On Higher-Order Probabilistic Subrecursion

Flavien BREUVART, Ugo DAL LAGO, Agathe HERROU

Focus, Inria team, Bologna ${ }^{1}$

LC\&A: 2016 September 6
${ }^{1}$ I am now based at University Paris 13

What Is the Result of a Probabilistic Computation?

A probabilistic distribution

What Is the Result of a Probabilistic Computation?

A probabilistic distribution
What distributions are generated by arbitrary terminating programs?

What Is the Result of a Probabilistic Computation?

A probabilistic distribution
What distributions are generated by arbitrary terminating programs?

Any recursively approximable function $f: \mathbb{N} \rightarrow \mathbb{R}$ summing to 1 . (Due to almost sure termination)

What Is the Result of a Probabilistic Computation?

A probabilistic distribution
What distributions are generated by arbitrary terminating programs?

Any recursively approximable function $f: \mathbb{N} \rightarrow \mathbb{R}$ summing to 1 . (Due to almost sure termination)

- support (f) can be any r.e. set - $f(0)$ can be any computable real

Probability of termination $=1$. eg:
$\mathrm{x}:=0$;
while (coin = 0) do x++; ret 1 !

What Is the Result of a Probabilistic Computation?

A probabilistic distribution
What distributions are generated by arbitrary terminating programs?

Any recursively approximable function $f: \mathbb{N} \rightarrow \mathbb{R}$ summing to 1 . (Due to almost sure termination)

A sole randomized result
What can be computed by arbitrary randomized algorithms?

What Is the Result of a Probabilistic Computation?

A probabilistic distribution
What distributions are generated by arbitrary terminating programs?

Any recursively approximable function $f: \mathbb{N} \rightarrow \mathbb{R}$ summing to 1 . (Due to almost sure termination)

A sole randomized result
What can be computed by arbitrary randomized algorithms?

Only recursive programs... (Due to Church Thesis)

What Is the Result of a Probabilistic Computation?

A probabilistic distribution
What distributions are generated by arbitrary terminating programs?

Any recursively approximable function $f: \mathbb{N} \rightarrow \mathbb{R}$ summing to 1 . (Due to almost sure termination)

A sole randomized result
What can be computed by arbitrary randomized algorithms?

Only recursive programs... (Due to Church Thesis)

How does this extends for sub-recursive classes?

Extensional Approach
Are all distributions deterministically representable?

Intentional Approach
Can we always perform a derandomization?

When is Probabilistic Choice Necessary?

Are all distributions deterministically representable?

Finite Representation

$$
\operatorname{prob}(P \rightsquigarrow k)=P^{*}(k) \in \mathbb{Q}
$$

Functional Representation
$\operatorname{prob}(P \rightsquigarrow k)=\lim _{n \rightarrow \infty} P^{*}(n, k)$
s.t. $\sum_{k} \operatorname{Err}\left(P^{*}(n, k)\right) \leq \frac{1}{n}$

Parametrization
For $P: \mathbb{N} \rightarrow \mathbb{N}$

Can we always perform a derandomization?

Monte Carlo

$f(n)$ reached with probability $>\frac{1}{2}+\epsilon$

Las Vegas

$f(n)$ reached and ascertained with probability $>\epsilon$

Dynamic/Strict bounds

Make ϵ dynamic/null

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

When is Probabilistic Choice Necessary?

Are all distributions deterministically representable?

Finite Representation

$$
\operatorname{prob}(P \rightsquigarrow k) \|=P^{*}(k) \in \mathbb{Q}
$$

Functional Representation
$\operatorname{prob}(P \rightsquigarrow k)=\lim _{n \rightarrow \infty} P^{*}(n, k)$
s.t. $\sum_{k} \operatorname{Err}\left(P^{*}(n, k)\right) \leq \frac{1}{n}{ }^{\prime \prime}$ ""

Parametrization
For $P: \mathbb{N} \rightarrow \mathbb{N}$

Can we always perform a derandomization?
$\xrightarrow{\text { Monte Carlo }}$ L $f(n)$ reached and ascertained with probability $>\epsilon$

Dynamic/Strict bounds
Make ϵ dynamic/null

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

When is Probabilistic Choice Necessary?

Are:Exponential Blow Up	Can we always perform a determinis	
Finite Representation	BPP	Monte Carlo

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

When is Probabilistic Choice Necessary?

Are all distributions deterministically representable?

