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Abstract. We give a characterization, with respect to a large class of models of untyped λ-calculus,
of those models that are fully abstract for head-normalization, i.e., whose equational theory is H∗.
An extensional K-model D is fully abstract if and only if it is hyperimmune, i.e., non-well founded
chains of elements of D cannot be captured by any recursive function.

This article, together with its companion paper [?] form the long version of [?]. It is a standalone
paper that present a purely syntactical proof of the result as opposed to its companion paper that
present an independent and purely semantical proof of the exact same result.

Introduction

The histories of full abstraction and denotational semantics of λ-calculi are both rooted in four
fundamental articles published in the course of a year.

In 1976, Hyland [?] and Wadsworth [?] independently1 proved the first full abstraction re-
sult of Scott’s D∞ for H∗. The following year, Milner [?] and Plotkin [?] showed respectively
that PCF (a Turing-complete extension of the simply typed λ-calculus) has a unique fully abstract
model up to isomorphism and that this model is not in the category of Scott domains and continuous
functions.

Later, various articles focused on circumventing Plotkin counter-example [?, ?] or investigating
full abstraction results for other calculi [?, ?, ?]. However, hardly anyone pointed out the fact that
Milner’s uniqueness theorem is specific to PCF, whileH∗ has various models that are fully abstract
but not isomorphic.

The quest for a general characterization of the fully abstract models of head normalization
started by successive refinements of a sufficient, but unnecessary condition [?, ?, ?], improving the
proof techniques from 1976 [?, ?]. x While these results shed some light on various fully abstract
semantics forH∗, none of them could reach a full characterization.

In this article, we give the first full characterization of the full abstraction of an observational
semantics for a specific (but large) class of models. The class we choose is that of Krivine-models,
or K-models [?, ?]. This class, described in Section ??, is essentially the subclass of Scott complete
lattices (or filter models [?]) which are prime algebraic. We add two further conditions: extension-
ality and test-sensibility. Extensionality is a standard and perfectly understood notion that require
the model to respect the η-equivalence, notice that it is a necessary condition for the full abstraction

1Notice, however, that the idea already appears in Wadsworth thesis 3 years earlier.
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ifH∗. On the other hand, test-sensibility is a new notion that we are introducing but which is equiv-
alent to the more commune notion of approximability (by B/”om trees). Test-sensibility basically
states that the model is sensible for an extension of the λ-calculus called tests.

The extensional and test-sensible K-models are the objects of our characterization and can be
seen as a natural class of models obtained from models of linear logic [?]. Indeed, the extensional
K-models correspond to the extensional reflexive objects of the co-Kleisli category associated with
the exponential comonad of Ehrhard’s ScottL category [?] (Prop. ??).

We achieve the characterization of full abstraction for H∗ in Theorem ??: a model D is fully
abstract forH∗ iff D is hyperimmune (Def. ??). Hyperimmunity is the key property our study intro-
duces in denotational semantics. This property is reminiscent of the Post’s notion of hyperimmune
sets in recursion theory. Hyperimmunity in recursion theory is not only undecidable, but also sur-
prisingly high in the hierarchy of undecidable properties (it cannot be decided by a machine with an
oracle deciding the halting problem) [?].

Roughly speaking, a model D is hyperimmune whenever the λ-terms can have access to only
well-founded chains of elements of D. In other words, D might have non-well-founded
chains d0 ≥ d1 ≥ · · · , but these chains “grow” so fast (for a suitable notion of growth), that they
cannot be contained in the interpretation of any λ-term.

The intuition that full abstraction ofH∗ is related with a kind of well-foundation can be found
in the literature (e.g., Hyland’s [?], Gouy’s [?] or Manzonetto’s [?]). Our contribution is to give,
with hyperimmunity, a precise definition of this intuition, at least in the setting of K-models.

A finer intuition can be described in terms of game semantics. Informally, a game semantic
for the untyped λ-calculus takes place in the arena interpreting the recursive type o = o → o.
This arena is infinitely wide (by developing the left o) and infinitely deep (by developing the
right o). Moves therein can thus be characterized by their nature (question or answer) and by
a word over natural numbers. For example, q(2.3.1) represents a question in the underlined “o”
in o = o→(o→o→(o→o)→o)→o. Plays in this game are potentially infinite sequences of moves,
where a question of the form q(w) is followed by any number of deeper questions/answers, before
an answer a(w) is eventually provided, if any.

A play like q(ε), q(1)...a(1), q(2)...a(2), q(3)... is admissible: one player keeps asking questions
and is infinitely delaying the answer to the initial question, but some answers are given so that the
stream is productive. However, the full abstraction forH∗ forbids non-productive infinite question-
ing like in q(ε), q(1), q(1.1), q(1.1.1)..., in general. Nevertheless, disallowing all such strategies is
sufficient, but not necessary to get full abstraction. The hyperimmunity condition is finer: non pro-
ductive infinite questioning is allowed as long as the function that chooses the next question grows
faster than any recursive function (notice that in the example above that choice is performed by the
constant (n 7→ 1) function). For example, if (ui)i≥0 grows faster than any recursive function, the
play q(ε), q(u1), q(u1.u2), q(u1.u2.u3)... is perfectly allowed.

Incidentally, we obtain a significant corollary (also expressed in Theorem ??) stating that full
abstraction coincides with inequational full abstraction for H∗ (equivalence between observational
and denotational orders). This is in contrast to what happens to other calculi [?, ?].

In the literature, most of the proofs of full abstraction for H∗ are based on Nakajima trees [?]
or some other notion of quotient of the space of Böhm trees. The usual approach is too coarse
because it considers arbitrary Böhm trees which are not necessarily images of actual λ-terms. To
overcome this we propose two different techniques leading to two different proofs of the main result:
one purely semantical and the other purely syntactical. In this article we only present the later, the
former being the object of a companion paper [?].
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The semantic proof approaches the problem from a novel angle that consists in the use of a new
tool: the calculi with tests (Def. ??). These are syntactic extensions of the λ-calculus with operators
defining compact elements of the given models. Since the model appears in the syntax, we are able
to perform inductions (and co-inductions) directly on the reduction steps of actual terms, rather than
on the construction of Böhm trees.

The idea of test mechanisms as syntactic extensions of the λ-calculus was first used by Buc-
ciarelli et al. [?]. Even though it was mixed with a resource-sensitive extension, the idea was
already used to define morphisms of the model. Nonetheless, we can notice that older notions like
Wadsworth’s labeled λ⊥-calculus [?] seem related to calculi with tests. The calculi with tests are
not ad hoc tricks, but powerful and general tools.

