Gradient Descent & Neural Networks A Categorical Approach

Following Fong, Spivak, Tuyéras, Capucci, Gavranović, Hedges, Rischel ...

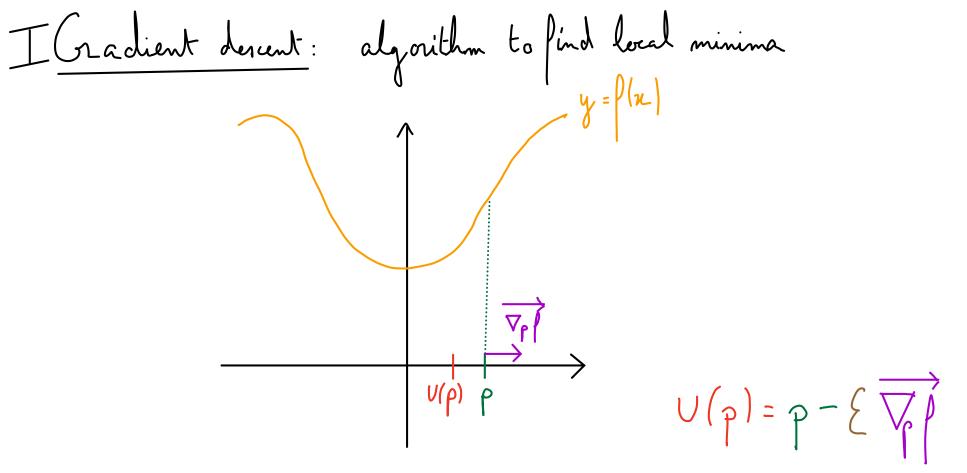
I: Gradient Descent

II: Categorical model: Para, Optic,...

III: Noive Neural Networks

IV: Categorical Neural Networks

I: Training Your Network



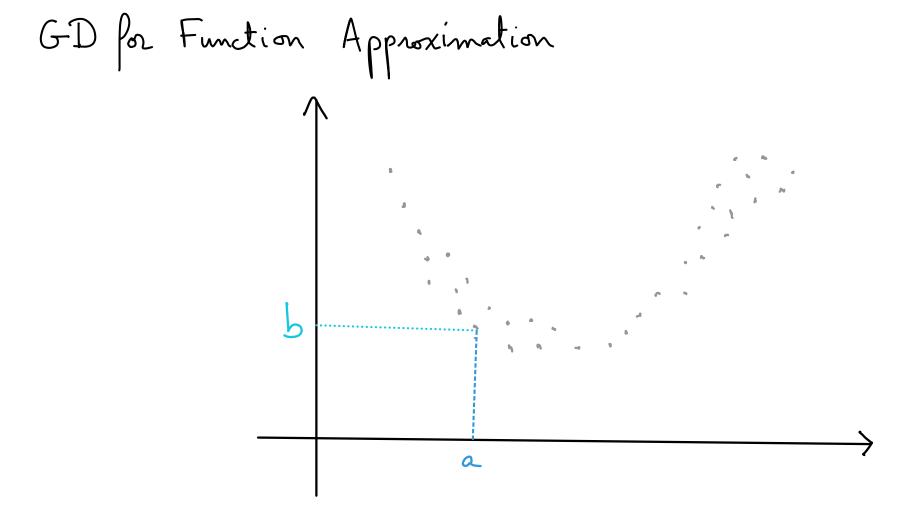
: total error/cost function

P: "First guess" parameter

Vpp: gradient at p.

E: Step/learning rate

U: update function.



(a, b): sample deta

$$e(x,y) = \frac{1}{2}(x-y)^2$$

Total error:
$$E(p,a,b) = \frac{1}{2}(I(p,a)-b)^2$$

 $3|Astep: E>0.$

Get:

1) An update function:

$$U(p,a,b) = p - E \nabla p E(p,a,b)$$

2) A request function:

$$\mathcal{L}\left(p,a,b\right) = \left(\frac{\partial e}{\partial x}\right)^{-1} \left(\nabla_{a} E\left(p,a,b\right)\right)$$

Instead of a map $\mathbb{R} \longrightarrow \mathbb{R}$, we have:

$$T: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$U: \mathbb{R}^{3} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}^{3}$$

$$u: \mathbb{R}^{3} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

II: Categorical Model

<u>Definition</u>: Let C be a category with products and terminel T.

