Lattice	Path Conference	Latti	
21-25 Jur			
Presentation •	Heba Ayeda	L	
Tuesday	1:30-2:30 pm, 6-7 pm		
Thursday	1:30-2:30 pm		

Sylvester's Eigenvalue Expansion Formula for M^k

Assume M is a real $n \times n$ matrix that has n known distinct eigenvalues $\omega_1, \omega_2, \ldots, \omega_n$. Then

$$M^{k} = A_{1}\omega_{1}^{k} + A_{2}\omega_{2}^{k} + A_{3}\omega_{3}^{k} + \dots + A_{n}\omega_{n}^{k}$$

where k = 0, 1, 2, ... and $A_1, A_2, ..., A_n$ are constant $n \times n$ coefficient matrices called spectral projectors (Meyer) or Frobenius covariants.

 $M^{k}(i,j) = A_{1}(i,j)\omega_{1}^{k} + A_{2}(i,j)\omega_{2}^{k} + A_{3}(i,j)\omega_{3}^{k} + \dots + A_{n}(i,j)\omega_{n}^{k}$ where $0 \le i, j \le n - 1$ for s = 1, 2, 3, ..., n.

We scale the right and left eigenvectors, $\vec{R_s}$ and $\vec{L_s}$ of M by multiplying each eigenvector \vec{L}_s and \vec{R}_s by a constant c so that $c\vec{L}_s \cdot c\vec{R}_s = 1$. Obtaining A_s then follows by taking the scaled outer matrix product of $\vec{R_s}$ and $\vec{L_s}$, that is,

$A_s = c^2 \vec{R_s} \vec{L_s}$

Theorem K (Kouachi 2006)

Suppose P is a tridiagonal matrix, having dimension n = 2m + 1, where $m = 1, 2, 3, \dots$ Assume that the sub- and super-diagonal entries are alternating as shown below.

	[r	p_0	0	0	• • •	0
P =	q_1	р ₀ r	p_1	0	• • •	0
	0	<i>q</i> ₂ 0	r	p_0	• • •	0
	0	-	q_1	r	p_1	• • •
	:		:	•.	• • •	÷
	0	0	• • •	0	0	q_2

Suppose $q_1 p_0 = d_1^2$, $q_2 p_1 = d_2^2$, where $d_1 \neq 0 \neq d_2$. Then P has distinct eigenvalues given by:

	$\left(r+\sqrt{d_1^2+d_2^2+2d_1d_2\cos(\theta_k)}\right)$	if $k = 1, 2,, m$
$\omega_{k} = \langle$	$r-\sqrt{d_1^2+d_2^2+2d_1d_2\cos(\theta_k)}$	if $k = m + 1, m + 2,$
	r	if $k = n$

Then eigenvectors $\vec{R_s}$ and $\vec{L_s}$ of P are explicitly known and we can find the spectral projectors and Sylvester Eigenvalue Expansion for P^k .

Problem: When n = 2m, find a formula for eigenvalues for $m \ge 5$.

Transition Diagram and Tran	sition	Ma	trix			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P =	$\begin{bmatrix} \frac{1}{10} \\ \frac{2}{3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	21 40 0 0	$ \begin{array}{c} 0 \\ \frac{7}{30} \\ \frac{1}{10} \\ \frac{2}{3} \\ 0 \end{array} $	$\frac{3}{8}$ $\frac{1}{10}$ $\frac{21}{40}$	$ \begin{bmatrix} 0 \\ 0 \\ \hline 7 \\ 30 \\ \hline 1 \\ 10 \end{bmatrix} $
One Step Transition Probability Matrix						Matrix

ce Paths with Alternating Probabilities David Beecher Alan Krinik Jeremy J. Lin David Perez Thuy Vu Dieu Lu Weizhong Wong

(3)

(4)...,2*m*

 $\frac{7}{30}$ $\frac{1}{10}$ <u>21</u> 40 $\frac{1}{10}$

To find the probability of going from state i = 1 to j = 2 in 15 steps without leaving the strip, we use Kouachi's Theorem to get these eigenvalues: $\omega_1 = \frac{\sqrt{219}}{20} + \frac{1}{10} \quad \omega_2 = \frac{\sqrt{79}}{20} + \frac{1}{10} \quad \omega_3 = \frac{1}{10} - \frac{\sqrt{219}}{20}$ We can calculate the spectral projectors:

