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Indexed linear logic,
An awesome discovery from this guy :

(Maybe with somone else... but that’s not important)
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Why was IndLL cool at that time ?

Extracted from the phase model of linear logic

In can be seen as the internal logic of the phase model

Can be use to build non-uniform coherent models
Gave birth to hypercoherent models

(please don’t ask question, I don’t fully understand this part)

Generalises non-idempotent intersection types to the whole LL
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Why is IndLL even cooler now ?

Gives intersection types for any calculus encoded in µLL2

Simply typed CbN λ-calculus, simply typed CbV λ-calculus,
Bang-calculus, System T, ADT,...

A bit more complex for unrestricted fixedpoints or untyped calculi.

Can be modularised to represent other IT but also many more !

Non-idempotent IT, PCoh IT, graded types, BLL...

Between semantics and syntax
an alternative point of view over calculi !

Between pure syntax (LL) and pure semantics (intersection types), a
whole range of systems with different levels of expresivity and
“inferenceability”.
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What is in this talk ?

My sweet dream :
an algebraic theory of decorations

Types can be endowed with semantic “decoration” precising behaviors of
the typed terms.
We aim at specifying an algebraic universe of possible decoration
systems.

The “non-idempotent” Indexed linear logic

We will present µIndSet∗PartLL the modularisation of indexed linear logic
(with fixedpoints) that extends non-idempotent intersection types.
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Refining/decorating type systems :
Church and Curry knitted together

À la Church decoration on Curry typed terms

A typed term ⊢ t : A may be “decorated” by a more precise type

⊢
I
t : A ◁ A

I is a decoration context, later called “locus”

Same proof if any

π

Γ ⊢
I
t : A

=⇒ π
Γ ⊢ t : A

Example : size types

⊢
i,j

concat : [A]i ∗ [A]j → [A]i+j ◁ [A] ∗ [A]→ [A]
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A logical counterpart :
step-preserving forgetfulness

Every decorated formula A refines a unique formula A

Same goes for proofs.

This preserves cut-elimination

if
π

Γ ⊢
I
A

and if π ⇝ ρ then there is a decoration π ⇝ ρ

Curry and Howard’s blind-spot

π
Γ ⊢ A =⇒

for any given Γ , A and I ,

at most one proof
π

Γ ⊢
I
A

Difficult... at least make it true in your models...
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Sub-decoration :
more or less refined information

Two proofs with different decorations are OK
and can even represent level of precision

π

Γ ⊢
I
A

◁
π

Γ ⊢
J
A

◁
π

Γ ⊢ A

where ’◁’ means “is more precise than”

Precision can be internalised as subtyping

π

Γ ⊢
I
A ⊆

Γ ⊢
I
A

using a meta rule without CH content or integrated into other rules
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My long term objectives

Transform models into decorated logics

I am convinced that many models of LL can be fully characterised by a
well suited decoration-system of LL.

Should extends outside of LL.

Study continuum between syntax and model

Somewhere between the model decoration and the absence of decoration
should be a precise but “inferenceable” one !

Inferenceability : qualitative vs quantitative property

We are not looking for a fully inferenceable type system,
but to an “approximable inference” with nice properties
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Formulae and locci

Indexed formulae

X ∈
⋃

I∈Set

variable(I )

u ∈ quasi-injective functions

f , i , j ∈ functions

A,B ::= f (X ) | f (X )⊥ | 1 | ⊥ | 0 | ⊤ | A⊗ B | A` B

| Ai⊕jB | Ai&jB | !uA | ?uA | µf X .A | νf X .A

Formulae are defined over locci

∅ ⊩ 0
I ⊩ A J ⊩ B

I ⊎ J ⊩ Ainj1⊕inj2B
J ⊩ A u : I ← J

I ⊩!uA
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Base change :
a recurrent pattern

Proofs can even be transported by rewriting / base-change

f

(
π

Γ ⊢
J
A

)
=

f
(
π
)

f
(
Γ
)
⊢
I
f
(
A
) =

π

Γ ⊢
I
A

f traverses the term (like LL’s negation), only modifying decoration.

