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Sylvester’s Eigenvalue Expansion Formula for Mk

Assume M is a real n × n matrix that has n known distinct eigenvalues
ω1, ω2, . . . , ωn. Then

Mk = A1ω
k
1 + A2ω

k
2 + A3ω

k
3 + ... + Anω

k
n (1)

where k = 0, 1, 2, ... and A1,A2, ...,An are constant n × n coefficient
matrices called spectral projectors (Meyer) or Frobenius covariants.

Mk(i , j) = A1(i , j)ωk
1 + A2(i , j)ωk

2 + A3(i , j)ωk
3 + ... + An(i , j)ωk

n

where 0 ≤ i , j ≤ n − 1 for s = 1, 2, 3, ..., n.

We scale the right and left eigenvectors, ~Rs and ~Ls of M by multiplying each
eigenvector ~Ls and ~Rs by a constant c so that c~Ls · c ~Rs = 1. Obtaining As

then follows by taking the scaled outer matrix product of ~Rs and ~Ls, that is,

As = c2~Rs
~Ls (2)

Theorem K (Kouachi 2006)

Suppose P is a tridiagonal matrix, having dimension n = 2m + 1, where
m = 1, 2, 3, .... Assume that the sub- and super-diagonal entries are
alternating as shown below.

P =



r p0 0 0 . . . 0 0

q1 r p1 0 . . . 0 0

0 q2 r p0 . . . 0 0

0 0 q1 r p1 . . . 0...
...

...
... . . .

...
...

0 0 . . . 0 0 q2 r


(3)

Suppose q1 p0 = d1
2, q2 p1 = d2

2, where d1 6= 0 6= d2. Then P has distinct
eigenvalues given by:
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√
d 2

1 + d 2
2 + 2d1d2 cos(θk) if k = 1, 2, . . . ,m
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√

d 2
1 + d 2

2 + 2d1d2 cos(θk) if k = m + 1,m + 2, . . . , 2m

r if k = n

(4)

Then eigenvectors ~Rs and ~Ls of P are explicitly known and we can find the
spectral projectors and Sylvester Eigenvalue Expansion for Pk.

Problem: When n = 2m, find a formula for eigenvalues for m ≥ 5.

Transition Diagram and Transition Matrix
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Strip Birth-Death Chain
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One Step Transition Probability Matrix

Probability of All Lattice Paths Confined to the
Following Strip Going from i = 1 to j = 2 in 15 Steps
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A sample path going from i = 1 to j = 2 in 15 steps staying within the strip

To find the probability of going from state i = 1 to j = 2 in 15 steps without
leaving the strip, we use Kouachi’s Theorem to get these eigenvalues:
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We can calculate the spectral projectors:
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≈ 0.0142

Theorem K: Special Case p’s = q’s

Suppose a birth-death chain has the following state transition diagram and
transition matrix as shown below:

0 1 2 3 · · · H

r + p1 r r r r + pH

p0 p1 p0 p1 pH−1

p0 p1 p0 p1 pH−1

for H a natural number, 0 < p0, p1 < 1, 0 ≤ r < 1, and r + p0 + p1 = 1.

P =



r + p1 p0 0 . . . 0 0 0

p0 r p1 . . . 0 0 0

0 p1 r . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . r p0 0

0 0 0 . . . p0 r pH−1

0 0 0 . . . 0 pH−1 r + pH



pH−1 =

{
p1 when H is even
p0 when H is odd

pH =

{
p0 when H is even
p1 when H is odd

Then the eigenvalues of P have an explicit formula that depends on H . The
Sylvester Eigenvalue Expansion for Pk has a closed formula for all natural
numbers H .

Corollary: Finite Time Gambler’s Ruin Problem

Assuming the conditions of the previous theorem and r > |p1 − p0|, then the
Duality Theorem provides explicitly known eigenvalues for any H ∈ N.

-1 0 1 · · · H-1 H

1 l0 l1
lH−1 1

p0 p1 p1 p0

p0 p1 p0 p0

where l0 = r + p1 − p0 and l1 = r + p0 − p1; l0 and l1 then alternate until the
absorbing state at H . The Sylvester Eigenvalue Expansion for the transition
matrix corresponding to the preceding diagram has a closed formula for all
natural numbers H , see related problems in [2] and [5].

General Markov Chain with Alternating Entries, m = 2n

0 1 2 3q1 + c0 q2 + c1 q1 + c2

c1c0

c0

l0 l1 l2 l3p0 + c1 p1 + c2 p0 + c3

c3

c3c2

l0 = r + q1 + c0 l1 = r + q2 − q1 + c1

l2 = r + q1 − q2 + c2 l3 = r + p0 + c3 0 < q1, q2, r , p0, p1 < 1

q1 + r + p0 + c0 + c1 + c2 + c3 = 1 q2 + r + p1 + c0 + c1 + c2 + c3 = 1
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