One of the purposes of this article is to demonstrate the interest of tests in the study of the
relations between denotational and operational semantics. Calculi with tests are sort of a dual of
Böhm trees. While the latter constitutes a syntactical model for the λ-calculus; a calculus with tests
is a the semantical language for some K-model. While Böhm trees are built upon the λ-calculus and
reduce the problem of full abstraction to the semantical level; a calculus with tests is built upon the
model and reduces this problem to the syntactical level. We claim that, regarding relations between
denotational and operational semantics, Böhm trees and λ-calculi with tests are equally powerful
tools, but extend differently to other frameworks.

1. Preliminaries and result

1.1. Preliminaries.

1.1.1. Preorders.
Given two partially ordered sets D = (|D|,≤D) and E = (|E|,≤E), we denote:

• Dop = (|D|,≥D) the reverse-ordered set.
• D × E = (|D| × |E|,≤D×E) the Cartesian product endowed with the pointwise order:

(δ, ε) ≤D×E (δ′, ε′) if δ ≤D δ′ and ε ≤E ε
′.

• A f (D) = (|A f (D)|,≤A f (D)) the set of finite antichains of D (i.e., finite subsets whose ele-
ments are pairwise incomparable) endowed with the order :

a ≤A f (D) b ⇔ ∀α ∈ a,∃β ∈ b, α ≤D β

In the following will we use D for |D| when there is no ambiguity. Initial Greek letters α, β, γ...
will vary on elements of ordered sets. Capital initial Latin letters A, B,C... will vary over subsets of
ordered sets. And finally, initial Latin letters a, b, c... will denote finite antichains.

An order isomorphism between D and E is a bijection φ : |D| → |E| such that φ and φ−1 are
monotone.

Given a subset A ⊆ |D|, we denote ↓A = {α | ∃β ∈ A, α≤β}. We denote by I(D) the set of initial
segments of D, that is I(D) = {↓A | A ⊆ |D|}. The set I(D) is a prime algebraic complete lattice with
respect to the set-theoretical inclusion. The sups are given by the unions and the prime elements are
the downward closure of the singletons. The compact elements are the downward closure of finite
antichains.

The domain of a partial function f is denoted by Dom( f ). The graph of a Scott-continuous
function f : I(D)→ I(E) is

graph( f ) = {(a, α) ∈ A f (D)op×E | α ∈ f (↓a)} (1.1)
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Notice that elements of I(A f (D)op×E) are in one-to-one correspondence with the graphs of Scott-
continuous functions from I(D) to I(E).

1.1.2. λ-calculus.
The λ-terms are defined up to α-equivalence by the following grammar using notation “à la Baren-
dregt” [?] (where variables are denoted by final Latin letters x, y, z...):

(λ-terms) Λ M,N ::= x | λx.M | M N
We denote by FV(M) the set of free variables of a λ-term M. Moreover, we abbreviate a nested
abstraction λx1...xk.M into λ~x kM, or, when k is irrelevant, into λ~xM. We denote by M[N/x] the
capture-free substitution of x by N.
The λ-terms are subject to the β-reduction:

(β) (λx.M) N
β
→ M[N/x]

A context C is a λ-term with possibly some occurrences of a hole, i.e.:
(contexts) Λ(|.|) C::= (|.|) | x | λx.C | C1 C2

The writing C(|M|) denotes the term obtained by filling the holes of C by M. The small step reduc-
tion→ is the closure of (β) by any context, and→h is the closure of (β) by the rules:

M →h M′

λx.M →h λx.M′
M →h M′ M is an application

M N →h M′ N
The transitive reduction→∗ (resp→∗h) is the reflexive transitive closure of→ (resp→h).
The big step head reduction, denoted M⇓hN, is M →∗h N for N in a head-normal form,
i.e., N = λx1...xk.y M1 · · ·Mk, for M1, ...,Mk any terms. We write M⇓h for the (head) convergence,
i.e., whenever there is N such that M⇓hN.

Example 1.1. • The identity term I := λx.x is taking a term and return it as it is:

I M → M.

• The nth Church numeral, denoted by n, and the successor function, denoted by S, are defined
by

n := λ f x. f ( f · · · f ( f︸         ︷︷         ︸
n times

x) · · · ), S := λu f x.u f ( f x).

Together they provide a suitable encoding for natural numbers, with n representing the nth

iteration.
• The looping term Ω := (λx.xx) (λx.xx) infinitely reduces into itself, notice that Ω is an

example of a diverging term:

Ω → (x x)[λy.y y/x] = Ω → Ω → · · · .

• The Turing fixpoint combinator Θ := (λuv.v (u u v)) (λuv.v (u u v)) is a term that computes
the least fixpoint of its argument (if it exists):

Θ M → (λv.v ((λuv.v (u u v)) (λuv.v (u u v))v)) M
= (λv.v (Θ v)) M
→ M (Θ M).

Other notions of convergence exsit (strong, lazy, call by value...), but our study focuses on head
convergence, inducing the equational theory denoted byH∗.
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Definition 1.2. The observational preorder and equivalence denoted vH∗ and ≡H∗ are given by:

M vH∗ N if ∀C, C(|M|)⇓h ⇒ C(|N|)⇓h,

M ≡H∗ N if M vH∗ N and N vH∗ M.

The resulting (in)equational theory is calledH∗.

Henceforth, convergence of a λ-term means head convergence, and full abstraction for λ-
calculus means full abstraction forH∗.

Definition 1.3. A model of the untyped λ-calculus with an interpretation ~−� is:
• fully abstract (forH∗) if for all M,N ∈ Λ:

M ≡H∗ N if ~M� = ~N�,

• inequationally fully abstract (forH∗) if for all M,N ∈ Λ:2

M vH∗ N if ~M� ⊆ ~N�.

Concerning recursive properties of λ-calculus, we will use the following one:

Proposition 1.4 ([?, Proposition 8.2.2] 3).
Let (Mn)n∈N be a sequence of terms such that:

• ∀n ∈ N,Mn ∈ Λ0,
• (n 7→ Mn) is recursive,

then there exists F such that:
∀n, F n →∗ Mn.

1.2. K-models.

We introduce here the main semantical object of this article: extensional K-models [?][?].
This class of models of the untyped λ-calculus is a subclass of filter models [?] containing many
extensional models from the continuous semantics, like Scott’s D∞ [?].

1.2.1. The category ScottL!.

Extensional K-models correspond to the extensional reflexive Scott domains that are prime
algebraic complete lattices and whose application embeds prime elements into prime elements [?,
?]. However we prefer to exhibit K-models as the extensional reflexive objects of the category
ScottL! which is itself the Kleisli category over the linear category ScottL [?].

Definition 1.5. We define the Cartesian closed category ScottL! [?, ?, ?]:
• objects are partially ordered sets.
• morphism from D to E are a Scott-continuous function between the complete lattices I(D)

and I(E).

