# **CIRM** - Lattice Paths, **Combinatorics and Interactions** 21-25 June 2021

Presentation times for this poster:

Tuesday Thursday

6-7 pm 6-7 pm



Mondrian - Tableau No. IV

### **Standard Young Tableaux**

- **Partition**:  $\lambda = (\lambda_1, \ldots, \lambda_r)$ , where  $\lambda_1 \ge \cdots \ge \lambda_r \ge 0$ . Represent by Young diagrams
- Standard Young tableau of shape  $\lambda$ : Each row and column strictly increasing, using  $\{1, 2, ..., n\}$ , where  $n = \sum_i \lambda_i$

**Ex:**  $\lambda = (5, 4, 1)$ 

•  $f^{\lambda} = \#$  of distinct standard Young tableaux of shape  $\lambda$ 

#### Lattice Path Interpretation

- Lattice:  $\Lambda^r = \{\lambda \text{ up to height } r\} \subseteq \mathbb{N}_0^r$
- Paths in  $\Lambda^r$ : 1. Start at origin 2. Move set:  $\{\delta_i = (0, \ldots, 1, \ldots, 0) \mid 1 \le i \le r\}$
- $f^{\lambda} = \#$  of paths ending at  $\lambda$ .

# **Example:** Lattice $\Lambda^3$ , with $\lambda_i \leq 3$



# From Lattice Paths to Standard Young Tableaux

Shaun Ault Charles Kicey

Valdosta State University, Valdosta, Georgia, USA

# **Vertex Numbers and Admissible States**

- Vertex Numbers:  $v_n(\mathbf{x}) = \#$  paths ending at  $\mathbf{x} = (x_1, \ldots, x_r)$  of length *n*.
- Extend domain of  $v_n$  to all of  $\mathbb{N}_0^r$  by  $\Sigma$ -admissibility.
- A  $\Sigma$ -admissible state v must satisfy:

 $\mathbf{v}(\sigma \mathbf{x}) = (-1)^{|\sigma|} \mathbf{v}(\mathbf{x}),$ for all  $\sigma \in \Sigma_r$ , where  $\Sigma_r$  is the **symmetric group** on *r* letters, and  $|\sigma|$  is the **signature** of  $\sigma$ .

- Properties of  $\Sigma$ -admissibility
- 1. If  $\mathbf{y} = \sigma \mathbf{x}$ , where  $\sigma$  is a transposition, then  $v(\mathbf{x}) + v(\mathbf{y}) = 0$ . 2.  $v(\mathbf{x}) = 0$  if **x** has any repeated entries. • **Note**, our definition of  $v_n$  corresponds to  $f^{\lambda}$  via
- $f^{\lambda} = v_n(\lambda + \mathbf{r}),$

where  $n = \sum_{i} \lambda_{i}$ , and  $\mathbf{r} = (r - 1, r - 2, ..., 0)$ .

# **Initial State**

• Set 
$$v_0(\mathbf{r}) = 1 = f^{(0,...,0)}$$

- Set  $v_0(\mathbf{x}) = 0$  for all  $\mathbf{x} \neq \mathbf{r}$  such that  $x_1 > x_2 > \cdots > x_r$
- Extend  $v_0$  to all of  $\mathbb{N}_0$  by  $\Sigma$ -admissibility
- **Generating function (OGF)** for  $v_0$ :

$$\mathcal{N}_0(\mathbf{x}) = \sum_{\sigma \in \Sigma_r} (-1)^{|\sigma|} \mathbf{x}^{\sigma|\sigma|}$$

# **Example:** $v_0$ for r = 3





$$= \prod_{i < j} (x_i - x_j)$$

#### Transitions

- Given a partition  $\lambda = (\lambda_1, \lambda_2)$  $R_i(\lambda) = (\lambda)$
- With the convention that *f* partition,

- formula applies. In terms of OGF:
- where  $T = x_1 + x_2 + \cdots + x_r$ .
- Note, T preserves  $\Sigma$ -admissibility.
- $\implies$   $V_n = T^n V_0$  is an OGF for  $v_n$ .
- Shift back by dividing by x<sup>r</sup>

# Main Theorem

With T,  $V_0$  as above,

 $f^{\lambda}$ 

where  $[P(\mathbf{x})]_{\lambda}$  is the coefficient

# **Example:** r = 3, n = 4

$$T^{4}V_{0}/(x_{1}^{2}x_{2}) = x_{1}^{4} + 3x_{1}^{3}x_{2} + 2x_{1}^{2}x_{2}^{2} + 3x_{1}^{2}x_{2}x_{3} + (\text{other terms}^{*})$$
  
=  $f^{(4,0,0)}\mathbf{x}^{(4,0,0)} + f^{(3,1,0)}\mathbf{x}^{(3,1,0)} + f^{(2,2,0)}\mathbf{x}^{(2,2,0)} + f^{(2,1,1)}\mathbf{x}^{(2,1,1)} + \cdots$ 

\*Exponents of the other terms do not correspond to a valid partition  $\lambda$ .

#### References

Birkhäuser/Springer (2019).

This work was inspired by the recent talk by Robert Donley, Vandermonde convolution for ranked posets, May 25, 2021 - CANT Conference



$$(\lambda_1, \ldots, \lambda_r)$$
, let  
 $\lambda_1, \ldots, \lambda_i - 1, \ldots, \lambda_r)$   
 $\lambda_{i}^{\lambda_i} = 0$  if  $\lambda$  does not correspond to a valid

$$\lambda = \sum_{i=1}^{r} f^{R_i(\lambda)}$$

I - I• Vertex numbers  $v_n$  are *shifted* by **r** with respect to  $\lambda$ , but an analogous  $V_{n+1} = TV_n,$ 

$$= \begin{bmatrix} T^n V_0 \\ \mathbf{x}^n \end{bmatrix}_{\lambda}$$
  
to f  $\mathbf{x}^{\lambda}$  in *P*.

# [1] Ault, S.; Kicey, C. Counting Lattice Paths Using Fourier Methods.