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Coefficientwise total positivity

Equip R[x] with the partial coefficientwise order: P ∈ R[x] � 0 ⇐⇒ P
is a polynomial with nonnegative coefficients. A matrix M with entries
belonging to R[x] is coefficientwise totally positive if all of its minors
are polynomials with nonnegative coefficients. If all the minors of M of
size ≤ r are polynomials with nonnegative coefficients then M is
coefficientwise totally positive of order r .

A matrix defined by a general linear recurrence

Let T (a, c, d , e, f , g) = (T (n, k))n,k≥0 be the matrix with entries
belonging to Z[a, c, d , e, f , g ] defined by the recurrence

T (n, k) = [a(n − k) + c]T (n − 1, k − 1) + [dk + e]T (n − 1, k)

+ [f (n − 2) + g ]T (n − 2, k − 1)

for n ≥ 1 with initial condition T (0, k) = δ0,k.
• (n, k)-entry of T (0, 1, 1, 1, 0, 0) (the Stirling subset triangle) counts

partitions of [n + 1] = {1, 2, . . . , n + 1} into k + 1 nonempty
blocks.
• (n, k)-entry of T (1, 1, 0, 1, 0, 0) (reversed Stirling subset triangle)

counts partitions of [n + 1] into n − k + 1 nonempty blocks.
• (n, k)-entry of T (1, 1, 1, 1, 0, 0) (the Eulerian triangle) counts

permutations of [n + 1] with k descents (or excedances).

T (a, c, d , e, f , g) conjecture

The matrix T (a, c, d , e, f , g) is coefficientwise totally positive in the
indeterminates a, c, d , e, f , g .

T (a, c, 0, e, 0, 0) theorem

The matrix T (a, c, 0, e, 0, 0) is coefficientwise totally positive in the
indeterminates a, c, e.

Purely n− (or k−) dependent recurrences

Let T = (T (n, k))n,k≥0 be the matrix with entries defined by

T (n, k) = an,kT (n − 1, k − 1) + bn,kT (n − 1, k) + cn,kT (n − 2, k − 1)

for n ≥ 1 and T (0, k) = δ0,k where a = {an,k}n,k≥0, b = {bn,k}n,k≥0, and
c = {cn,k}n,k≥0 are sequences of indeterminates. Brenti showed that if
the indeterminates are purely n-dependent or purely k-dependent then T
is coefficientwise totally positive in the indeterminates a,b, and c.

n-dependent recurrence and walks from (0, 0) to (n, k)

Suppose a = {an}n≥0, b = {bn}n≥0,
and c = {cn}n≥0. Then T (n, k) is the
sum of weighted paths from (0, 0) to
(n, k), where:
• Each step from (n, k) to

(n + 1, k + 1) has weight an;
• Each step from (n, k) to

(n + 1, k) has weight bn;
• Each step from (n, k) to

(n + 2, k + 1) has weight cn.

The weight of a path is the product of
the weights of its edges.

Vertical invariance and a planar network

The (n, k)-entry of T can also be seen
as the sum over weighted paths from
(−n, 0) to (0, k) in the locally finite
acyclic digraph (LFAD) N where
• Each step from (−n, k) to

(−n + 1, k + 1) has weight an−1;
• Each step from (−n, k) to

(−n + 1, k) has weight bn−1;
• Each step from (−n, k) to

(−n + 2, k + 1) has weight cn−2.

Let U := {(−n, 0) : n ≥ 0} be the
sources of N and V := {(0, k) : k ≥
0} be the sinks. Then U and V are
fully compatible, and N is called a
planar network.

The Lindström-Gessel-Viennot (LGV) lemma and total
positivity

• Suppose D is a LFAD with sources U , sinks V , and edge weights
belonging to some commutative ring.
• Let PD := (P(un → vk))0≤n,k≤N be the matrix with (n, k)-entry given

by the sum over weighted paths from un to vk.
• LGV lemma states that the weighted sum over families of

nonintersecting paths from U to V is | det(PD)|.
• If D is fully compatible then PD is coefficientwise totally positive.

A matrix with entries dependent on both n and k

• Entries of T (a, c, 0, e, 0, 0) = (T (n, k))n,k≥0 satisfy a recurrence
dependent on both n and k :

T (n, k) = [a(n − k) + c]T (n − 1, k − 1) + eT (n − 1, k)

• The entries satisfy an alternative recurrence:

T (n, k) = cT (n − 1, k − 1) +
n−1∑
m=0

(
n − 1

m

)
ameT (n − 1−m, k − 1)

for n ≥ 1, where T (n, k) = 0 if n < 0 or k < 0.
• Each (n, k)-entry counts weighted partitions of [n + 1] into
n − k + 1 nonempty blocks.

A planar network for T (a, c, 0, e, 0, 0)

The matrix T (a, c, 0, e, 0, 0) is the path matrix corresponding to the

above planar network.

Open problem

• The T (a, c, d , e, f , g) conjecture is still wide open, we have tested it
to 12× 12 (this took 109 days of CPU time).
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