2It can be generalised by replacing ⊆ by any order on the model.
3This is not the original statement. We remove the dependence on ~x that is empty in our case and we replace the

β-equivalence by a reduction since the proof of Barendregt [?] works as well with this refinement.
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The Cartesian product is the disjoint sum of posets. The terminal object > is the empty poset.
The exponential object D⇒E is A f (D)op×E. Notice that an element of I(D⇒E) is the graph of
a morphism from D to E (see Equation (??)). This construction provides a natural isomorphism
between I(D⇒E) and the corresponding homset. Notice that if ' denotes the isomorphism in
ScottL!, then:

D⇒ D⇒ · · · ⇒ D ' (A f (D)op)n × D. (1.2)
For example D⇒ (D⇒ D) ' A f (D)op × (A f (D)op × D) = (A f (D)op)2 × D.

Remark 1.6. In the literature (e.g. [?, ?, ?]), objects are preodered sets and the exponential object
D ⇒ D is defined by using finite subsets (or multisets) instead of the finite antichains. Our pre-
sentation is the quotient of the usual one by the equivalence relation induced by the preorder. The
two presentations are equivalent (in terms of equivalence of category) but our choice simplifies the
definition of hyperimmunity (Definition ??).

Proposition 1.7. The category ScottL! is isomorphic to the category prime algebraic complete
lattice and Scott-continuous maps.

Proof. Given a poset D, the initial segments I(D) form a prime algebraic complete lattice with
{↓ α | α ∈ D} as prime elements since I =

⋃
α∈I ↓ α. Conversely, the prime elements of a prime

algebraic complete lattice form a poset. The two operations are inverse one to the other modulo
ScottL!-isomorphisms or, equivalently, Scott-continuous isomorphisms.

1.2.2. An algebraic presentation of K-models.

Definition 1.8 ([?]). An extensional K-model is a pair (D, iD) where:
• D is a poset.
• iD is an order isomorphism between D⇒D and D.

By abuse of notation we may denote the pair (D, iD) simply by D when it is clear from the
context we are referring to an extensional K-model.

Proposition 1.9. Extensional K-models correspond exactly to extensional reflexive objects of ScottL!,
i.e., an object D endowed with an isomorphism absD : (D⇒ D)→ D (and appD := abs−1

D ).

Proof. Given a K-model (D, iD), the isomorphism between D⇒D and D is given by:

∀A ∈ I(D⇒D), appD(A) = {iD(a, α) | (a, α) ∈ A},

∀B ∈ I(D), absD(B) = {(a, α) | iD(a, α) ∈ B}.

Conversely, consider an extensional reflexive object (D, appD, absD) of ScottL!. Since absD is an
isomorphism, it is linear (that is, it preserves all sups). For all (a, α) ∈ D⇒D, we have

↓(a, α) = abs(app(↓(a, α))) =
⋃

β∈app(↓(a,α))

abs(↓β).

Thus there is β ∈ app(↓(a, α) such that (a, α) ∈ abs(↓β), and since abs(↓β) ⊆ ↓(a, α), this is an
equality. Thus there is a unique β such that appD(a, α) = ↓β, this is iD(a, α).
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In the following we will not distinguish between a K-model and its associated reflexive object,
this is a model of the pure λ-calculus.

Definition 1.10. An extensional partial K-model is a pair (E, jE) where E is an object of ScottL!
and jE is a partial function from E⇒E to E that is an order isomorphism between Dom( jE) and E.

E
jE
←→ Dom( jE) ⊆ (E ⇒ E)

Definition 1.11. The completion of a partial K-model (E, jE) is the union

(Ē, jĒ) = (
⋃
n∈N

En,
⋃
n∈N

jEn)

of partial completions (En, jEn) that are extensional partial K-models defined by induction on n.
(E0, jE0) = (E, jE) and:

• |En+1| = |En| ∪ (|En ⇒ En| − Dom( jEn))
• jEn+1 is defined only over |En ⇒ En| ⊆ |En+1 ⇒ En+1| by jEn+1 = jEn ∪ id|En⇒En |−Dom( jEn )
• ≤En+1 is given by jEn+1(a, α) ≤En+1 (b, β) if a ≥A f (En) b and α ≤En β.

Remark that En+1 corresponds to En ⇒ En up to isomorphism, what leads to the equivalent
definition:

Proposition 1.12. The completion (Ē, jĒ) of an extensional partial K-model (E, jE) can be de-
scribed as the categoricalω-colimit (in ScottL) of (E′n)n along the injections ( j−1

n )n where (E′0, j0) =

(E, jE), E′n+1 = E′n ⇒ E′n and j−1
n+1 is defined by j−1

n+1(a, α) = ( jn(a), jn(α)) if defined.

E

E E1 E2 · · · En · · ·
j−1
E j−1

1 j−1
2 j−1

n−1 j−1
n

Remark 1.13. The completion of an extensional partial K-model (E, jE) is the smallest exten-
sional K-model Ē containing E. In particular, any extensional K-model D is the extensional com-
pletion of itself: D = D̄.

Example 1.14.
(1) Scott’s D∞ [?] is the extensional completion of

|D| := {∗}, ≤D := id, jD := {(∅, ∗) 7→ ∗}.

The completion is a triple (|D∞|,≤D∞ , jD∞) where |D∞| is generated by:
|D∞| α, β ::= ∗ | a→α
|!D∞| a, b ∈ A f (|D∞|)

except that ∅→∗ < |D∞|; jD∞ is defined by jD∞(∅, ∗) = ∗ and jD∞(a, α) = a→α
for (a, α) , (∅, ∗).

(2) Park’s P∞ [?] is the extensional completion of

|P| := {∗}, ≤P := id, jP := {({∗}, ∗) 7→ ∗};

i.e., |P∞| is defined by the previous grammar except that ({∗}→∗) < |P∞| while ∅→∗ ∈ |P∞|.
(3) Norm or D∗∞ [?] is the extensional completion of

|E| := {p, q}, ≤E := id∪{p < q},
jE := {({p}, q) 7→q, ({q}, p)7→p}.
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~xi�
~x
D = {(~a, α) | α ≤ β ∈ ai} ~λy.M�~xD = {(~a, b→α) | (~ab, α) ∈ ~M�~xy

D }

~M N�~xD = {(~a, α) | ∃b, (~a, b→α) ∈ ~M�~xD ∧ ∀β∈b, (~a, β) ∈ ~N�~xD}

Figure 1. Direct interpretation of Λ in D

(4) Well-stratified K-models [?] are the extensional completions of some E respecting

∀(a, α)∈Dom( jE), a=∅.

(5) The inductive ω is the extensional completion of

|E| := N, ≤E := id, jE := {({k | k < n}, n) 7→n | n ∈ N}.

(6) The co-inductive Z is the extensional completion of

|E| := Z, ≤E := id , jE := {({n}, n + 1)7→n+1 | n ∈ Z}.

