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Weight-dependent binomial coefficients

For n, k ∈ Z, we define the weight-dependent binomial coefficient as
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with W (s, t) =
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a sequence of weights w(s, t) and
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The lattice path model

For m, n ∈ Z, a hybrid lattice path is a path from (0, 0) to (m, n).
Depending on m and n, the possible steps of a path are:

1. n,m ≥ 0: ↑ and →
2. m < 0 ≤ n: ← and ↖
3. n < 0 ≤ m: ↓ and ↘
4. n,m < 0: no allowed steps

Additionally, if m < 0, the first step
has to be ← and if n < 0, the first
step has to be ↓.
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Each step is assigned a weight depending on its position:
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The weight of a path w(P) is the product over the weights of its steps.

Examples

There are three paths from (0, 0) to (−4, 2):
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(−4, 2)

(0, 0)

(−4, 2)

(0, 0)

(−4, 2)

The weight of the first path is for example

w(P) = W (0, 0)−1(−W (−1, 1)−1)(−W (−2, 2)−1)W (−3, 2)−1

= (w(−1, 1)w(−2, 1)w(−2, 2)w(−3, 1)w(−3, 2))−1

Weighted counting

The weight-dependent binomial coefficients count weighted hybrid lattice
paths. For all n, k ∈ Z,
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where the sum runs over all paths from (0, 0) to (k, n − k).

Reflection formulae

We define the weight-reflections w̆(s, t) = w(s, 1− s − t)−1 and
w̃(s, t) = w(1− s − t, t)−1 to obtain
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where sgn(n) is 1 for n ≥ 0 and −1 for n < 0. These formulas explain the
behavior of the weight-dependent binomial coefficient at negative values.

Noncommutative binomial theorem

Let x and y be noncommutative variables satisfying the three relations

yx = w(1, 1)xy , xw(s, t) = w(s + 1, t)x and yw(s, t) = w(s, t + 1)y ,

then for all n ∈ Z:
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Convolution formula

Let x , y be noncommutative as before, n,m ∈ Z and k ≥ 0, then
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For m, n > 0 or m, n < 0, this identity can be interpreted as convolution
over weighted paths with respect to a diagonal.
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Specializations

Binomial coefficient
For w(s, t) = 1 we obtain the ordinary binomial coefficient
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)
studied

for arbitrary integer values by Loeb [1].

Gaussian binomial coefficient
For w(s, t) = q we obtain the q-binomial coefficient [ nk ]q studied for
arbitrary integer values by Formichella and Straub [2].

Elliptic binomial coefficient
For

w(s, t) =
θ(aqs+2t, bq2s+t−2, aqt−s−1/b; p)

θ(aqs+2t−2, bq2s+t, aqt−s+1/b; p)
q

we obtain the elliptic binomial coefficient [3]
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where θ(x ; p) =
∏∞

k=0((1− xpk)(1− pk+1/x)) is the modified Jacobi theta
function and (a; q, p)k =
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Symmetric functions
For w(s, t) = as+t
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we obtain
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where ek is the elementary symmetric function and hk is the complete
homogeneous symmetric function of order k .

Conclusion

• Many results from [1] and [2] can be generalized to the weighted case
with its specializations.
• In [1] and [2] binomial coefficients were interpreted with hybrid sets.

Hybrid lattice paths can be translated to the corresponding hybrid sets.
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