The category Para (4) has:

- · Objects: same as C
- Morphisms A Pf>B:
 pains (P ← ob-(e), P×A f>B)

identities: $A \xrightarrow{T, 1_A} B$

Composition:

$$A \xrightarrow{P, l} B \xrightarrow{Q, q} C$$

$$Q \times P \times A \xrightarrow{Q \times l} Q \times B \xrightarrow{Q \times B} C$$

Définition: Let C'be a catégory with... The category Optic(2) has: · Objects: pairs $\binom{A}{A'} \in ob(\ell)^2$ • Morphisms $\begin{pmatrix} A \\ A' \end{pmatrix} \xrightarrow{f} \begin{pmatrix} B \\ B' \end{pmatrix}$ are classes of triples $(M \in \mathcal{C}(\mathcal{C}), f: A \longrightarrow \mathcal{B} \times M, g: \mathcal{B}' \times M \longrightarrow A')$ $A \longrightarrow \mu \longrightarrow B$ $A' \xrightarrow{\hspace{1cm}} B'$

Optic (
$$\mathcal{C}$$
)($(A, (B, B, A'))$)
$$= \int_{\mathcal{C}} \mathcal{C}(A, M \times B) \times \mathcal{C}(M \times B, A')$$

Parametrised Optics: Para (Optic (C)) has • objects: ob $(\mathcal{C})^{\times 2}$,
• morphism: $(A') \xrightarrow{P} (B')$:

Def: Smooth has: ob (Smooth) = IN, Smooth $(n, m) = C^{\infty}(R^{n}, R^{m})$ $n \times m := n + m$

Theorem (Fong-Spivak-Tuyéras): Given a step E and an error function e, there is a Gradient Descent functor:

GD: Para (Smooth) -> Para (Optic (Smooth))

E,e

such that:

$$GD(A) = \begin{pmatrix} A \\ A \end{pmatrix}$$

GD
$$(A \xrightarrow{P, I}B) = (A) \xrightarrow{P} (B)$$
 is represented by:

 $A \xrightarrow{P} (I, P \times A) \xrightarrow{P} B$
 $A \xrightarrow{P} (I, P \times A) \xrightarrow{P} B$

$$U(p,a,b) = P - E \bigvee_{p} E(p,a,b) \text{ and } N(p,a,b) = \left(\frac{\partial e}{\partial x}\right)^{-1} \left(\bigvee_{a} E(p,a,b)\right)$$

$$\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)\right) = \frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right) + \frac{1}{2}\left$$

$$e(x,y) = \frac{1}{2}(x-y)^2$$

$$\begin{array}{c}
1 & 3, T \\
5 & 7
\end{array}$$

$$\begin{array}{c}
3, T \\
7
\end{array}$$

$$\begin{array}{c}
3, T \\
7
\end{array}$$

$$\begin{array}{c}
7
\end{array}$$

Reparametrisation

Para (C) is (in fact) a 2-category with:

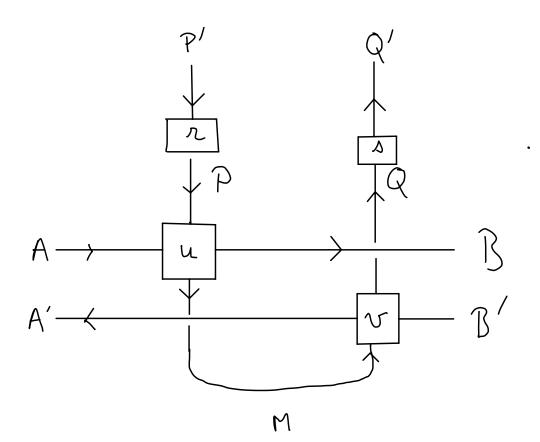
$$\begin{array}{c}
A \xrightarrow{P, 1} & B \\
A \xrightarrow{P', 1'} & B
\end{array}$$

$$\begin{array}{cccc}
P \times A & \longrightarrow B \\
\uparrow n \times A & \nearrow & \uparrow
\end{array}$$

$$P' \times A & \uparrow'$$

$$\left(\begin{array}{c}A\\ \end{array}\right) \xrightarrow{\mathcal{D}} \left(\begin{array}{c}A'\\ \mathcal{B}'\end{array}\right)$$

$$\left(\begin{array}{c}A\\ \end{array}\right) \xrightarrow{\stackrel{\triangleright}{\varphi'}} \left(\begin{array}{c}A'\\ \end{array}\right)$$