(7) Functionals H f (given f : N→ N) are the extensional completions of:

|E| := {∗} ∪ {αn
j | n ≥ 0, 1 ≤ j ≤ f (n)}, ≤E := id,

jE :=
{
(∅, ∗) 7→ ∗

}
∪

{
(∅, αn

j+1) 7→ αn
j | 1 ≤ j < f (n)

}
∪

{
({αn+1

1 }, ∗) 7→ αn
f (n) | n ∈ N∗

}
,

where (αn
j)n, j is a family of atoms different from ∗.

For the sake of simplicity, from now on we will work with a fixed extensional K-model D. Moreover,
we will use the notation a→α := iD(a, α) . Notice that, due to the injectivity of iD, any α ∈ D can
be uniquely rewritten into a→α′, and more generally into a1→· · ·→an→αn for any n.

Remark 1.15. Using this notations, the model H f can be summarized by writing, for each n:

αn
1 = ∅→ · · ·→∅︸       ︷︷       ︸

f (n)

→{αn+1
1 }→∗

1.2.3. Interpretation of the λ-calculus.

The Cartesian closed structure of ScottL! endowed with the isomorphisms appD and absD of
the reflexive object induced by D (see Proposition ??) defines a standard model of the λ-calculus.

A term M with at most n free variables x1, . . . , xn is interpreted as the graph of a mor-
phism ~M�x1...xn

D from Dn to D (when n is obvious, we can use ~.�x̄). By Equations (??) and
(??) we have:

~M�x1...xn
D ⊆ (D⇒· · · ⇒ D⇒ D) ' (A f (D)op)n × D.

In Figure ??, we explicit the interpretation ~M�x1...xn
D by structural induction on M.

Example 1.16.
~λx.y�yD = {((a), b→α) | α ≤D β ∈ a},

~λx.x�yD = {((a), b→α) | α ≤D β ∈ b},
~I�D = {a→α | α ≤D β ∈ a},
~1�D = {a→b→α | ∃c, c→α ≤D β ∈ a, c ≤A f (D) b}.

In the last two cases, terms are interpreted in an empty environment. We, then, omit the empty
sequence associated with the empty environment, e.g., a→b→α stands for ((), a→b→α).
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α ∈ a
x : a ` x : α

Γ ` M : α
Γ, x : a ` M : α

Γ ` M : β α ≤ β

Γ ` M : α

Γ, x : a ` M : α
Γ ` λx.M : a→α

Γ ` M : a→α ∀β ∈ a, Γ ` N : β
Γ ` M N : α

Figure 2. Intersection type system computing the interpretation in D

We can verify that extensionality holds, indeed ~1�D = ~I�D, since c→α ≤D β ∈ a and c ≤A f (D) b
exactly say that b→α≤D β∈a, and since any element of γ∈D is equal to d→δ for a suitable d and δ.

1.2.4. Intersection types.

It is folklore that the interpretation of the λ-calculus into a given K-model D is characterized
by a specific intersection type system. In fact any element α ∈ D can be seen as an intersection type

α1 ∧ · · · ∧ αn → β given by α = {α1, . . . , αn}→β.

In Figure ??, we give the intersection-type assignment corresponding to the K-model induced by D.

Proposition 1.17. Let M be a term of Λ, the following statements are equivalent:
• (~a, α) ∈ ~M�~xD,
• the type judgment ~x : ~a ` M : α is derivable by the rules of Figure ??.

Proof. By structural induction on the grammar of Λ.

1.3. The result.

We state our main result, showing an equivalence between hyperimmunity (Def. ??) and full
abstraction forH∗.

Definition 1.18 (Hyperimmunity). A (possibly partial) extensional K-model D is said to be hyper-
immune if for every sequence (αn)n≥0 ∈ DN, there is no recursive function g : N→N satisfying, the
following condition for all n≥0:

αn = an,1→· · ·→an,g(n)→α
′
n and αn+1 ∈

⋃
k≤g(n)

an,k. (1.3)

Notice, in the above definition, that each antichain an,i always exist and are uniquely determined
by the isomorphism between D and D ⇒ D that allow us to unfold any element αi as an arrow (of
any length).

The idea is the following. The sequence (αn)n≥0 is morally describing a non well-founded chain
of elements of D, through the isomorphism D ' D ⇒ D, allowing us to see any element αi as an
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arrow (of any length):

α0 = a0,1→· · · a0,i0 · · ·→a0,g(0)→α
′
0

∈

α1 = a1,1→· · · a1,i1 · · ·→a1,g(1)→α
′
1

∈

α2 = a2,1→· · · a2,i2 · · ·→ a2,g(2)→α
′
2

. . .

The growth rate (in)n of the chain (αn)n depends on how many arrows must be displayed in αi in
order to see αi+1 as an element of the antecedent of one of them. Now, hyperimmunity means that if
any such non-well founded chain (αn)n exists, then its growth rate (in)n cannot be bounded by any
recursive function g.

Remark 1.19. It would not be sufficient to simply consider the function n 7→ in such that αn+1∈an,in
rather than the bounding function g. Indeed, n 7→ in may not be recursive even while g is.

Proposition 1.20. For any extensional partial K-model E (Def. ??), the completion E (Def. ??) is
hyperimmune iff E is hyperimmune.

Proof. The left-to-right implication is trivial.
The right-to-left one is obtained by contradiction:
Assume to have a (αn)n≥0 ∈ ĒN and a recursive function g : N→ N such that for all n ≥ 0:

αn = an,1→· · ·→an,g(n)→α
′
n and αn+1 ∈

⋃
i≤g(n)

an,i

Recall that the sequence (Ek)k≥0 of Definition ?? approximates the completion Ē.
Then we have the following:

• There exists k such that α0 ∈ Ek, because α0 ∈ Ē =
⋃

k Ek.
• If αn ∈ E j+1, then αn+1 ∈ E j, because there is i ≤ g(n) such that αn+1 ∈ an,i ⊆ E j.
• If αn ∈ E0 = E, then αn+1 ∈ E by surjectivity of jE .

Thus there is k such that (αn)n≥k ∈ EN, which would break hyperimmunity of E.

