A Fibrational Approach to (Multiplicative Additive) Indexed Linear Logic

Flavien Breuvart, Thomas Ehrhard, Nicolas Munnich and Federico Olimpieri

LIPN Sorbonne Paris Nord; IRIF Paris Cité; School of Mathematics, University of Leeds
CIRM: 16 Feb. 2023

Refining/decorating type systems : Church and Curry knitted together

À la Church decoration on Curry typed terms
A typed term $\vdash t$: A may be "decorated" by a more precise type

$$
\vdash_{\bar{x}} t: A^{\%} \triangleleft A
$$

X is a decoration context, later called "locus"

$$
\begin{aligned}
& \text { Same proof if any } \\
& \frac{\pi^{\%}}{\Gamma^{\%} \frac{1}{x} t: A^{\%}} \Longrightarrow \frac{\pi}{\Gamma \vdash t: A}
\end{aligned}
$$

Example : size types

$$
\vdash_{i, j} \text { concat : }[A]_{i} *[A]_{j} \rightarrow[A]_{i+j} \triangleleft[A] *[A] \rightarrow[A]
$$

A logical counterpart : step-preserving forgetfulness

Every decorated formula $A^{\%}$ refines a unique formula A Same goes for proofs.

This preserves cut-elimination

if $\frac{\pi^{\%}}{\Gamma^{\%} \frac{1}{x} A^{\%}}$ and if $\pi \rightsquigarrow \rho$ then there is a decoration $\pi^{\%} \rightsquigarrow \rho^{\%}$

Curry and Howard's blind-spot

$$
\frac{\pi}{\Gamma \vdash A} \quad \Longrightarrow \quad \text { at most one proof } \frac{\pi^{\infty}}{\Gamma^{\infty} \frac{1}{x} A^{(\%}}
$$

Difficult... at least make it true in your models...

Sub-decoration : more or less refined information

Two proofs with different decorations are OK and can even represent level of precision

$$
\frac{\pi^{*}}{\Gamma_{\bar{x}} A^{*}} \triangleleft \frac{\pi^{\%}}{\Gamma^{\infty} ⺊_{Y} A^{\%}} \triangleleft \frac{\pi}{\Gamma \vdash A}
$$

Proofs can even be transported by rewriting / base-change

$$
f\left(\frac{\pi^{\%}}{\left.\Gamma^{\%}\right|_{Y} A^{\%}}\right)=\frac{f\left(\pi^{\%}\right)}{f\left(\Gamma^{*}\right) \vdash f\left(A^{\%}\right)}
$$

f traverses the term (like LL's negation), only modifying decoration.
Base-changes are crucial in a lot of advanced decoration systems

A paradigmatic example : Indexed linear logic (IndLL)

Sequents are sets of intersection types

$A^{\%} \vdash_{X} B^{\%}$ is an X-indexed family of intersection types refining $A \multimap B$

$$
\begin{aligned}
& \frac{a \in \operatorname{atom}(X)}{a \vdash_{x} a} \quad \frac{\Gamma \vdash_{x} A \quad A \vdash_{x} \Delta}{\Gamma \vdash_{x} \Delta} \quad \frac{}{\vdash_{x} \mathbf{1}} \quad \frac{\Gamma \vdash_{x} A \quad \Delta \vdash_{x} B}{\Gamma, \Delta \vdash_{x} A \otimes B} \\
& \frac{\Gamma \vdash_{X} A, B}{\Gamma \vdash_{X} A \mathcal{Y} B} \quad \frac{0 \Vdash \Gamma}{\Gamma \vdash_{0} \top} \quad \frac{\iota_{1}(\Gamma) \vdash_{X} A \quad \iota_{2}(\Gamma) \vdash_{Y} B}{\Gamma \vdash_{X}+Y}{ }^{2} A \& B \quad \frac{\Gamma \vdash_{X} A \quad 0 \Vdash B}{\Gamma \vdash_{X} A_{X} \oplus_{0} B} \\
& \frac{\Gamma \vdash_{x} B \quad 0 \Vdash A}{\Gamma \vdash_{x} A_{0} \oplus_{x} B} \quad \frac{\Gamma \vdash_{x} ?_{u} \iota_{1}(A), ?_{v} \iota_{2}(A)}{\Gamma_{x}{ }^{\prime}{ }_{\langle u, v\rangle} A} \quad \frac{\Gamma \vdash_{x} 0 \Vdash B}{\Gamma \vdash_{x} ?_{\operatorname{term}} B} \quad \frac{\Gamma \vdash_{x} B}{\Gamma \vdash_{x} ?_{i d} B} \\
& \frac{!_{u_{1}} A_{1}, \ldots,!_{u_{n}} A_{n} \vdash_{Y} B \quad{ }^{2}: X \rightarrow Y}{!_{V ; u_{1}} A_{1}, \ldots,!_{v ; u_{n}} A_{n} \vdash_{X}!_{V} B} \quad \frac{\Gamma_{X} ?_{u} f(B) \quad v \leq u ; f}{\Gamma_{X} ?_{V} B}
\end{aligned}
$$

And ever more base-changes in the cut elimination procedural.

