CIRM - Lattice Paths, Combinatorics and Interactions 21-25 June 2021
Presentation times for this poster:
Tuesday $\quad 6-7 \mathrm{pm}$
Thursday $\quad 6-7 \mathrm{pm}$

From Lattice Paths to
 Standard oung iableaux

Shaun Aul

Charles Kicey

VALDOSTA STATE
Valdosta State University, Valdosta, Georgia, USA

Standard Young Tableaux

- Partition: $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{r} \geq 0$. Represent by Young diagrams
- Standard Young tableau of shape λ : Each row and column strictly increasing, using $\{1,2, \ldots, n\}$, where $n=\sum_{i} \lambda_{i}$

$$
\mathbf{E x}: \lambda=(5,4,1)
$$

- $f^{\lambda}=\#$ of distinct standard Young tableaux of shape λ

Lattice Path Interpretation

- Lattice: $\Lambda^{r}=\{\lambda$ up to height $r\} \subseteq \mathbb{N}_{0}^{r}$
- Paths in Λ^{r} :

1. Start at origin
2. Move set: $\left\{\delta_{i}=(0, \ldots, 1, \ldots, 0) \mid 1 \leq i \leq r\right\}$

- $f^{\lambda}=\#$ of paths ending at λ.

Example: Lattice \wedge^{3}, with $\lambda_{i} \leq 3$

Vertex Numbers and Admissible States

- Vertex Numbers: $v_{n}(\mathbf{x})=\#$ paths ending at $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)$ of length n.
- Extend domain of v_{n} to all of \mathbb{N}_{0}^{r} by Σ-admissibility
- A Σ-admissible state v must satisfy

$$
v(\sigma \mathbf{x})=(-1)^{|\sigma|} v(\mathbf{x})
$$

for all $\sigma \in \Sigma_{r}$, where Σ_{r} is the symmetric group on r letters, and $|\sigma|$ is the signature of σ.

- Properties of \sum-admissibility

1. If $\mathbf{y}=\sigma \mathbf{x}$, where σ is a transposition, then $v(\mathbf{x})+v(\mathbf{y})=0$
2. $v(\mathbf{x})=0$ if \mathbf{x} has any repeated entries.

- Note, our definition of v_{n} corresponds to f^{λ} via

$$
f^{\lambda}=v_{n}(\lambda+\mathbf{r})
$$

where $n=\sum_{i} \lambda_{i}$, and $\mathbf{r}=(r-1, r-2, \ldots, 0)$

Initial State

- Set $v_{0}(\mathbf{r})=1=f^{(0, \ldots, 0)}$
- Set $v_{0}(\mathbf{x})=0$ for all $\mathbf{x} \neq \mathbf{r}$ such that $x_{1}>x_{2}>\cdots>x_{r}$
- Extend v_{0} to all of \mathbb{N}_{0} by Σ-admissibility
- Generating function (OGF) for v_{0} :

$$
V_{0}(\mathbf{x})=\sum_{\sigma \in \Sigma_{r}}(-1)^{|\sigma|} \mathbf{x}^{\sigma \mathbf{r}}=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Example: v_{0} for $r=3$

Transitions

- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, let

$$
R_{i}(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{r}\right)
$$

- With the convention that $f^{\lambda}=0$ if λ does not correspond to a valid partition,

$$
f^{\lambda}=\sum_{i=1}^{r} f^{R_{i}(\lambda)}
$$

- Vertex numbers v_{n} are shifted by \mathbf{r} with respect to λ, but an analogous formula applies. In terms of OGF:

$$
V_{n+1}=T V_{n}
$$

where $T=x_{1}+x_{2}+\cdots+x_{r}$.

- Note, T preserves \sum-admissibility.
- $\Longrightarrow V_{n}=T^{n} V_{0}$ is an OGF for v_{n}
- Shift back by dividing by \mathbf{x}^{r}

Main Theorem

With T, V_{0} as above

$$
f^{\lambda}=\left[\frac{T^{n} V_{0}}{\mathbf{x}^{\mathbf{r}}}\right]_{\lambda}
$$

where $[P(\mathbf{x})]_{\lambda}$ is the coefficient of \mathbf{x}^{λ} in P.

Example: $r=3, n=4$

$T^{4} V_{0} /\left(x_{1}^{2} x_{2}\right)=x_{1}^{4}+3 x_{1}^{3} x_{2}+2 x_{1}^{2} x_{2}^{2}+3 x_{1}^{2} x_{2} x_{3}+\left(\right.$ other terms $\left.{ }^{*}\right)$

$$
=f^{(4,0,0)} \mathbf{x}^{(4,0,0)}+f^{(3,1,0)} \mathbf{x}^{(3,1,0)}+f^{(2,2,0)} \mathbf{x}^{(2,2,0)}+f^{(2,1,1)} \mathbf{x}^{(2,1,1)}+\cdots
$$

*Exponents of the other terms do not correspond to a valid partition λ

References

[1] Ault, S.; Kicey, C. Counting Lattice Paths Using Fourier Methods. Birkhäuser/Springer (2019).

This work was inspired by the recent talk by Robert Donley, Vandermonde convolution for ranked posets, May 25, 2021 - CANT Conference