Finite Representation

$$
\operatorname{prob}(P \leadsto k)=R^{*}(k) \in \mathbb{Q}
$$

Functional Representation

$$
\operatorname{prob}(P \rightsquigarrow k)=\lim _{n \rightarrow \infty} P^{*}(n, k)
$$

$$
\text { s.t. } \sum_{k} \operatorname{Err}\left(P^{*}(n, k)\right) \leq \frac{1}{n=" \prime \prime}
$$

Parametrization
For $P: \mathbb{N} \rightarrow \mathbb{N}$

Can we always perform a derandomization?
$\xrightarrow{\text { Monte Carlo }}$ Las Vegas $f(n)$ reached and ascertained with probability $>\epsilon$

Dynamic/Strict bounds

Make ϵ dynamic/null

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

When is Probabilistic Choice Necessary?

Are all distributions deterministically representable? Depends Finite Representation of Prob. Operators $\operatorname{Prob}(P \rightsquigarrow k)=P^{*}(k) \in \mathbb{Q}$

$$
\text { Functional Representation } \Longrightarrow \text { Las Vegas }
$$

Can we always perform a derandomization?

$$
\operatorname{prob}(P \rightsquigarrow k)=\lim _{n \rightarrow \infty} P^{*}(n, k)
$$

$$
\text { s.t. } \sum_{k} \operatorname{Err}\left(P^{*}(n, k)\right) \leq \frac{1}{n} \text { """ }
$$

Parametrization

$$
\text { For } P: \mathbb{N} \rightarrow \mathbb{N}
$$

$f(n)$ reached and ascertained with probability $>\epsilon$

Dynamic/Strict bounds

Make ϵ dynamic/null

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

Gödel's System T:
 A Language for HO Primitive Recursion

$$
\begin{gathered}
\text { Gödel's System } \mathbb{T}(\text { Call-by-Value }) \\
M, N, L::=x|\lambda x . M| M N|\operatorname{rec}| \mathbf{0} \mid \mathbf{S} \\
\operatorname{rec} M N \mathbf{0} \rightarrow M \quad \operatorname{rec} M N(\mathbf{S n}) \rightarrow N \boldsymbol{n}(\operatorname{rec} M N \boldsymbol{n})
\end{gathered}
$$

$\overline{\Gamma, x: A \vdash x: A} \quad \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \rightarrow B} \quad \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B}$
$\overline{\Gamma \vdash \mathbf{0}: \mathbb{N}} \overline{\Gamma \vdash \mathbf{S}: \mathbb{N} \rightarrow \mathbb{N}} \quad \overline{\Gamma \vdash \mathrm{rec}: A \rightarrow(\mathbb{N} \rightarrow A \rightarrow A) \rightarrow \mathbb{N} \rightarrow A}$

An Extremely Expressive System

- Corresponds to provably total functions in Peano arithmetic
- Encodes any monad (states, exceptions, continuations...)

Probabilistic Systems \mathbb{T}

> Different Probabilistic Extensions for System \mathbb{T} $M, N, L::=x|\lambda x . M| M N \mid$ rec | $\mathbf{0}|\mathbf{S}| M \oplus N|\mathbf{X}| \mathbf{R}$

Almost Sure Convergence

$\mathbb{T}^{\oplus}, \mathbf{R}, \mathrm{X}$ is Almost Surely Terminating
 $\forall M \in \mathbb{T}^{\oplus, \mathbf{R}, \mathbf{X}}, \quad \operatorname{Prob}(M \Downarrow)=1$

Reducibility

1) By induction on A, we define $\operatorname{Red}_{A} \subseteq\{M \mid \vdash M: A\}$,
2) By induction on \rightarrow :
$M \rightarrow N \in \operatorname{Red}_{A} \Rightarrow M \in \operatorname{Red}_{A}$,
2^{\prime}) Red_{A} is inhabited (ind. on A)
3) By induction on A : $\operatorname{Red}_{A} \subseteq A S C$,
4) By induction on M : $\vdash M: A \Rightarrow M \in \operatorname{Red}_{A}$,

Specificities for Probabilities

Item 3) becomes:
3) Red_{A} are exactly the ASC terms that are evaluated into $\llbracket M \rrbracket \subseteq \operatorname{Red}_{A}$.