Generalisation of GD using Differential Categories Def: A Cartesian Differential Category is a contesian (left additive) Category & equipped with a differential $\frac{A \longrightarrow B}{A \times A \longrightarrow B} \mathcal{D}$ satisfying ... Example: SMOOTH, with $\frac{n \longrightarrow m}{m + n \longrightarrow m}$ $(z, y) \longmapsto D_{n}f(y)$

 $\mathcal{N}(p,a,b) = \left(\frac{\partial e}{\partial x}\right)^{-1} \left(\nabla_a E(p,a,b)\right)$ Remember:

Generalisation of GD using Differential Categories Def: A Reverse Differential Category is a contesion (left additive) Category & equipped with a differential $\frac{A \longrightarrow B}{A \times B \xrightarrow{R} B} R \qquad \text{satisfying} \cdots$ $\frac{R}{x} \xrightarrow{R} R \xrightarrow{R} R$ $\frac{R}{x} \xrightarrow{R}$ Example: SMOOTH, with

For any R.D.C C, there is a functor:

such that:

$$L(A) = \begin{pmatrix} A \\ A \end{pmatrix}$$
, and

$$L(A \rightarrow B) = A \rightarrow R(D \rightarrow B)$$

$$A \rightarrow R(D \rightarrow B)$$

$$A \rightarrow R(D \rightarrow B)$$

$$A \rightarrow R(D \rightarrow B)$$

II (Naive) Neural Networks I want to go to London if a) The plane ticket is cheap enough b) The weather is good enough. price of ticket Decision to go or not weather quality

1) Set weights: $w_1 = importance of cheapments$ $w_2 = importance of weather.$

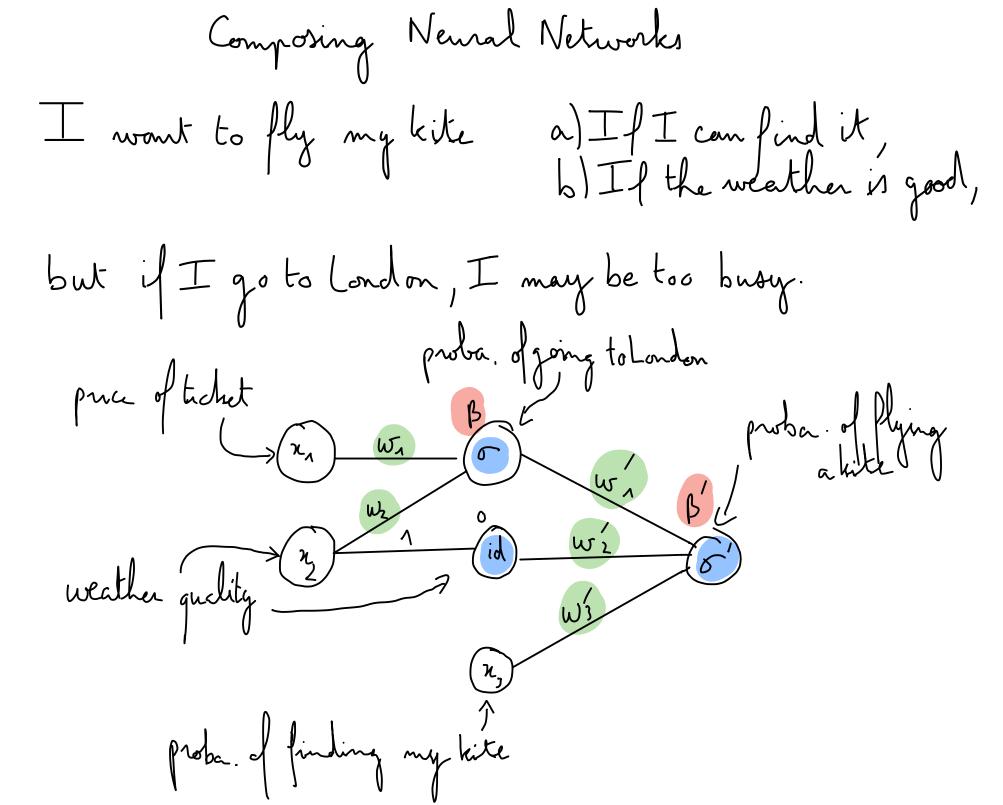
3) Choose an activation function
$$\sigma$$
 (e.g. $\sigma(z) = \frac{1}{1+e^{2}}$)