My long term objectives

Transform models into decorated logics

I am convinced that any model of LL can be fully characterised by a well suited decoration-system of LL.

Should extends outside of LL.

Study continuum between syntax and model

Somewhere between the model decoration and the absence of decoration should be a precise but commutable one!

A MLL per locus

$$
\begin{aligned}
& \frac{\Gamma \vdash_{x} A, \Delta}{\Gamma, A^{\perp} \vdash_{x} \Delta} \\
& \frac{\Gamma, A \vdash_{\bar{x}} \Delta}{\Gamma \vdash_{x} A^{\perp}, \Delta} \\
& \frac{\Gamma_{\bar{x}} A, B, \Delta}{\Gamma_{\bar{x}} B, A, \Delta} \\
& \frac{\Gamma \vdash_{x} A \quad A \overleftarrow{5}_{x} \Delta}{\Gamma \vdash_{x} \Delta} \\
& \overline{\vdash_{\bar{x}} 1} \frac{\Gamma_{\bar{x}} A \quad \Delta \vdash_{x} B}{\Gamma, \Delta \Gamma_{x} A \otimes B} \\
& \frac{\Gamma, A \overleftarrow{x}_{x} B}{\Gamma \vdash_{x} A \multimap B}
\end{aligned}
$$

Different atoms/constants and constants in each locus

$$
\frac{a \in \operatorname{atom}(X)}{a \vdash_{X} a} \quad \frac{c \in \operatorname{constant}(X)}{\vdash_{X} c}
$$

Base change : rewriting that goes throw the formula

$$
\begin{gathered}
\text { If } f: X \rightarrow Y \text {, and } \frac{\pi}{A \vdash_{Y} B} \text { then } \frac{f(\pi)}{f(A) \vdash_{\bar{x}} f(B)} \\
f(1):=1 \quad f(A \otimes B):=f(A) \otimes f(B) \quad f(A \multimap B):=f(A) \multimap f(B)
\end{gathered}
$$

Like negation, f only acts on atoms

A category $\mathbb{L} \mathbb{C O C i}^{\text {of }}$ loci and a functor as model

Model :	■OCiop	\rightarrow	StarAutonomousCat
	X	\mapsto	$\left(\vdash_{X}\right)$-system
	$\downarrow f$	\mapsto	$f()$
	Y	\mapsto	$\left(\vdash_{Y}\right)$-system

A category Locio of loci and a functor as model

Model :	$\mathbb{C O C O}$		
X	\rightarrow	StarAutonomousCat	
	$\downarrow f$	\mapsto	$\left(\vdash_{X}\right)$-system
	\mapsto	$f()$	
	\mapsto	$\left(\vdash_{Y}\right)$-system	

IndLL (co-)products will be Cartesian (co-)product in the (op-)fibration!

The coproduct is a transversal operator

$$
\frac{0 \Vdash \Gamma}{0 \vdash_{0} \Gamma} \quad \frac{A \vdash_{\bar{X}} \iota_{1}(\Gamma)}{A_{X} \oplus_{Y} B \vdash_{\bar{X}+Y} \Gamma} \quad \frac{\Gamma \vdash_{\bar{X}} \iota_{2}(\Gamma)}{\Gamma \vdash_{X} A_{X} \oplus_{0} B}
$$

We use a co-product structure on Loci
WARNING : the products \& also use the co-product of Loci

The coproduct is a transversal operator who lives in the fibration

$$
\frac{0 \Vdash \Gamma}{0 \vdash_{0} \Gamma} \quad \frac{A \vdash_{\bar{x}} \iota_{1}(\Gamma)}{A_{X} \oplus_{Y} B \vdash_{\bar{X}+Y} \Gamma} \quad \frac{\Gamma \vdash_{Y} \iota_{2}(\Gamma)}{\Gamma \vdash_{X} A \quad 0 \Vdash B}
$$

We use a co-product structure on ㅇoci
WARNING : the products \& also use the co-product of LOCi

$$
\begin{gathered}
\text { In } \int \text { Model we have } \\
(X, A) \oplus(Y, B) \quad:=\quad\left(X+Y, A_{X} \oplus_{Y} B\right)
\end{gathered}
$$

that is a Cartesian co-product!

