21-25 June 2021
Presentation times for this poster:
$\begin{array}{ll}\text { Tuesday } & 1: 30-2: 30 \mathrm{pm}, 6-7 \mathrm{pm} \\ \text { Thursday } & 1: 30-2: 30 \mathrm{pm}\end{array}$
Thursday
1:30-2:30 pm
Lattice Paths with Alternating Probabilities

Heba Ayeda David Beecher

Alan Krinik
Je
Jeremy J. Lin
David Perez
Th

Dedicated to Sri Gopal Mohanty

Probability of All Lattice Paths Confined to the
Following Strip Going from $i=1$ to $j=2$ in 15 Steps y

To find the probability of going from state $i=1$ to $j=2$ in 15 steps without leaving the strip, we use Kouachi's Theorem to get these eigenvalues:
$\omega_{1}=\frac{\sqrt{219}}{20}+\frac{1}{10} \quad \omega_{2}=\frac{\sqrt{79}}{20}+\frac{1}{10} \quad \omega_{3}=\frac{1}{10}-\frac{\sqrt{219}}{20} \quad \omega_{4}=\frac{1}{10}-\frac{\sqrt{79}}{20} \quad \omega_{5}=\frac{1}{10}$. We can calculate the spectral projectors:
$P^{15}(1,2)=A_{1}(1,2) \omega_{1}^{15}+A_{2}(1,2) \omega_{2}^{15}+A_{3}(1,2) \omega_{3}^{15}+A_{4}(1,2) \omega_{4}^{15}+A_{5}(1,2) \omega_{5}^{15}$

$$
\begin{aligned}
& =\frac{17 \sqrt{219}}{1314}\left(\frac{\sqrt{219}}{20}+\frac{1}{10}\right)^{15}-\frac{\sqrt{79}}{158}\left(\frac{\sqrt{79}}{20}+\frac{1}{10}\right)^{15} \\
& -\frac{17 \sqrt{219}}{1314}\left(\frac{1}{10}-\frac{\sqrt{219}}{20}\right)^{15}+\frac{\sqrt{79}}{158}\left(\frac{1}{10}-\frac{\sqrt{79}}{20}\right)^{15}+0\left(\frac{1}{10}\right)^{15} \approx 0.0142
\end{aligned}
$$

Theorem K: Special Case p ' $s=q$'s
Suppose a birth-death chain has the following state transition diagram and transition matrix as shown below:

for H a natural number, $0<p_{0}, p_{1}<1,0 \leq r<1$, and $r+p_{0}+p_{1}=1$.
$=\left[\begin{array}{ccccccc}r+p_{1} & p_{0} & 0 & \ldots & 0 & 0 & 0 \\ p_{0} & r & p_{1} & \ldots & 0 & 0 & 0 \\ 0 & p_{1} & r & \ldots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & r & p_{0} & 0 \\ 0 & 0 & 0 & \ldots & p_{0} & r & p_{H-1} \\ 0 & 0 & 0 & \ldots & 0 & p_{H-1} & r+p_{H}\end{array}\right] \quad p_{H}=\left\{\begin{array}{l}p_{0} \text { when } H \text { is even } \\ p_{1} \text { when } H \text { is odd }\end{array}\right.$

Then the eigenvalues of P have an explicit formula that depends on H. The Sylvester Eigenvalue Expansion for P^{k} has a closed formula for all natural numbers H.

Corollary: Finite Time Gambler's Ruin Problem
Assuming the conditions of the previous theorem and $r>\left|p_{1}-p_{0}\right|$, then the Duality Theorem provides explicitly known eigenvalues for any $H \in \mathbb{N}$.

where $I_{0}=r+p_{1}-p_{0}$ and $/_{1}=r+p_{0}-p_{1} ; l_{0}$ and I_{1} then alternate until the absorbing state at H. The Sylvester Eigenvalue Expansion for the transition matrix corresponding to the preceding diagram has a closed formula for all natural numbers H, see related problems in [2] and [5].
General Markov Chain with Alternating Entries, $m=2 n$

References

[1] Felsner, S.; Heldt, D.: Lattice path enumeration and Toeplitz matrices, Journal of Integer Sequences, 18, pp. 1-16, 2015.
[2] Hunter, B. et al.: Gambler's ruin with catastrophes and windfalls, Journal of Statistical Theory and Practice, no. 2, pp. 199-219, 2008.
[3] Kouachi, S.: Eigenvalues and Eigenvectors of Tridiagonal Matrices, Electronic Journal of Linear Algebra, Vol. 15, pp. 115-133, 2006 Eigenvalues and Eigenvectors of Some Tridiagonal Matrices with Non-Constant Diagonal Entries, Applicationes Mathematicae 35, Vol. 1, pp. 107-120, 2008
[4] Krinik et al.: Explicit Transient Probabilities of Various Markov Models, AMS Contemporary Mathematics Series volume 774 to appear in 2021.
[5] Lorek, P.: Generalized Gambler's Ruin Problem: Explicit Formulas via Siegemund Duality, Methodol Comput Appl Probab, 19, pp. 603-613, 2017