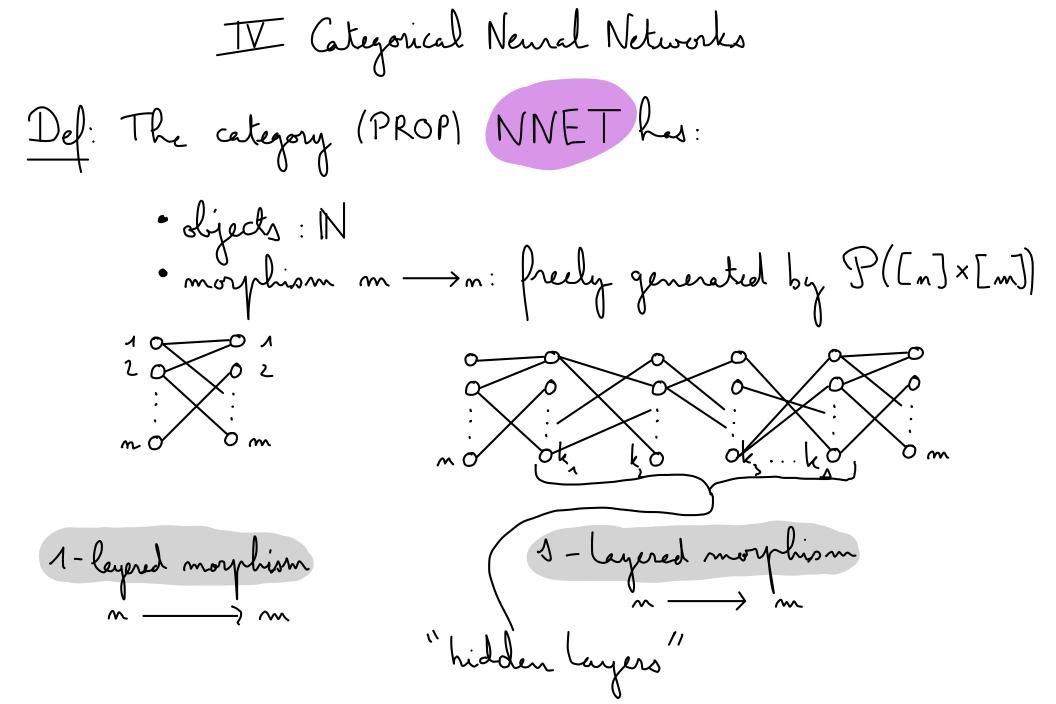
$$\chi_{1} \rightarrow 0$$

$$(w_{1} \chi_{1} + w_{2} \chi_{2} + \beta)$$

$$\chi_{2} \rightarrow 0$$

1 - Cayered Neural Network





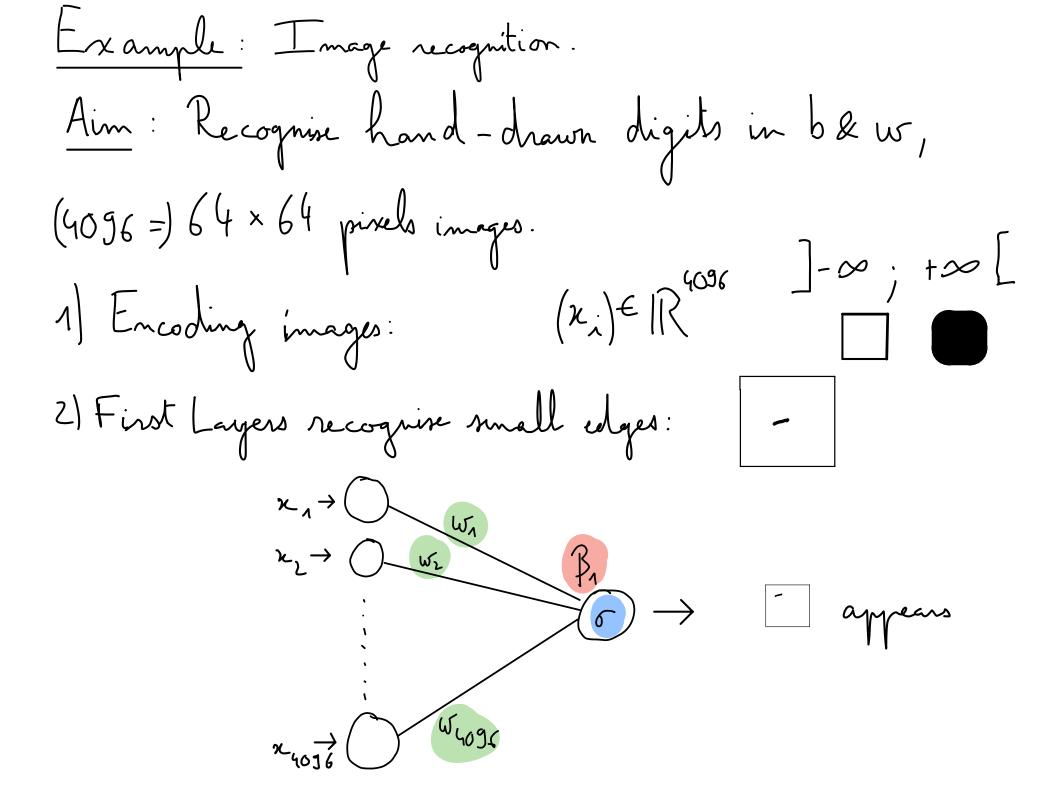
Prop (Fong - Spivak - Tuyénas): Given 6: R -> IR
there is a functor