Example 1.21. • The well-stratified K-models of Example ??(??) (and in particular D∞ of
Item (??)) are trivially hyperimmune: already in the partial K-model, there are not even
α1, α2 and n such that α1 = a1→· · ·→an→α

′
1 and α2 ∈ an (since an = ∅). The non-

hyperimmunity of the partial K-model can be extended to the completion using Proposi-
tion ??.
• The model ω (Ex. ??(??)) is hyperimmune. Indeed, any such (αn)n in the partial K-model

would respect αn+1<Nαn,hence (αn)n must be finite by well-foundation of N.
• The models P∞, D∗∞ and Z (Examples ??(??), (??) and (??)) are not hyperimmune. Indeed

for all of them g = (n 7→ 1) satisfies the condition of Equation (??), the respective non-well
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founded chains (αi)i being (∗, ∗, . . . ), (p, q, p, q, . . . ), and (0,−1,−2, . . . ):

∗ = {∗} → ∗ p = {q} → p 0 = {1} → 0

∈ ∈ ∈

∗ = {∗} → ∗ q = {p} → q 1 = {2} → 1

∈ ∈ ∈

∗ = {∗} → ∗ p = {q} → p 2 = {3} → 2

. . .
. . .

. . .

• More interestingly, the model H f (Ex. ??(??)) is hyperimmune iff f is a hyperimmune
function [?], i.e., iff there is no recursive g : N → N such that f ≤ g (pointwise order);
otherwise the corresponding sequence is (αi

1)i.

α0
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (0) times

→{α1
1} → ∅ → · · · → ∅ → ∗

∈

α1
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (1) times

→{α2
1} → ∅ → · · · → ∅ → ∗

∈

α2
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (2) times

→{α3
1} → ∅ → · · · → ∅ → ∗

∈

. . .

The following theorem constitutes the main result of the paper. It shows the equivalence be-
tween hyperimmunity and (inequational) full abstraction for H∗ under a certain condition. This
conditions, namely the test-sensibility, is a new property that will be defined in more details in
Definition ??.

Theorem 1.22. For any extensional and test-sensible (Def. ??) K-model D, the following are equiv-
alent:

(1) D is hyperimmune,
(2) D is inequationally fully abstract forH∗,
(3) D is fully abstract forH∗.

Example 1.23. The model D∞ (Ex.??(??)), the model ω (Ex.??(??)) and the well-stratified K-
models (Ex.??(??)) will be shown inequationally fully abstract, as well as the models H f when f is
hyperimmune. The models D∗∞, Z (Ex.??(??) and Ex.??(??)) will not be, as well as the model H f

for f not hyperimmune.

As for the traditional proof of full abstraction for theH∗, the main idea of our proof is to use a
middle step between our calculus and our models. However, this time the proxy will not be a kind of
syntactical model (the Böhm trees), but a kind of semantical calculus, more exactly a set of calculi
that we call λ-calculi with D-tests (Def. ??). The traditional interest over Böhm trees lies in the
fact that they are “syntactical models” directly inspired by the calculus (here the λ-calculus); thus,
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taking the opposite view, we will use “semantical calculi” that are directly inspired by the model
(and that are dependent on the K-model D).

Given a K-model D, the λ-calculus with D-tests, denoted Λτ(D), is an extension of the un-
typed λ-calculus that can itself be interpreted in D (Def. ??):

Λ D

Λτ(D)

~.�
⊆ ~.�

The interest of Λτ(D) relies on the definition of sensibility for Λτ(D) (Def. ??), which easily
implies the full abstraction of D for Λτ(D) (Th. ??), even if not for the λ-calculus. Therefore, it
remains to understand when the observational equivalence is preserved from Λ to Λτ(D):

Λ Λτ(D)

M M

N N

⊆

id

≡H∗ ≡τ(D)

id

The proof splits in the two directions: inequational full abstraction implies hyperimmunity
(Sec. ?? and Th. ??) and the non-full abstraction forH∗ gives a counterexample to hyperimmunity
(Sec. ?? and Th. ??). However, the proofs will rely on syntactical properties of Λτ(D) such as
confluence (Th. ??) and standardization (Th. ??).

2. λ-calculi with D-tests

2.1. Syntax.
The original idea of using tests to recover full abstraction (via a theorem of definability) is due
to Bucciarelli et al. [?]. Here we define variants of Bucciarelli et al.’s calculus adapted to our
framework.

Directly dependent on a given K-model D, the λ-calculus with D-tests Λτ(D) is, to some extent,
an internal calculus for D. In fact, we will see that, for D to be fully abstract for Λτ(D), it is sufficient
to be sensible (Th. ??).

The idea is to introduce tests as a new kind in the syntax. Tests Q ∈ Tτ(D) are sort of co-terms,
in the sense that their interpretations are maps from the context to the dualizing object of the linear
category ScottL (⊥ = {∗}):

~Q�x1...xn ∈ Dn ⇒ ⊥

The type ⊥ is the unit type, having only one value representing the convergence of the evaluation,
seen as a success.4

The interaction between terms and tests is carried out by two groups of operations indexed by
the elements α ∈ D:

τα : Λτ(D) → Tτ(D) and τ̄α : Tτ(D) → Λτ(D).

The first operation, τα, will verify that its argument M ∈ Λτ(D) has the point α in its interpre-
tation. Intuitively, this is performed by recursively unfolding the Böhm tree of M and succeeding

4We will see in Remark ?? that in a polarized context, the behavior of test does not correspond to co-term (or stack), but
to commands (or processes), i.e., to interactions between usual terms and fictive co-terms extracted from the semantics.
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(term) Λτ(D) M,N ::= x | λx.M | M N |
∑

i≤n τ̄αi(Qi) ,∀(αi)i ∈ Dn, n ≥ 0

(test) Tτ(D) P,Q ::=
∑

i≤n Pi |
∏

i≤n Pi | τα(M) ,∀α ∈ D, n ≥ 0

Figure 3. Grammar of the calculus with D-tests

(i.e., converging) when α is in the interpretation of the finite unfolded Böhm tree. If α < ~M�,
the test τα(M) will either diverge or refute (raising a 0 considered as an error). Concretely, it is an
infinite application that feeds its argument with empty τ̄ operators.

The second operator, τ̄α, simply constructs a term of interpretation ↓α if its argument succeeds
and diverges otherwise. Concretely, it is an infinite abstraction that runs its test argument, but also
tests each of its applicants using τ operators.

In addition to these operators, we use sums and products as ways to introduce may (for the
addition) and must (for the multiplication) non-determinism; in the spirit of the λ+||-calculus [?].
Indeed, these two forms of non-determinism are necessary to explore the branching of Böhm trees.

The idea of these two operators is to use the parametricity of our terms toward their intersection
types. As a result, τ̄α(ε) (further on denoted ε̄α), that transfers the always succeeding test ε into
a term of interpretation ↓α, constitutes the canonical term of type α; its behavior is exactly the
common behavior of every term of type α. Symmetrically, the test τα(M) will verify whether M
behaves like a term of type α.

Hereafter, D denotes a fixed extensional K-model.

Definition 2.1. The λ-calculus with D-tests, for short Λτ(D), is given by the grammar in Figure ??.
We denote the empty sum by 0, and the empty product by ε. Binary sums (resp. products) can be
written with infix notation, e.g. P+Q (resp P·Q).

