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Simple random walk on Z? How the injection works Linear extensions are in bijection with lattice paths

e Step set: S={(0,1),(1,0),(0,-1),(—1,0)} C Z° - e Linear extension L corresponds to lattice path v, ..., v,y from
e n-step lattice path: sequence of steps (vi,...,v,) € S” (2) /1_]_+\CFC' N\I C (0,0) to (a, b), Wherel 1

e Probabilistic weights: {po.1, pro, Po_1, p-1.0}, ps € [0,1] sit. By~ \ ¢ vi=(1,0) if L7()e G, and v;=(0,1) if L7(i) € C.

e The boundaries 1, and 7_ are lattice paths corresponding to
Ci-maximal and Ci-minimal linear extensions, respectively.

ps €10,1] sit. > ops=1.

I
Je
ov
>
~
@‘
S 9

oy

: : : r M- N
Random walk constrained in a region I 12 a7 b7 14
11 Q69 B6 13
e Vertical line o/ acts as: 9 as §5 10
8 Q4 4 7

Left-boundary p_1,=0. (4)
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® x-monotone curve 7, acts as: 3 Q2 ?52 4
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Upper-boundary pg; = 0.

Figure: Left: Hasse diagram of a width 2 poset and a linear extension (red labels). Right:

® X-monotone curve 7)_ acts as: The associated lattice path (in red) with boundaries 77, ,7_ (in green).

Lower-boundary py_; = 0.

e Vertical line 3 acts as:

Absorbing boundary pyo = 1. (5) C
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Application: Stanley inequality for width 2 posets
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Fix x € X. Let N(k) counts linear extensions L with L(x) = k.
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Log-concavity for the hitting probability G/ San Then  N(k)> > N(k—1)N(k+1)  for every integer k.
I’
Let P(k) be probability that the final altitude of the random walk is k. -
2 £ :
Then P(k)" = P(k—1)P(k+1) or every integer k. 1.  is the path n_ shifted up by ﬁ Application: Kahn—Saks inequality for width 2 posets

£ is the last point in {4¢ that intersects . Fix x,y € X. Let F(k) counts linear extensions L with L(y) — (x) = k.

The injection that proves the log-concavity theorem 2. Cpcr is the path £pc shifted up by DC'. Then  F(k)* > F(k—1)F(k+1) for every integer k.

F is the last point in (g/¢ that intersects 7,

3. G is lexicographically smallest point in the intersection of ¢ and (g

4. To construct &4¢, first follow &4¢, then follow (. Other results

—
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5. pep is the path (ger shifted down by C'D. e Equality conditions for all these inequalities are attained.

To construct £gp, first follow &ggr, then follow pigipr. e Extensions to multivariate versions of Stanley, Kahn—Saks inequalities.

e Methods can be generalized to prove cross-product inequalities and
other correlation inequalities for posets of width 2.

Partially ordered sets of width 2

Paths start at: A and B, with A below B. e Ground set X is union of G = {a,...,a,} and G = {B4, ..., Bs}.

Paths end at: C, C', D, D', with C highest and D lowest. o Partial order < satisfies a; <--- <, and By < --- < B,

Condition: AB| < |C'D| and |CC'| = |DD'|. (The partial order < can have more relations.) [1] S. H. Chan, I. Pak, G. Panova, Extensions of the Kahn—Saks inequality
Input: Path &4¢ from A to C, and path &gp from B to D. e Linear extension is order preserving function from X to [a + b]. for posets of width two, arXiv:2106.07133.

Output: Path {acr from A to €', and path {gpr from B to D', 2] S. H. Chan, I|. Pak, G. Panova, Log-concavity in planar random walks,

arXiv:2106.10640.


https://lipn.fr/~cb/LPC/2021/
https://arxiv.org/abs/2106.07133
https://arxiv.org/abs/2106.10640