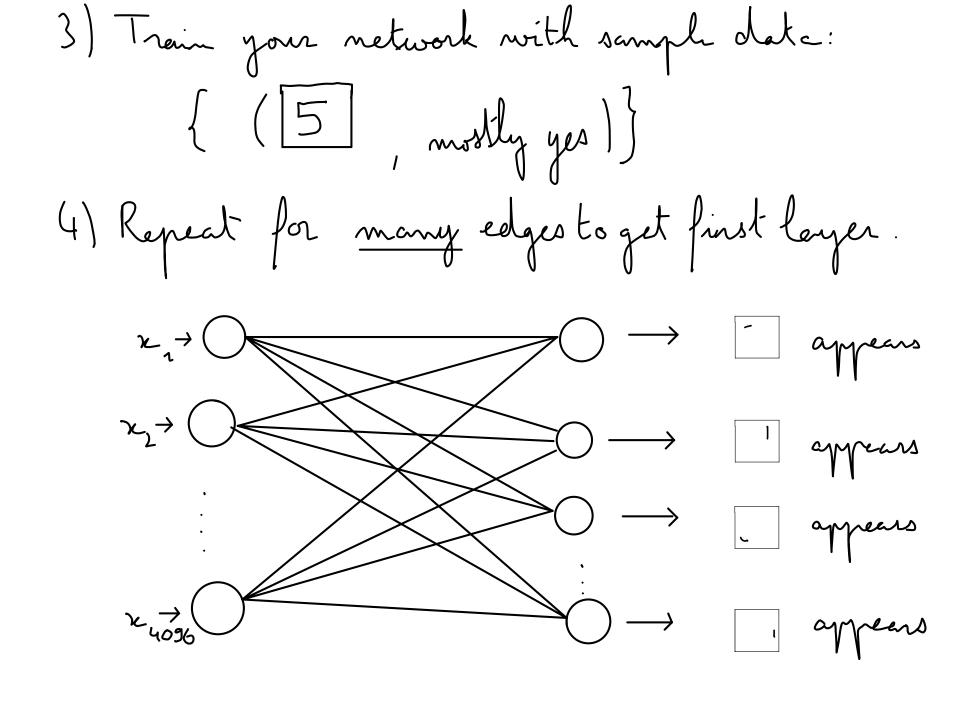
I: NNET -> Para (Smooth) such that

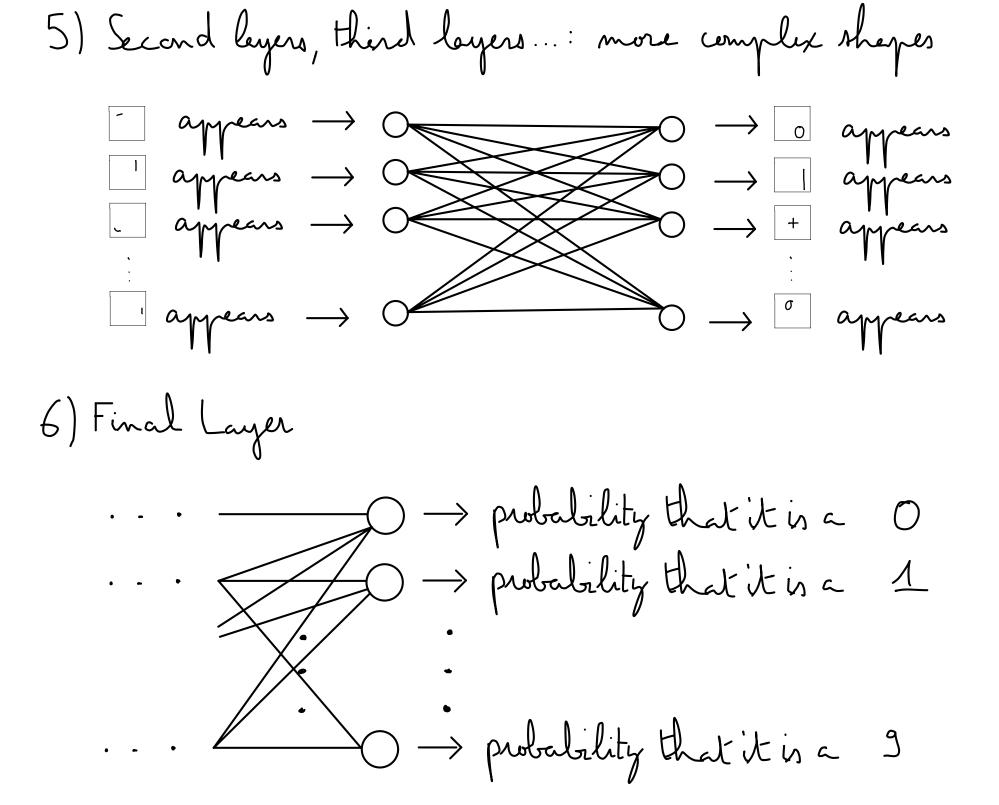
I(n)=n, and for C = [n] × [m], $T_{\sigma}(C): n \xrightarrow{|C|+m, T} m$ with: $\underline{\top}: \mathbb{R}^{1C1+m} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ $\left(\left(\begin{array}{c} w_{j}, i \neq c \end{array}\right) \left(\begin{array}{c} x_{j}, i \neq c \end{array}\right) \left($ Terminology (Forg-Spivak-Tuyéras): Given 6, E, e General : NNET - Para (Optic (Smooth)) is deep learning. The resulting request function is deep dreaming.

I Training Your Network
"Gotolonden "example:
price of ticket weather gudity weather gudity probability of purchasing trickets
