Lattice Path Conference 21-25 June 2021

Presentation times for this poster:

Tuesday Thursday 6-7 pm 6-7 pm

Simple random walk on \mathbb{Z}^2

- Step set: $S = \{(0,1), (1,0), (0,-1), (-1,0)\} \subset \mathbb{Z}^2$
- *n*-step lattice path: sequence of steps $(v_1, \ldots, v_n) \in S^n$ • Probabilistic weights: $\{p_{0,1}, p_{1,0}, p_{0,-1}, p_{-1,0}\}$, $p_s \in [0, 1]$ s.t. $p_s \in [0,1]$ s.t. $\sum_{s \in \mathcal{S}} p_s = 1$.

Log-concavity for the hitting probability

Let P(k) be probability that the final altitude of the random walk is k. $P(k)^2 \geq P(k-1)P(k+1)$ for every integer k. Then

Paths end at: **Condition:** Input: **Output**:

Paths start at: A and B, with A below B. C, C', D, D', with C highest and D lowest. $|AB| \le |C'D|$ and |CC'| = |DD'|. Path ξ_{AC} from A to C, and path ξ_{BD} from B to D. Path $\xi_{AC'}$ from A to C', and path $\xi_{BD'}$ from B to D'.

Log-concavity in posets and random walks

Swee Hong Chan^a, Igor Pak^a, Greta Panova^b ^aUniversity of California, Los Angeles, USA ^bUniversity of Southern California, USA

How the injection works

- 1. χ is the path η_{-} shifted up by $D\dot{C'}$. *E* is the last point in ξ_{AC} that intersects χ .
- 2. $\zeta_{B'C'}$ is the path ξ_{BC} shifted up by DC'. F is the last point in $\zeta_{B'C'}$ that intersects η_+ .
- G is lexicographically smallest point in the intersection of ξ_{EC} and $\zeta_{FC'}$.
- 4. To construct $\xi_{AC'}$, first follow ξ_{AG} , then follow $\zeta_{GC'}$.
- 5. $\mu_{G'D'}$ is the path $\zeta_{GC'}$ shifted down by $\overrightarrow{C'D}$. To construct $\xi_{BD'}$, first follow $\xi_{BG'}$, then follow $\mu_{G'D'}$.

Partially ordered sets of width 2

- **Ground set** X is union of $C_1 = \{\alpha_1, \ldots, \alpha_a\}$ and $C_2 = \{\beta_1, \ldots, \beta_b\}$.
- **Partial order** \prec satisfies $\alpha_1 \prec \cdots \prec \alpha_a$ and $\beta_1 \prec \cdots \prec \beta_b$. (The partial order \prec can have more relations.)
- Linear extension is order preserving function from X to [a + b].

Linear extensions are in bijection with lattice paths

(0, 0) to (a, b), where

$$v_i=(1,0)$$
 if $L^{-1}(i)\in$

• The **boundaries** η_+ and η_- are lattice paths corresponding to C_1 -maximal and C_1 -minimal linear extensions, respectively.

Figure: Left: Hasse diagram of a width 2 poset and a linear extension (red labels). Right: The associated lattice path (in red) with boundaries η_+ , η_- (in green).

Application: Stanley inequality for width 2 posets

Fix $x \in X$. Let N(k) counts linear extensions L with L(x) = k. Then $N(k)^2 \ge N(k-1)N(k+1)$ for every integer k.

Application: Kahn–Saks inequality for width 2 posets

 $F(k)^2 \geq F(k-1)F(k+1)$ Then

Other results

- Extensions to multivariate versions of Stanley, Kahn–Saks inequalities. • Methods can be generalized to prove cross-product inequalities and other correlation inequalities for posets of width 2.

References

- for posets of width two, arXiv:2106.07133.
- arXiv:2106.10640.

• Linear extension *L* corresponds to lattice path v_1, \ldots, v_{a+b} from

 $\in C_1$, and $v_i = (0,1)$ if $L^{-1}(i) \in C_2$.

Fix $x, y \in X$. Let F(k) counts linear extensions L with L(y) - (x) = k. for every integer k.

• Equality conditions for all these inequalities are attained.

[1] S. H. Chan, I. Pak, G. Panova, *Extensions of the Kahn–Saks inequality*

[2] S. H. Chan, I. Pak, G. Panova, *Log-concavity in planar random walks*,