Moreover, we use the notation ε̄α := τ̄α(ε) and ε̄a :=
∑
α∈a ε̄α; which are terms.

Sums and products are considered as multisets, in particular we suppose associativity, commu-
tativity and neutrality with, respectively, 0 and ε.

In the following, an abstraction can refer either to a λ-abstraction or to a sum of τ̄ operators.
This notation is justified by the behavior of Σiτ̄αi(Qi) that mimics an infinite abstraction.

The operational semantics is given by three sets of rules in Figure ??. The main rules of
Figure ?? are the effective rewriting rules. The distributive rules of Figure ?? implement the distri-
bution of the sum over the test-operators and the product. The small step semantics → is the free
contextual closure (i.e., by the rules of Figure ??) of the rules of Figures ?? and ??. The contextual
rules of Figure ?? implement the head reduction→h that is the specific contextual extension we are
considering.

Example 2.2. The operational behavior of D-tests depends on D. Recall the K-models of Exam-
ple ??. In the case of Scott’s D∞ we have in Λτ(D∞):

τ∗((λxy.x y) ε̄∗)
β
→h τ∗(λy.ε̄∗ y)

τ
→h τ∗(ε̄∗ ε̄∅)

τ̄
→h τ∗(ε̄∗) = τ∗(τ̄∗(ε))

ττ̄
→h ε,

τ∗((λxy.y x) ε̄∗)
β
→h τ∗(λy.y ε̄∗)

τ
→h τ∗(ε̄∅ ε̄∗)

= τ∗(0 ε̄∗)
τ̄
→h τ∗(0)

ττ̄
→h 0.
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(β) (λx.M) N → M[N/x]

(τ̄) ∀βi = ai→αi, (Σiτ̄βi(Qi)) N → Σiτ̄αi(Qi · Πγ∈aiτγ(N))

(τ) ∀β = a→α, τβ(λx.M) → τα(M[ε̄a/x])

(ττ̄) ∀α,∀(βi)i, τα(Σiτ̄βi(Qi)) → Σ{i|α≤βi}Qi

(a) Main rules

(·+) Πi≤nΣ j≤ki Qi, j → Σ j1≤k1,..., jn≤knΠi≤nQi, ji

(τ̄+) τ̄α(ΣiQi) → Σiτ̄α(Qi)

(b) Distribution of the sum

M →h M′
(h-cλ)

λx.M →h λx.M′
M →h M′ M is an application

(h-c@)
M N →h M′ N

M →h M′ M is an application
(h-cτ)

τα(M)→h τα(M′)
Q→h Q′ Q is not a sum

(h-cτ̄)
τ̄α(Q)→h τ̄α(Q′)

M →h M′
(h-cs)

M + N →h M′ + N
Q→h Q′

(h-c+)
Q + P→h Q′ + P

Q→h Q′ Q is not a sum
(h-c·)

Q·P→h Q′·P

(c) Contextual rules for the head reduction

M → M′ (cλ)
λx.M → λx.M′

M → M′ (c@L)
M N → M′ N

N → N′ (c@R)
M N → M N′

M → M′ (cτ)
τα(M)→ τα(M′)

Q→ Q′
(cτ̄)

τ̄α(Q)→ τ̄α(Q′)

M → M′ (cs)
M + N → M′ + N

Q→ Q′
(c+)

Q + P→ Q′ + P
Q→ Q′

(c·)
Q·P→ Q′·P

(d) Contextual rules for the full reduction

Figure 4. Operational semantics of the calculus with D-tests
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In the case of Park P∞:

τ∗(λx.xx)
τ
→h τ∗(ε̄∗ ε̄∗)

τ̄
→h τ∗(τ̄∗(τ∗(ε̄∗)))

ττ̄
→h

ττ̄
→h ε.

In the case of Norm:

τp(λx.x)
τ
→h τp(ε̄q)

ττ̄
→h ε, τq(λx.x)

τ
→h τq(ε̄ p)

ττ̄
→h 0.

Example 2.3. In any K-model D, given α = a1→· · ·→an+1→β ∈ D, and if we denote
α′ = a2→· · ·→an+1→β we have:

ε̄α M1 · · ·Mn+1
τ̄
→h τ̄α′(Πγ∈a1τγ(M1)) M2 · · ·Mn+1

τ̄
→n

h τ̄β(Πi≤n+1Πγ∈aiτγ(Mi))

Remark 2.4. In a polarized (or classical) framework with explicit co-terms (or stacks) as the frame-
work presented in [?], tests would correspond to commands (or processes), or, more exactly, to
conjunctions and disjunctions of commands. Indeed, a test τα(M) is nothing else than the command
〈M | πα〉 where πα would be the canonical co-term of interpretation ↑α, the same way that ε̄α is the
canonical term of interpretation ↓α. Similarly, the term τ̄(Q) can be seen as the canonical term ε̄α
endowed with a parallel composition referring to the set of commands Q. To resume, we have:

τα(M) ' 〈M | ↑α〉 〈τ̄α(Q) | π〉 ' 〈↓α | π〉·Q

Remark 2.5. In the conference version [?], the rule (ττ̄) is decomposed into three rules (the dis-
tribution of the sum over τ, denoted (τ+) and two versions of (ττ̄) depending on whether α ≤ β).
This decomposition was easier to understand as more atomic, but ultimately it always reproduces
our actual rule (ττ̄) and does not permit to use Theorem ??.

Proposition 2.6. A test is in head-normal form iff it has the following shape:

Σi≤kΠ jταi, j(xi, j M1
i, j · · · Mn

i, j),

with k ≥ 1 and Mk
i, j any term.

A term is in head-normal form if it has one of the following shapes:

λx1....xn.y M1 · · · Mm, or λx1...xn.Σi≤kτ̄αi(Qi),

where m, n ≥ 0, k ≥ 1, (αi)i ∈ Dk, Mi is any term, and every Qi any test in head-normal form
without sums.

Proof. By structural induction on the grammar of Λτ(D). In particular, notice that any test of the
shape τα(λx.M) is not a head-normal form because iD is surjective and thus α = a→β for some a, β
and we can apply Rule (τ).

Definition 2.7. A term (resp. test) is head-converging if it head reduces to a may-head-normal
form (denoted mhnf) that is either a head-normal form or a term (resp. test) of the form

λx1...xn.(τ̄α(Q) + N) resp. Q1 + Q2

with τ̄α(Q) (resp. Q1) in head-normal form and N any term (resp. Q2 any test). This corresponds to a
may-convergence for the sum. Coherently with the head convergence in λ-calculus, the convergence
will be denoted by ⇓h and the divergence by ⇑h.