a) Pick a starting guess for w_1, w_2, β
b) Train your network using a deta set:
{(conditions, outcome)}, e.g:
((ticket was 80€, weather was meh), did not purchese)

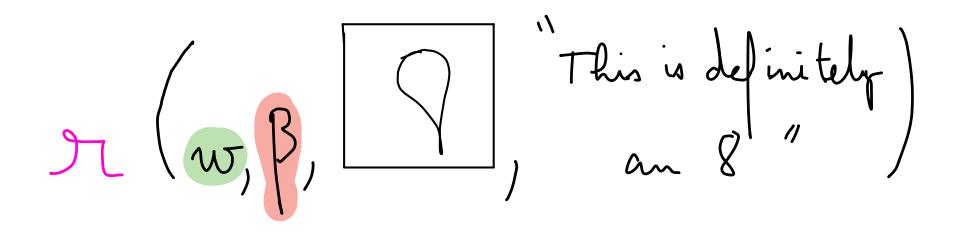
For each sample deta, compute:







What does 2 do?



· . . Image Generation

References:

Fong, Spivak, Tuyéras - Backprop as Functor: A compositional perspective on supervised learning Cruttwell, Gavranović, Ghani, Wilson, Zanasi - Categorical Foundations of Gradient-Based Learning Cockett, Cruttwell, Gallagher, Lemay, MacAdam, Plotkin, Pronk - Reverse derivative categories Capucci, Gavranović, Hedges, Rischel - Towards Foundations of Categorical Cybernetics