Lattice Path Conference
21-25 June 2021
Presentation times for this poster:
Tuesday $\quad 1: 30-2: 30 \mathrm{pm}, 6-7 \mathrm{pm}$

Restricted Dyck Paths

Rigoberto Flórez ${ }^{\text {a }}$ José L. Ramírez ${ }^{\text {b }}$ Fabio A. Velandia ${ }^{\text {b }}$ Diego Villamizar ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, The Citadel, Charleston, SC, U.S.A.
${ }^{\text {b }}$ Departamento de Matemáticas, Universidad Nacional de Colombia, Colombia
${ }^{\text {c }}$ Department of Mathematics, Tulane University, New Orleans, U.S.A.

 NACIONAL

Case $d<0$

Let $L_{e}(x, y)$ denote the generating function, where $e:=|d|$, defined by

$$
L_{e}(x, y):=\sum_{P \in \mathcal{D}_{d}} x^{\ell(P)} y^{\rho(P)}=\sum_{P \in \mathcal{D}_{-e}} x^{\ell(P)} y^{\rho(P)}
$$

Theorem

If $d \geq 0$, then $L_{e}(x, y)$ satisfies the functional equation

$$
L_{e}(x, y)=x y+x L_{e}(x, y)+x S_{e}(x, y) L_{e}(x, y),
$$

where $S_{e}(x)$ satisfies the algebraic equation

$$
\left(1-x S_{e}(x, y)\right)^{e}\left(y+(1-y) x S_{e}(x, y)\right)-S_{e}(x, y)\left(1-x S_{e}(x, y)\right)^{e+1}
$$

$$
-\frac{x^{e+2} y}{1-x} S_{e}(x, y)=0
$$

Theorem

If $1 \leq k \leq|d|+3$, then the k-th coefficient of the generating function $L_{e}(x, 1)$ coincides with the Catalan number C_{k}

The first few values for the sequence $r_{d}(n)$
$\left\{r_{-1}(n)\right\}_{n \geq 1}=\{1,2,5,14,41,123,375,1157,3603, \ldots\}$,
$\left\{r_{-2}(n)\right\}_{n \geq 1}=\{1,2,5,14,42,131,419,1365,4511 \ldots\}$,
$\left\{r_{-3}(n)\right\}_{n \geq 1}=\{1,2,5,14,42,132,428,1419,4785 \ldots\}$,
$\left\{r_{-4}(n)\right\}_{n \geq 1}=\{1,2,5,14,42,132,429,1429,4850, \ldots\}$

Theorem (Case $d=-1$)

The bivariate generating function $L_{d=-1}(x, y)$ is given by

$$
\begin{gathered}
\frac{(x-1) y\left(1-x(2+y)-\sqrt{\left(1-x-2 x y-2 x^{2} y+x^{2} y^{2}-x^{3} y^{2}\right) /(1-x)}\right)}{2\left(1-2 x+x^{2}-2 x y+x^{2} y\right)} \\
L_{d=-1}(x, 1)=\frac{-1+4 x-3 x^{2}+\sqrt{1-4 x+2 x^{2}+x^{4}}}{2\left(1-4 x+2 x^{2}\right)}
\end{gathered}
$$

Conclusions

- For $d \geq 0$, we obtain rational generating functions
- For $d<0$, we obtain algebraic (non-rational) generating functions
- Odd Fibonacci Numbers \rightarrow Catalan numbers.

