Lattice Path Conference
21-25 June 2021
Presentation times for this poster:
Tuesday $\quad 6-7 \mathrm{pm}$

Thursday
6-7 pm

Log-concavity in posets and random walks

Swee Hong Chana², Igor Pak ${ }^{\text {a }}$, Greta Panova ${ }^{\text {b }}$

UCLA

${ }^{\text {a }}$ University of California, Los Angeles, USA

${ }^{\text {b }}$ University of Southern California, USA
(3)USC

Simple random walk on \mathbb{Z}^{2}

- Step set: $\mathcal{S}=\{(0,1),(1,0),(0,-1),(-1,0)\} \subset \mathbb{Z}^{2}$
- n-step lattice path: sequence of steps $\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{S}^{n}$
- Probabilistic weights: $\left\{p_{0,1}, p_{1,0}, p_{0,-1}, p_{-1,0}\right\}, p_{s} \in[0,1]$ s.t. $p_{s} \in[0,1]$ s.t. $\sum_{s \in \mathcal{S}} p_{s}=1$.

Random walk constrained in a region Γ

- Vertical line α acts as:

Left-boundary $p_{-1,0}=0$.

- x-monotone curve η_{+}acts as: Upper-boundary $p_{0,1}=0$.
- x-monotone curve η_{-}acts as: Lower-boundary $p_{0,-1}=0$.
- Vertical line β acts as:

Absorbing boundary $p_{0,0}=1$.

Log-concavity for the hitting probability

Let $P(k)$ be probability that the final altitude of the random walk is k.

$$
\text { Then } \quad P(k)^{2} \geq P(k-1) P(k+1) \quad \text { for every integer } k \text {. }
$$

The injection that proves the log-concavity theorem

Paths start at: A and B, with A below B.
Paths end at: $C, C^{\prime}, D, D^{\prime}$, with C highest and D lowest
Condition: $\quad|A B| \leq\left|C^{\prime} D\right|$ and $\left|C C^{\prime}\right|=\left|D D^{\prime}\right|$.
Input: \quad Path $\xi_{A C}$ from A to C, and path $\xi_{B D}$ from B to D.
Output: \quad Path $\xi_{A C^{\prime}}$ from A to C^{\prime}, and path $\xi_{B D^{\prime}}$ from B to D^{\prime}.

How the injection works

1. χ is the path η_{-}shifted up by $\overrightarrow{D C^{\prime}}$. E is the last point in $\xi_{A C}$ that intersects χ.
2. $\zeta_{B^{\prime} C^{\prime}}$ is the path $\xi_{B C}$ shifted up by $\overrightarrow{D C^{\prime}}$.
F is the last point in $\zeta_{B^{\prime} C^{\prime}}$ that intersects η_{+}.
3. G is lexicographically smallest point in the intersection of $\xi_{E C}$ and $\zeta_{F C^{\prime}}$.
4. To construct $\xi_{A C^{\prime}}$, first follow $\xi_{A G}$, then follow $\zeta_{G C^{\prime}}$.
5. $\mu_{G^{\prime} D^{\prime}}$ is the path $\zeta_{G C^{\prime}}$ shifted down by $\overrightarrow{C^{\prime} D}$.

To construct $\xi_{B D^{\prime}}$, first follow $\xi_{B G^{\prime}}$, then follow $\mu_{G^{\prime} D^{\prime}}$.

Partially ordered sets of width 2

- Ground set X is union of $C_{1}=\left\{\alpha_{1}, \ldots, \alpha_{a}\right\}$ and $C_{2}=\left\{\beta_{1}, \ldots, \beta_{b}\right\}$.
- Partial order \prec satisfies $\alpha_{1} \prec \cdots \prec \alpha_{a}$ and $\beta_{1} \prec \cdots \prec \beta_{b}$.
(The partial order \prec can have more relations.)
- Linear extension is order preserving function from X to $[a+b]$.

Linear extensions are in bijection with lattice paths

- Linear extension L corresponds to lattice path v_{1}, \ldots, v_{a+b} from $(0,0)$ to (a, b), where

$$
v_{i}=(1,0) \text { if } L^{-1}(i) \in C_{1}, \quad \text { and } \quad v_{i}=(0,1) \text { if } L^{-1}(i) \in C_{2}
$$

- The boundaries η_{+}and η_{-}are lattice paths corresponding to C_{1}-maximal and C_{1}-minimal linear extensions, respectively.

Figure: Left: Hasse diagram of a width 2 poset and a linear extension (red labels). Right: The associated lattice path (in red) with boundaries η_{+}, η_{-}(in green).

Application: Stanley inequality for width 2 posets

Fix $x \in X$. Let $N(k)$ counts linear extensions L with $L(x)=k$

$$
\text { Then } \quad N(k)^{2} \geq N(k-1) N(k+1) \quad \text { for every integer } k .
$$

Application: Kahn-Saks inequality for width 2 posets

Fix $x, y \in X$. Let $F(k)$ counts linear extensions L with $L(y)-(x)=k$ Then $\quad F(k)^{2} \geq F(k-1) F(k+1) \quad$ for every integer k.

Other results

- Equality conditions for all these inequalities are attained.
- Extensions to multivariate versions of Stanley, Kahn-Saks inequalities.
- Methods can be generalized to prove cross-product inequalities and other correlation inequalities for posets of width 2.

References

[1] S. H. Chan, I. Pak, G. Panova, Extensions of the Kahn-Saks inequality for posets of width two, arXiv:2106.07133
[2] S. H. Chan, I. Pak, G. Panova, Log-concavity in planar random walks, arXiv:2106.10640.