We also need a technical lemma
0) The application is continuous:

$$
\llbracket M N \rrbracket=\llbracket \llbracket M \rrbracket \llbracket N \rrbracket \rrbracket \rrbracket .
$$

Finite Representation of \mathbb{T}^{\oplus} s Distributions

$\forall M \in \mathbb{T}^{\oplus}(\mathbb{N}), \quad \exists M^{*} \in \mathbb{T}(\mathbb{N} \rightarrow \mathbb{Q}), \quad \operatorname{Prob}(M \rightarrow k):=\left(M^{*} k\right)$

Using a Finite Tape s : Bool List
$\left(N_{1} \oplus N_{2}\right)^{\dagger}:=$ if hd(s) then $s:=t /(s) ; N_{1}$

$$
\text { else } s:=t /(s) ; N_{2}
$$

State Passing
Transformation $M^{\dagger} \rightsquigarrow \lambda s . M^{\ddagger}$

Counting Occurrences

$$
P(M \rightarrow k):=\frac{\#\left\{|\boldsymbol{s}|=n \mid M^{\ddagger} \rightarrow \boldsymbol{k}\right\}}{2^{n}}
$$

for n sufficiently large.

T-Computable (simple recursion on s)

Exists since the execution of $M \in \mathbb{T}^{\oplus}$ is bounded

Parametrization: How do we calculate the bound n ? Feasible but more technical: a more complex monad (long version)

When is Probabilistic Choice Necessary?

Are all distributions deterministically representable? Depends Finite Representation of Prob. Operators $\operatorname{Prob}(P \rightsquigarrow k)=P^{*}(k) \in \mathbb{Q}$

$$
\text { Functional Representation } \Longrightarrow \text { Las Vegas }
$$

Can we always perform a derandomization?

$$
\operatorname{prob}(P \rightsquigarrow k)=\lim _{n \rightarrow \infty} P^{*}(n, k)
$$

$$
\text { s.t. } \sum_{k} \operatorname{Err}\left(P^{*}(n, k)\right) \leq \frac{1}{n} \text { """ }
$$

Parametrization

$$
\text { For } P: \mathbb{N} \rightarrow \mathbb{N}
$$

$f(n)$ reached and ascertained with probability $>\epsilon$

Dynamic/Strict bounds

Make ϵ dynamic/null

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

Functional representation of \mathbb{T}^{X}

Remark: Finite representations does not suffice $\operatorname{Prob}[\mathbf{X}(\operatorname{rec} \mathbf{0}(\lambda \times y . \mathbf{0} \oplus \mathbf{S S} x)) \mathbf{1} \rightarrow \mathbf{0}] \quad$ is not rational

Objective: Functional representation of \mathbb{T}^{X} in \mathbb{T}^{\oplus}

$$
\forall M \in \mathbb{T}^{\mathbf{X}}(\mathbb{N}), \quad \exists M^{*} \in \mathbb{T}^{\oplus}(\mathbb{N} \rightarrow \mathbb{N}), \quad \llbracket M^{*} n \rrbracket \simeq_{\frac{1}{2^{n}}} \llbracket M \rrbracket
$$

Naive idea: Counter
Stop M after $f(n)$ steps

$$
\begin{aligned}
\langle M, f(n)\rangle & \xrightarrow{M \rightarrow M^{\prime}}\left\langle M^{\prime}, f(n)-1\right\rangle \\
& \cdots \\
& \rightarrow\left\langle M^{\prime \prime}, \mathbf{0}\right\rangle \\
& \rightarrow \mathbf{0}
\end{aligned}
$$

Functional representation of \mathbb{T}^{X}

Remark：Finite representations does not suffice $\operatorname{Prob}[\mathbf{X}(\operatorname{rec} \mathbf{0}(\lambda \times y . \mathbf{0} \oplus \mathbf{S S} x)) \mathbf{1} \rightarrow \mathbf{0}] \quad$ is not rational

Objective：Functional representation of $\mathbb{T}^{\mathbf{X}}$ in \mathbb{T}^{\oplus}

$$
\forall M \in \mathbb{T}^{\mathbf{X}}(\mathbb{N}), \quad \exists M^{*} \in \mathbb{T}^{\oplus}(\mathbb{N} \rightarrow \mathbb{N}), \quad \llbracket M^{*} n \rrbracket \simeq_{\frac{1}{2^{n}}} \llbracket M \rrbracket
$$

