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Simple random walk on Z2

• Step set: S = {(0, 1), (1, 0), (0,−1), (−1, 0)} ⊂ Z2

• n-step lattice path: sequence of steps (v1, . . . , vn) ∈ Sn
• Probabilistic weights: {p0,1, p1,0, p0,−1, p−1,0}, ps ∈ [0, 1] s.t.
ps ∈ [0, 1] s.t.

∑
s∈S ps = 1.

Random walk constrained in a region Γ

• Vertical line α acts as:
Left-boundary p−1,0 = 0.

• x-monotone curve η+ acts as:
Upper-boundary p0,1 = 0.

• x-monotone curve η− acts as:
Lower-boundary p0,−1 = 0.

• Vertical line β acts as:
Absorbing boundary p0,0 = 1.
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Log-concavity for the hitting probability

Let P(k) be probability that the final altitude of the random walk is k .

Then P(k)2 ≥ P(k − 1)P(k + 1) for every integer k.

The injection that proves the log-concavity theorem
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Paths start at: A and B , with A below B .

Paths end at: C , C ′, D, D ′, with C highest and D lowest.

Condition: |AB | ≤ |C ′D| and |CC ′| = |DD ′|.
Input: Path ξAC from A to C , and path ξBD from B to D.

Output: Path ξAC ′ from A to C ′, and path ξBD ′ from B to D ′.

How the injection works
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1. χ is the path η− shifted up by
−−→
DC ′.

E is the last point in ξAC that intersects χ.

2. ζB ′C ′ is the path ξBC shifted up by
−−→
DC ′.

F is the last point in ζB ′C ′ that intersects η+.

3. G is lexicographically smallest point in the intersection of ξEC and ζFC ′.

4. To construct ξAC ′, first follow ξAG , then follow ζGC ′.

5. µG ′D ′ is the path ζGC ′ shifted down by
−−→
C ′D.

To construct ξBD ′, first follow ξBG ′, then follow µG ′D ′.

Partially ordered sets of width 2

• Ground set X is union of C1 = {α1, . . . , αa} and C2 = {β1, . . . , βb}.
• Partial order ≺ satisfies α1 ≺ · · · ≺ αa and β1 ≺ · · · ≺ βb.

(The partial order ≺ can have more relations.)

• Linear extension is order preserving function from X to [a + b].

Linear extensions are in bijection with lattice paths

• Linear extension L corresponds to lattice path v1, . . . , va+b from
(0, 0) to (a, b), where

vi = (1, 0) if L−1(i) ∈ C1, and vi = (0, 1) if L−1(i) ∈ C2.

• The boundaries η+ and η− are lattice paths corresponding to
C1-maximal and C1-minimal linear extensions, respectively.
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Figure: Left: Hasse diagram of a width 2 poset and a linear extension (red labels). Right:
The associated lattice path (in red) with boundaries η+, η− (in green).

Application: Stanley inequality for width 2 posets

Fix x ∈ X . Let N(k) counts linear extensions L with L(x) = k .

Then N(k)2 ≥ N(k − 1)N(k + 1) for every integer k.

Application: Kahn–Saks inequality for width 2 posets

Fix x , y ∈ X . Let F (k) counts linear extensions L with L(y)− (x) = k .

Then F (k)2 ≥ F (k − 1) F (k + 1) for every integer k.

Other results

• Equality conditions for all these inequalities are attained.
• Extensions to multivariate versions of Stanley, Kahn–Saks inequalities.
• Methods can be generalized to prove cross-product inequalities and

other correlation inequalities for posets of width 2.
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