stochastic Siegmund duality [2], [3]

Monotonicity
• We need a complete order on S , so, assume S = N.
• Let P(t) = exp(At). Process X is monotone iff for all i , k, t,

Pi(X (t) ≥ k) ≤ Pi+1(X (t) ≥ k). (2)

Duality
• If X is monotone, then there exists X ∗ Markov, on S , also monotone,

such that for all i , j , t,

Pi(X
∗(t) ≤ j) = Pj(X (t) ≥ i). (3)

• If A∗ is the generator of X ∗, we have similar linear mappings between
P(t) and P∗(t) = exp(A∗t), and between A and A∗. For instance,

A∗i , j =
i−1∑
k=0

[
Aj−1, k − Aj , k

]
, Ai , j =

i∑
k=0

[
A∗j , k − A∗j+1, k

]
. (4)

Interest
• Given other properties of duality, finding transients on the Uniformized

version of X ∗ is sometimes much simpler than on the original X .
• This comes from the fact that, typically, X is irreducible and its dual
X ∗ is absorbing.
• For instance, in the M/M/1 queue, X ∗ has one absorbing state. In the
M/M/1/H , X ∗ has two absorbing states.
• For more details and examples, see for instance [4], [5].

Problems with duality

• The monotonicity condition makes that in many cases, there is no dual
(example: any circular chain, whatever the transition rates).
• Duality depends on the specific ordering of the states.
• In some cases the dual exists only if the transition rates of X satisfy

specific inequalities.
• Other problems can arise in the infinite state space case.
• All these issues are illustrated and discussed in [1].

The exponential-dual matrix

• Given an arbitrary real or complex matrix A, we define the
exponential-dual of A, A∗, by means of the left equality in (4).
• This transformation needs no condition on A, and when A is the

generator of a CTMC X and X ’s dual exists, then the Siegmund dual
X ∗ of X has generator A∗.
• A∗ is not any matrix.
• First of all, when A is finite, the dimension dim(A∗) of A∗ is =

dim(A) + 1.
• The rows of A∗ sum up to 0.
• The last row of A∗ is only composed of 0’s.

Examples

First example: A =

(
1 −2
3 −4

)
7→ A∗ =

−1 0 1
−2 −2 4
0 0 0

.

Second example:

A =

 1 i 0
1 + i 2 −i
i 0 1

 7→ A∗ =


1 + i 2− i i − 2 −1− i
i 2− 2i i − 1 −1
0 −i 1 + i −1
0 0 0 0

.

The main property of the exponential-dual matrix

• If we know exp(A∗t) = E ∗(t), then denoting E (t) = exp(At) we have:

Ei , j(t) =
i∑

k=0

[
E ∗j , k(t)− E ∗j+1, k(t)

]
. (5)

• In words, from exp(A∗t) we can find exp(At) using a simple linear
transformation. This coincides with the right equality in (4), but it has
now an algebraic proof (deterministic result here).

Solving process

Let’s summarize some main points in the solving process:
• Uniformization moves the problem of transient analysis in CTMCs to

discrete time.
• To obtain closed-forms, one important family of techniques is Lattice

Path Combinatorics (reflection principles, roots of unity, etc.).
• This works both for the stochastic dual and for the exponential-dual

when the former doesn’t exist. Duality transformations allow to work
with a different structure, and sometimes this is simpler.
• Typical examples where it happens are the M/M/1, the M/M/1/H ,

the M/M/2, the M/M/1 or the M/M/1/H with catastrophes, etc.

Conclusions

• The concept of exponential-dual solves all the existence problems of
Sigmund duality.
• Remaining tasks:
• to develop the equivalent of the exponential-dual in discrete time

and the connexions with the continuous time setting;
• to analyze the use of Lattice Path Combinatorics tools when the

original A is not a generator.
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