Syntactical constrains : Extensiveness

Recall that base change should traverse the term

$$
\text { if } f: X \rightarrow Y+Z
$$

Syntactical constrains : Extensiveness

Recall that base change should traverse the term

$$
\text { if } f: X \rightarrow Y+Z
$$

Extensivity : pullback preserves co-product injections

In a coherent way (choice up-to equiv.)

High level analyse of the extensivity condition

Extensiveness is syntactical (geometric ?)

The model structure has absolutely no use of extensivity ! Mathematicians class the extensivity as a geometric property... any GeoCal link here?

We use it in order to define a nomalizable rewriting process We will use similar properties to define $f\left(!_{u} A\right)$ or any $f(\operatorname{operator}(\vec{A}))$.

Semi-Cartesian (co) products ?

(extended version only)

Remember: the logic lives in fibers

We only "see" the image of the co-products from the fibration.

We can cheat in the fibration

We only need to have semi-Cartesianness plus a shadow of a co-diagonal.

Consequence: Locio only need semi-Cartesian co-products

Not even the shadow of co-diagonal is needed in the syntax.
Remark: if Locio has Cartesian co-product, then the "shadow of co-diagonal" is externalised into a real one

General comment on fiber/fibration

The internalisation (fibration \rightarrow fibers) and the externalisation (fiber \rightarrow fibration) are essential properties !

Exponentials : an indexed transversal functor

$$
\operatorname{dom}\left(!_{v} A\right)=\operatorname{source}(v) \text { so that } \frac{!_{u_{1}} A_{1}, \ldots,!_{u_{n}} A_{n} \vdash_{Y} B \quad v: X \rightarrow Y}{!_{v ; u_{1}} A_{1}, \ldots,!_{v ; u_{n}} A_{n} \vdash_{X}!_{v} B}
$$

First issue :
v in $!_{v}$ are not locus morphisms
(unclear in the original IndLL where everything are functions with different properties...)

Second issue :
product structure on those v 's

$$
\frac{!_{u} \iota_{1}(A),!_{v} \iota_{2}(A) \vdash_{\bar{x}} \Gamma}{!_{\langle u, v\rangle} A \vdash_{\bar{x}} \Gamma} \text { where } \operatorname{dom}(A)=Y+Z
$$

A (thin) double category Locio Expo

A (thin) double category Locio Expd

gives $\frac{\Gamma \vdash_{X} ?_{u} f(B) \quad v \leq u ; f}{\Gamma \vdash_{X} ?_{v} B}$

A (thin) double category Locio Expd

$$
\text { gives } \frac{\Gamma \vdash_{X} ?_{u} f(B) \quad v \leq u ; f}{\Gamma \vdash_{X} ?_{v} B}
$$

Remark: Sub-decoration rules are identity rules when un-decorated, we should include them in real rules...

Semantics issue : toward thin double fibration

$$
\begin{array}{llll}
\text { Model : } & \mathbb{L o C a p}^{\circ o p} * \text { Expd }^{\text {op }} & \xrightarrow{\text { lax }} & \text { StAut } * \text { Cat } \\
& W \xrightarrow{u} X & \mapsto & \left(\vdash_{W}\right) \xrightarrow{!}\left(\vdash_{X}\right) \\
& \downarrow f \quad \downarrow & \mapsto & f() \quad g() \\
& \mapsto \xrightarrow{v} Z & \mapsto & \left(\vdash_{Y}\right) \xrightarrow{!}\left(\vdash_{Z}\right)
\end{array}
$$

The Graal of Seely isomorphism

$$
?_{\langle u, v\rangle}(A \oplus B) \simeq!_{u} A \times>!_{V} B
$$

It's fibrational interpretation
The \oplus is the externalisation (through the horiz. lax fibration) of the \mathcal{P}

Matching pair of action : Relaxing requirements

We where requiring that \mathbb{L} oci \subseteq Exppo, but it is not necessary, only :

Model : match the square to an equality
Correspond to a Beck-Chevalley condition

Conclusion

You can construct an indexed linear logic from

- A monoidal double category,
- whose vertical category is a semi-Extensive,
- whose horizontal one is Cartesian,
- with a matching pair of actions :
$-\square_{~}: \operatorname{Loci}(X, Y) \times \operatorname{Expo}(Y, Z) \rightarrow \operatorname{morph}(\operatorname{arrow})$
Remains to do :
- find and study many examples,
- extract them from models,
- a (2-)category of such a LOCi* Expo double categories?
- other operators (fixpoints, quantifiers...)
- what about other logics ? (e.g., BLL or separation logic)
- write the exponential part...