Base-changes are crucial in indexed LL, in bounded LL and some other
related systems.

f (1) := 1 f (A⊗ B) := f (A)⊗ f (B)

f (0) := 0 f
(
Ai⊕jB

)
:= f|i (A)i|f⊕j|f

f|j(B)

f (!uA) :=!u|f f|u(A) f (µgX .A) := µf ;gX .A
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Multiplicatives :
Nothing new happen

Γ ⊢
I
A,∆

Γ,A⊥ ⊢
I
∆

Γ,A ⊢
I
∆

Γ ⊢
I
A⊥,∆

Γ ⊢
I
A,B,∆

Γ ⊢
I
B,A,∆

Γ ⊢
I
A A ⊢

I
∆

Γ ⊢
I
∆

⊢
I
1

Γ ⊢
I
A ∆ ⊢

I
B

Γ,∆ ⊢
I
A⊗ B

Γ,A ⊢
I
B

Γ ⊢
I
A⊸ B

Intuition : Linear λ-calculus’s IT has no intersection
The loci I represents a set of “names” for intersection types that we are
composing pointwise
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Additives are transversal operators

who lives in the (op)fibration

0 ⊩ Γ
0 ⊢

0
Γ

A ⊢
I
inj1(Γ) B ⊢

J
inj2(Γ)

Ainj1
⊕inj2

B ⊢
I⊎J

Γ

Γ ⊢
I
A 0 ⊩ B

Γ ⊢
I
Aid⊕initB

The base-change is contravariant

Even if Γ is defined over I ⊎ J, inj1(Γ) is defined over I .

The model is an indexation functor
and the coproduct lives in the fibration

In
∫
Model we have

(I ,A)⊕ (J,B) := (I + J,A I⊕J B)

that is a Cartesian co-product !

The product lives, similarly, in the op-fibration.
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Exponentials : non-idempotency in action

Γ ⊢
I
?f1;uf1(A), ?f2;uf2(A)

Γ ⊢
I
?uA

where
f1 := (J ⊆ J ∪ K )
f2 := (K ⊆ J ∪ K )

Γ ⊢
I

Γ ⊢
I
?uB

Γ ⊢
I
f (B) ∀x , f (x) ∈ u−1(x)

Γ ⊢
I
?uB

!w1|v v|w1
(A1), . . . , !wn|v v|wn

(An) ⊢J B v : I ← J

!w1A1, . . . , !wnAn ⊢I !vB

Very different from original IndLL
• The weakening and the dereliction are more often allowed
⇝ subtyping

• The base change are not just injections and can merge elements
⇝ set vs multiset

Remark : in Indexed linear logics, one can have set-like exponential
without subtyping due to the orientation of the idempotency rule.
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Fixed point : a new operator

Γ ⊢
I
f (A[µidX .A/X ])

Γ ⊢
I
µf X .A

Γ ⊢
I
f (A[B/X ]))

B ⊢
I
νf X .A

where f (X )[B/X ] := f (B)

The f in µfX .A and f (X ) are just “explicit base change”

as in “explicit substitution”
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Vertical equivalence

Recall : we want Curry and Howard’s blind-spot

π
Γ ⊢ A =⇒

for any given Γ , A and I ,

at most one proof
π

Γ ⊢
I
A

Wrong but obtained by equating the “equality” proofs :

A ≡ B if there are equiprovable with opposite proofs
π1

A ⊢
I
B

and
π2

B ⊢
I
A

collapsing into the equality :
init(π1) = init(π2) = idinit(A)
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Results

Non-idempotent intersection types

Up-to ≡, the formulae A,B ::= X | !uA⊸B of locci {∗}
correspond exactly to intersection types.

In addition, if
π1

⊢{∗} A
then as a λ-term π1 is of intersection type A

Also true for CbV intersection type (using the boring translation)

Abstract data types

Up-to ≡, the formulae A = µf X .(1i⊕jg(X )) of locci {∗}
correspond exactly to natural numbers [n] := µ∗7→nX .(1zero⊕incridN(X ))

This result should be extendable to any abstract data-type

To represent GADTs, we need the second order.
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Non-results

Untyped version has too much types

Contrary to original IndLL, {µf X .!uX⊸X | u, f }/≡ contains too many
types.
For examples, it embeds Park’s filter model with the intersection type
ω = {ω} → ω.

Infinitary calculi

We could expect to get infinitary calculi using the greatest fixpoint
operator ν, but it is not exactly what we want as proofs remains finite.
To be investigated...
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