Lattice Path Conference 21-25 June 2021

Presentation times for this poster:

Tuesday Thursday 1:30-2:30 pm 6-7 pm

Two-step rules on the square lattice

A two-step rule \mathcal{R} is a mapping

 $\{\text{east, north, west, south}\}^2 \mapsto \{0, 1\}$ where $\mathcal{R}(i,j) = 1$ if step j can follow step i, and $\mathcal{R}(i,j) = 0$ if not. Represent with a **transfer matrix** T, eg.

$$T = \begin{pmatrix} 1 \ 1 \ 0 \ 0 \\ 0 \ 1 \ 1 \\ 0 \\ 0 \ 1 \ 1 \\ 1 \\ 0 \ 0 \ 1 \end{pmatrix}$$

or diagrammatically

A walk $w = (v_1, v_2, \dots, v_m) \in \{E, N, W, S\}^*$ on the edges of the square lattice **obeys** \mathcal{R} if $\mathcal{R}(v_i, v_{i+1}) = 1$ for $i = 1, \ldots, m-1$.

Non-trivial rules and symmetries

There are $2^{16} = 65536$ different rules but many are trivial or isomorphic to another.

- Want rules to be **connected** and (for simplicity) **aperiodic**: there must exist $k \ge 1$ such that $(T^k)_{ij} \ge 1$ for all i, j. There are **25575** such rules.
- Full plane: any permutation of the rows/columns of T gives an isomorphic rule. There are **1159** non-isomorphic aperiodic rules.
- **Upper half plane:** only allow $x \leftrightarrow -x$ symmetry. Also want rules whose walks can step arbitrarily far north (so not stuck near boundary) and arbitrarily far south (so half plane restriction is not redundant). There are **9722** such rules.
- Quarter plane: only allow $x \leftrightarrow y$ symmetry. Need rules whose walks do not get stuck to the boundaries and for which the quarter plane restriction is not redundant. There are **6909** such rules.

For the initial step, allow any direction (which stays in the half or quarter plane as required).

Walks obeying two-step rules on the square lattice

Nicholas Beaton

GFs and functional equations

 $F_{\theta}(t; x, y) \equiv F_{\theta}$ is the GF for walks in the **full plane** ending with step type θ , counted by length and endpoint coordinate. Then $F_{ heta} = A_{ heta} + B_{ heta}F_{ heta}$

where

- A_{θ} counts walks with no θ steps **except for the last step**
- B_{θ} counts the subset of those which can follow a θ step
- A_{θ} and B_{θ} are rational, easily computable from T.
- In the **upper half plane**,

$$H_{\theta} = C_{\theta} + B_{\theta}H_{\theta} - D_{\theta}H^*$$
(2)

where

- C_{θ} counts the subset of A_{θ} walks (ie. still full plane) which **do not** start south
- $D_{\theta} = A_{\theta} C_{\theta}$ (walks that start south)
- H^* counts walks (in the upper half plane) which (a) end on the **boundary** and (b) end with a step that can **precede a south step**.

 C_{θ} and D_{θ} rational, easily computable.

In the **quarter plane**,

 $Q_{ heta} = \mathit{G}_{ heta} + \mathit{B}_{ heta} \mathit{Q}_{ heta} - \mathit{D}_{ heta} \mathit{Q}^{\downarrow}$

where

- G_{θ} counts the subset of A_{θ} walks which start east or north
- $J_{\theta} = A_{\theta} G_{\theta} D_{\theta}$ (walks that start west)
- Q^{\downarrow} counts quarter plane walks which (a) end on the x-axis and (b) end with a step that can **precede a south step**. Similarly Q^{\leftarrow} for walks ending on y-axis.
- G_{θ} and J_{θ} also rational and easy to compute.

Solutions and symmetry groups

- F_{θ} rational (of course)
- H_{θ} algebraic: kernel method (there is always a power series root y^* of $(1 - B_{\theta})$
- Q_{θ} much more complicated
- Is there a **symmetry group** of (3), like regular quarter plane lattice paths?
- Yes! Look for values X and Y satisfying

(4) $B_{\theta}(t; x, y) = B_{\theta}(t; X, y) = B_{\theta}(t; x, Y)$

- Always exactly one non-trivial (rational) solution for both X and Y: write $X = \Psi_{\theta}$ and $Y = \Phi_{\theta}$
- The operations $x \mapsto \Psi_{\theta}$ and $y \mapsto \Phi_{\theta}$ are involutions, generating a dihedral group
- The actual group depends on step direction θ , but the **order of the group** does not (conjecturally)

School of Mathematics and Statistics, The University of Melbourne, Australia

(1)

$$-J_{\theta}Q^{\leftarrow}$$
 (3)

Orbit sums and computational results

Orders of the groups:

- 4:1084
- 6:443
- 8:148
- each Q_{θ} .
- groups
- What else happens?
 - says not D-finite
 - cannot get half orbit sum to work
 - Infinite group but D-finite GF (!)
 - Infinite group but algebraic GF (!!)

Computational results (500 terms each), using Ore Algebra package for Sage [2]:

	alg (lower bound)		Df (?)		nonDf (upper bound)	
D_2			659		425	
D_3	40		66		337	
D_4	5		59		82	
D_5	6		4		56	
D_6					6	
D_{∞}	22		30		5112	
	D_2 D_3 D_4 D_5 D_6	alg (low D_2 D_3 D_3 D_4 5 D_5 6	alg (lower bound) D_2 - D_3 40 + D_4 5 + D_5 6 - D_5 6 -	alg (lower bound)Df D_2 $-$ 659 D_3 40 $+$ 66 D_4 5 $+$ 59 D_5 6 $-$ 4 D_6 $ -$	alg (lower bound)Df (?) D_2 $ 659$ $ D_3$ 40 $ 66$ 1 D_4 5 $ 59$ 1 D_5 6 $ 4$ $ D_6$ $ -$	alg (lower bound)Df (?)nonDf (up D_2 $ 659$ $ 425$ D_3 40 $+$ 66 $+$ 337 D_4 5 $ 59$ $+$ 82 D_5 6 $ 4$ $ 56$ D_6 $ 6$

Some non-D-finite will really be D-finite and some D-finite will really be algebraic.

References

- github.com/mkauers/ore_algebra (2015+).

$$egin{array}{cccc} 10 &: \ 66 \ 12 &: \ 6 \ \infty &: \ 516^4 \end{array}$$

MELBOURNE

• For the **spiral walks** (illustrated at left) the group is D_2 (order 4), and the full orbit sum method works, giving a D-finite solution to

• This has also been observed to work for some other rules with D_2

• Finite group but cannot cancel all terms on one side of orbit sum – series analysis

• Finite group, orbit sum completely vanishes – series analysis says algebraic, but

[1] Beaton, N. R.: Walks obeying two-step rules on the square lattice: full, half and quarter planes. Submitted. arXiv:2010.06955 (2020).

[2] Kauers, M.; Jaroschek, M.; Johansson, F.: Ore polynomials in Sage.