Example 2.8. For any n ∈ N, the term n (λx.τ̄α(τα(x)+τβ(x))) ε̄α may-head-converges.
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(term-context) Λ
(|·|)
τ(D) C ::= x | (|.|) | C C′ | λx.C |

∑
i≤n τ̄αi(Ki) ,∀(αi)i ∈ Dn, n ≥ 0

(test-context) T(|·|)
τ(D) K ::=

∑
i≤n Ki |

∏
i≤n Ki | τα(C) ,∀α ∈ D, n ≥ 0

Figure 5. Grammar of the contexts in a calculus with D-tests

~xi�
~x
D = {(~a, α) | α ≤ β ∈ ai} ~λy.M�~xD = {(~a, (b→α)) | (~ab, α) ∈ ~M�~xy

D }

~M N�~xD = {(~a, α) | ∃b, (~a, (b→α)) ∈ ~M�~xD ∧ ∀β∈b, (~a, β) ∈ ~N�~xD}

(a) Interpretation of Λ

~Σi≤kτ̄αi(Qi)�~xD =
⋃

i≤k{(~a, β) | ~a ∈ ~Qi�
~x
D ∧ β ≤D αi} ~0�~xD = ∅

~τα(M)�~xD = {~a | (~a, α) ∈ ~M�~xD}

~Πi≤kQi�
~x
D =

⋂
i≤k~Qi�

~x
D ~ε�~xD = A f (D)~x ~Σi≤kQi�

~x
D =

⋃
i≤k~Qi�

~x
D ~0�~xD = ∅

(b) Interpretation of tests extensions

Figure 6. Direct interpretation in D

Let us notice that this calculus enjoys the properties of confluence and standardization (Th. ??
and Th. ??). We also have another syntactical theorem stating invariance wrt the head-convergence
in at most n steps, denoted ⇓h

n (Theorem ??). This means that performing a non-head reduction can
only reduce the length of convergence.

Definition 2.9. Grammars of term-contexts Λ
(|·|)
τ(D) and test-contexts T(|·|)

τ(D) are given in Figure ??.

Definition 2.10. The observational preorder vτ(D) of Λτ(D) is defined by:
M vτ(D) N iff (∀K∈T(|·|)

τ(D), K(|M|)⇓h implies K(|N |)⇓h).

We denote by ≡τ(D) the observational equivalence, i.e., the equivalence induced by vτ(D).

Remark 2.11. The observational preorder could have been defined using term-contexts rather than
test-contexts, but this appears to be equivalent and test-contexts are easier to manipulate (because
normal forms for tests are simpler).

Proof. For any test Q and for any α, Q⇓h iff τ̄α(Q)⇓h. Conversely, for all M, there is n ∈ N and α ∈ D
such M⇓h iff τα(Mx0· · ·

n
x0)⇓h (remark that if N diverges, then τα(N x0· · ·x0︸  ︷︷  ︸

n times

)⇑h).

2.2. Semantics.
The standard interpretation of Λ into D (Fig. ?? and recalled here in Figure ??) can be extended
to Λτ(D) (Fig. ??).

Definition 2.12. A term M with n free variables is interpreted as a morphism (Scott-continuous
function) from Dn to D and a test Q with n free variables as a morphism from Dn to the dualizing
object {∗} (singleton poset):

~M�x1,...,xn
D ⊆ (D⇒· · · ⇒ D⇒ D) ' (A f (D)op)n × D

~Q�x1,...,xn
D ⊆ (D⇒· · · ⇒ D⇒ {∗}) ' (A f (D)op)n

This interpretation is given in Figure ?? by structural induction.
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α ∈ a
x : a ` x : α

Γ ` M : α
Γ, x : a ` M : α

Γ ` M : β α ≤ β

Γ ` M : α

Γ, x : a ` M : α
Γ ` λx.M : a→α

Γ ` M : a→α ∀β ∈ a, Γ ` N : β
Γ ` M N : α

∃i ≤ n, Γ ` Qi

Γ ` Σi≤nτ̄αi(Qi) : αi

Γ ` M : α
Γ ` τα(M)

∃i ≤ n, Γ ` Qi

Γ ` Σi≤nQi

∀i ≤ n, Γ ` Qi

Γ ` Πi≤nQi

Figure 7. Intersection type system associated with tests extensions

Proposition 2.13. For any extensional K-model D, D is a model of the λ-calculus with D-tests, i.e.,
the interpretation is invariant under reduction.

Proof. The invariance under β-reduction is obtained, as usual, by the Cartesian closedness of ScottL!.
The other rules are easy to check directly.

Proposition 2.14. For any extensional K-model D, the interpretation is invariant by context,
i.e., ~M�~x = ~N�~x implies that for any test/term-context C, ~C(|M|)�~x = ~C(|N |)�~x.

Proof. By easy induction on C.

The idea of intersection types can be generalized to Λτ(D). We introduce in Figure ?? a type as-
signment system associating with any term M ∈ Λτ(D) an element of D under an environment (xi:ai)i
with ai ∈ A f (D). The following theorem gives the equivalence between the interpretation of a term
and the set of judgments derivable from the type system.

Theorem 2.15 (Intersection types). Let M be a term of Λτ(D), (resp. Q be a test of Tτ(D)), the
following statements are equivalent:

• (~a, α) ∈ ~M�~xD (resp. ~a ∈ ~Q�~xD),
• the type judgment ~x : ~a ` M : α (resp. ~x : ~a ` Q) is derivable by the rules of Figure ??.

Proof. By structural induction on the grammar of Λτ(D).

Remark 2.16. In particular, an easy induction gives that if ` M[N/x] : α then there is a such
that N : a ` M : α.

2.2.1. Full abstraction and sensibility for tests.
The main theorem (Th. ??) uses the assumption of sensibility of D for Λτ(D). The sensibility is
simply asking for the diverging terms M ∈ Λτ(D) to have empty interpretation as specified in Defini-
tion ??. Its interest is in implying directly the inequational full abstraction of D for Λτ(D) (i.e. for its
observational preorder) as we will see in Theorem ??. The proof of Theorem ?? needs a technical
counterpart that is basically the definability of Λτ(D) stated in Theorem ??. This definability theorem
is not usual and appears to be stronger and more useful for future developments.

First we recall the definition of sensibility:

Definition 2.17. An extensional K-model D is sensible for Λτ(D) whenever diverging terms (resp.
tests) correspond exactly to the terms (resp. tests) having empty interpretation, i.e., for all M ∈ Λτ(D)
and Q ∈ Tτ(D):

M⇑h ⇔ ~M�~xD = ∅ Q⇑h ⇔ ~Q�~xD = ∅
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Lemma 2.18. If D is sensible for Λτ(D) then:

(~ab, α) ∈ ~M�~yx ⇔ (~a, α) ∈ ~M[ε̄b/x]�~y,

(~a, α) ∈ ~M�~y ⇔ ~a ∈ ~τα(M)�~y.