$$\begin{aligned} P^{15}(1,2) &= A_1(1,2)\omega_1^{15} + A_2(1,2)\omega_2^{15} + A_3(1,2)\omega_3^{15} + A_4(1,2)\omega_4^{15} + A_5(1,2)\omega_5^{15} \\ &= \frac{17\sqrt{219}}{1314} \left(\frac{\sqrt{219}}{20} + \frac{1}{10}\right)^{15} - \frac{\sqrt{79}}{158} \left(\frac{\sqrt{79}}{20} + \frac{1}{10}\right)^{15} \\ &- \frac{17\sqrt{219}}{1314} \left(\frac{1}{10} - \frac{\sqrt{219}}{20}\right)^{15} + \frac{\sqrt{79}}{158} \left(\frac{1}{10} - \frac{\sqrt{79}}{20}\right)^{15} + 0 \left(\frac{1}{10}\right)^{15} \approx 0.0142 \end{aligned}$$

$$= A_{1}(1,2)\omega_{1}^{15} + A_{2}(1,2)\omega_{2}^{15} + A_{3}(1,2)\omega_{3}^{15} + A_{4}(1,2)\omega_{4}^{15} + A_{5}(1,2)\omega_{5}^{15}$$

$$= \frac{17\sqrt{219}}{1314} \left(\frac{\sqrt{219}}{20} + \frac{1}{10}\right)^{15} - \frac{\sqrt{79}}{158} \left(\frac{\sqrt{79}}{20} + \frac{1}{10}\right)^{15}$$

$$- \frac{17\sqrt{219}}{1314} \left(\frac{1}{10} - \frac{\sqrt{219}}{20}\right)^{15} + \frac{\sqrt{79}}{158} \left(\frac{1}{10} - \frac{\sqrt{79}}{20}\right)^{15} + 0 \left(\frac{1}{10}\right)^{15} \approx 0.0142$$

Theorem K: Special Case p's = q's

Suppose a birth-death chain has the following state transition diagram and transition matrix as shown below:

for H a natural number, $0 < p_0$, $p_1 < 1$, $0 \le r < 1$, and $r + p_0 + p_1 = 1$. $[r + p_1 \ p_0 \ 0 \ \dots \ 0 \ 0 \ C]$

	p_0	r	p_1	• • •	0	0	0	
	0	p_1	r	• • •	0	0	0	
P =	÷	÷	•	•.	:	÷	:	
	0	0	0	•••	r	p_0	0	
	0	0	0	• • •	p_0	r	p_{H-1}	
	0	0	0	• • •	0	p_{H-1}	$r + p_H$	

Then the eigenvalues of P have an explicit formula that depends on H. The Sylvester Eigenvalue Expansion for P^k has a closed formula for all natural numbers H.

$$\frac{\sqrt{219}}{20}$$
 $\omega_4 = \frac{1}{10} - \frac{\sqrt{79}}{20}$ $\omega_5 = \frac{1}{10}$.

- $p_{H-1} = \begin{cases} p_1 \text{ when } H \text{ is even} \\ p_0 \text{ when } H \text{ is odd} \end{cases}$
- $\begin{cases} p_0 \text{ when } H \text{ is even} \\ p_1 \text{ when } H \text{ is odd} \end{cases}$

Corollary: Finite Time Gambler's Ruin Problem

where $l_0 = r + p_1 - p_0$ and $l_1 = r + p_0 - p_1$; l_0 and l_1 then alternate until the absorbing state at H. The Sylvester Eigenvalue Expansion for the transition matrix corresponding to the preceding diagram has a closed formula for all natural numbers H, see related problems in [2] and [5].

References

- Journal of Integer Sequences, 18, pp. 1–16, 2015.
- Statistical Theory and Practice, no. 2, pp. 199–219, 2008.

Assuming the conditions of the previous theorem and $r > |p_1 - p_0|$, then the Duality Theorem provides explicitly known eigenvalues for any $H \in \mathbb{N}$.

[1] Felsner, S.; Heldt, D.: Lattice path enumeration and Toeplitz matrices,

[2] Hunter, B. et al.: Gambler's ruin with catastrophes and windfalls, Journal of

Kouachi, S.: Eigenvalues and Eigenvectors of Tridiagonal Matrices, Electronic Journal of Linear Algebra, Vol. 15, pp. 115-133, 2006 *Eigenvalues* and Eigenvectors of Some Tridiagonal Matrices with Non-Constant Diagonal *Entries*, Applicationes Mathematicae 35, Vol. 1, pp. 107–120, 2008.

Krinik et al.: Explicit Transient Probabilities of Various Markov Models, AMS Contemporary Mathematics Series volume 774 to appear in 2021.

[5] Lorek, P.: *Generalized Gambler's Ruin Problem: Explicit Formulas via* Siegemund Duality, Methodol Comput Appl Probab, 19, pp. 603-613, 2017.