Naive idea：Counter

Stop M after $f(n)$ stべデ

$$
\begin{aligned}
\langle M, f(n)\rangle & \xrightarrow{M \rightarrow M^{\prime}}\left\langle M^{\prime}, f(n)-1\right\rangle \\
& \cdots \\
& \rightarrow\left\langle M^{\prime \prime}, \mathbf{0}\right\rangle \\
& \rightarrow \mathbf{0}
\end{aligned}
$$

f has to be \mathbb{T}－definable！
May not be possible．．．

Functional representation of $\mathbb{T}^{R}\left(\simeq \mathbb{T}^{X}\right)$

$$
\left.\begin{array}{c}
\text { Better Idea: } \\
\text { Truncating } \mathbf{R}
\end{array}\right] \begin{aligned}
& \text { Limiting } \left.\begin{array}{c}
\text { each occurrence of the } \\
\text { operator } \mathbf{R} \\
\text { to }[0, \ldots, n
\end{array}\right] \\
& \overline{\mathbf{R}}:=\left\{\begin{array}{ccc}
0 & \mapsto & \frac{1}{2} \\
& \ldots & \\
n & \mapsto & \frac{1}{2^{n+1}} \\
\text { Err } & \mapsto & \frac{1}{2^{n+1}}
\end{array}\right\}
\end{aligned}
$$

Functional representation of $\mathbb{T}^{R}\left(\simeq \mathbb{T}^{X}\right)$

The Real Idea: Increasing Truncature

 Limiting the m th occurrence of the operator \mathbf{R} to $[0, \ldots, n * m]$$$
\overline{\mathbf{R}}:=(m:=m+1) ;\left\{\begin{array}{ccc}
0 & \mapsto & \frac{1}{2} \\
n * m & \mapsto & \frac{1}{2^{n * m+1}} \\
n * & \mapsto & \frac{1}{2^{n * m+1}}
\end{array}\right\}
$$

Bounded Probability of Error

$$
\operatorname{Prob}(M[\overline{\mathrm{R}} / \mathrm{R}] \rightarrow \operatorname{Err}) \leq 1-\prod_{n \geq 0}\left(1-\frac{1}{2^{m * n}}\right) \leq \frac{1}{n}
$$

When is Probabilistic Choice Necessary?

Are all distributions deterministically representable? Depends Finite Representation of Prob. Operators $\operatorname{Prob}(P \rightsquigarrow k)=P^{*}(k) \in \mathbb{Q}$

$$
\text { Functional Representation } \Longrightarrow \text { Las Vegas }
$$

Can we always perform a derandomization?

$$
\operatorname{prob}(P \rightsquigarrow k)=\lim _{n \rightarrow \infty} P^{*}(n, k)
$$

$$
\text { s.t. } \sum_{k} \operatorname{Err}\left(P^{*}(n, k)\right) \leq \frac{1}{n} \text { """ }
$$

Parametrization

$$
\text { For } P: \mathbb{N} \rightarrow \mathbb{N}
$$

$f(n)$ reached and ascertained with probability $>\epsilon$ future work

Dynamic/Strict bounds
Make ϵ dynamic/null

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

When is Probabilistic Choice Necessary?

Are all distributions deterministically representable?

Finite Representation

$$
\operatorname{prob}(P \leadsto k)=R^{*}(k) \in \mathbb{Q}
$$

Functional Representation

$$
\operatorname{prob}(P \rightsquigarrow k)=\lim _{n \rightarrow \infty} P^{*}(n, k)
$$

$$
\text { s.t. } \sum_{k} \operatorname{Err}\left(P^{*}(n, k)\right) \leq \frac{1}{n=" \prime \prime}
$$

Parametrization
For $P: \mathbb{N} \rightarrow \mathbb{N}$

Can we always perform a derandomization?
$\xrightarrow{\text { Monte Carlo }}$ Las Vegas $f(n)$ reached and ascertained with probability $>\epsilon$

Dynamic/Strict bounds

Make ϵ dynamic/null

Different classes

Complexity Primitive Rec. HO Prim. Rec. Recursive

Functional Representation of Probabilistic Recursive functions

What is a functional representation?

Let M a probabilistic program that output an integer with probability 1 . We look for a recursive function $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{Q}$ such that:

$$
\operatorname{prob}(M \rightarrow k)=\lim _{n} f(k)(n) \quad\left(1-\sum_{k} f(k)(n)\right) \leq \frac{1}{n}
$$

```
let f M k n :=
    let tab : Rational[] in
    let rec simul M p:=
            eval M with
                "return k" -> tab[k] += 1/(2^p);
                "if coin then L else N" -> {
                    newThread{simul L (p+1)};
                    newThread{simul N (p+1)}:
                    };
    in newthread{simul M 0};
    newThread{
        while ( sum tab < 1-1/n ) do skip;
        return tab[k];
    }
in newthread\{simul M 0\}; newThread\{
```

tab: dynamical approximation
Updating tab on terminating branches

Run probabilistic choices in parallel
Waiting for a reasonable approximation