Proof. This lemma and its test counterpart is proved by a straightforward induction on M (and Q of
the test version).

Theorem 2.19 (Definability). If D is sensible for Λτ(D) then:

(~a, α) ∈ ~M�~x ⇔ τα(M[(ε̄ai/xi)i≤n])⇓h.

Proof. If (~a, α) ∈ ~M�~x then ~τα(M[(ε̄ai/xi)i≤n])� is not empty by Lemma ??, thus it converges by
sensibility. Conversely, if τα(M[(ε̄ai/xi)i≤n])⇓h then its interpretation is non empty, which means
that in particular ∗∈~τα(M[(ε̄ai/xi)i≤n])� (where ∗ denotes the only inhabitant of ⊥) and thus, by
Lemma ??, (~a, α) ∈ ~M�~x.

Theorem 2.20 (full abstraction). For any extensional K-model D, if D is sensible for Λτ(D), then D
is inequationally fully abstract for the observational preorder of Λτ(D):

~M� ⊆ ~N� ⇔ ∀C ∈ T(|·|)
τ(D),C(|M|)⇓h ⇒ C(|N |)⇓h.

Proof. Let ~M� ⊆ ~N� and C(|M|)⇓h. Then by sensibility we have that ~C(|M|)� is non-empty.
Moreover, by Proposition ?? we have that ~C(|M|)� ⊆ ~C(|N |)�. Thus ~C(|N |)� is non-empty and by
sensibility, C(|N |)⇓h.
Conversely, suppose that for all context C ∈ T(|·|)

τ(D),C(|M|)⇓h ⇒ C(|N |)⇓h and let (~a, α) ∈ ~M�~x:
Then by Theorem ??, τα(M[(ε̄ai/xi)i≤n])⇓h where n is the length of ~a. Thus, after stating the context
C = τα((λx...xn.(|.|)) ε̄a1 · · · ε̄an), we have C(|M|)→n

h τα(M[(ε̄ai/xi)i≤n])⇓h which implies that C(|N |)⇓h.
However, there is no choice5 for the n first head reductions of C(|N |), those are forced to be C(|N|)→n

h
τα(N[(ε̄ai/xi)i≤n]) so that this term is head-converging. Then by applying the reverse implication of
Theorem ?? we conclude (~a, α) ∈ ~N�~x.

2.3. Technical theorems.

2.3.1. Confluence.
This section is dedicated to the proof of Theorem ?? stating the confluence of the reduction → in
Λτ(D). The proof uses the diamond property of the full parallel reduction, following the proof of [?]
for the λ-calculus.

We define first the parallel reduction⇒ in Figure ??, allowing the parallel reduction of inde-
pendent redexes.

Lemma 2.21. If M ⇒ N then M →∗ N and if M →∗ N then M ⇒∗ N.
In particular we have⇒∗=→∗.

Proof. Firstly remark that⇒ is reflexive. Indeed, when we proceed by induction the only difficult
case is ε ⇒ ε that is obtained by Rule (P-·+) for n = 0.
Rules with similar names are then simulating each other except for

5We have to verify that this are the only possible reductions because in general the head-reduction is not determonistic
in Λτ(D).
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M ⇒ M′ N ⇒ N′ (P-β)
(λx.M) N ⇒ M′[N′/x]

M ⇒ M′ ∀i, Qi ⇒ Σ jQ′i j (P-τ̄)
Σiτ̄ai→αi(Qi) M ⇒ Σi jτ̄αi(Q

′
i j · Πγ∈aiτγ(M′))

M ⇒ M′ (P-τ)
τa→α(λx.M)⇒ τα(M′[ε̄a/x])

∀i,Qi ⇒ Q′i (P-ττ̄)
τα(Σiτ̄βi(Qi))⇒ Σ{i|α≤βi}Q

′
i

(a) Main rules

∀i, Qi ⇒ Q′i (P-τ̄+)
τ̄α(ΣiQi)⇒ Σiτ̄α(Q′i)

∀i j, Qi j ⇒ Q′i j (P-·+)
Πi≤nΣ j≤ki Qi j ⇒ Σ j1≤k1,...,kn≤knΠi≤nQ′i ji

(b) Distribution of the sum

(P-id)x⇒ x
M ⇒ M′ (P-cλ)

λx.M ⇒ λx.M′
M ⇒ M′ N ⇒ N′ (P-c@)

M N ⇒ M′ N′

M ⇒ M′ (P-cτ)
τα(M)⇒ τα(M′)

∀i, Mi ⇒ M′i (P-cs)
ΣiMi ⇒ ΣiM′i

(c) Contextual rules

Figure 8. Operational Semantics of parallel reduction

• (c@L) and (c@R) that are simulated by (P-c@).
• (P-id) that is simulated by→ε (the reduction in 0 step).
• (c+) that is a particular case of (P-·+) with n = 1 and k1 = 2.
• (c·) that is a particular case of (P-·+) with n = 2 and k1 = k2 = 1.
• (cτ̄) that is a particular case of (P-τ̄+) where the sum has one element.

For a term M (resp. a test Q) we define the maximal parallel reduct M+ (resp. Q+) by induction
on M and Q in Figure ??. Recall that by abstractions, we not only mean λ-abstractions, but also
terms of the form Σiτ̄αi(Qi).

Lemma 2.22. For any M (resp. Q), M+ (resp. Q+) is well defined.

Proof. By induction, since it is always the case that exactly one rule is applied.

Lemma 2.23. If M ⇒ N (resp. Q⇒ P) then N ⇒ M+ (resp. P⇒ Q+).

Proof. By induction on M:
• If M = x:

Then N = x⇒ x = M+.
• If M = λx.M′:

Then N = λx.N′ for some N′ such that M′ ⇒ N′.
By IH, N′ ⇒ M′+ and thus N ⇒ λx.M′+ = M+.
• If M = M1 M2:

– If M1 is not an abstraction:
Then N = N1 N2 with M1 ⇒ N1 and M2 ⇒ N2.
By IH, N1 ⇒ M+

1 and N2 ⇒ M+
2 , thus N ⇒ M+

1 M+
2 = M+.
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(T -β)
((λx.M) N)+ := M+[N+/x]

∀i, Q+
i = Σ jQ′i j ∀ j, Q′i, j are not sums

(T -τ̄)
((Σiτ̄ai→αi(Qi)) M)+ := Σi jτ̄αi(Q

′
i j · Πγ∈aiτγ(M+))

(T -τ)
τa→α(λx.M)+ := τα(M+[ε̄a/x])

∀i ∈ I, α ≤D βi ∀i ∈ J, α 6≤D βi (T -ττ̄)
τα(Σi∈I∪J τ̄βi(Qi))+ := Σi∈IQ+

i

(a) Main rules

∀i, Qi are not sums
(T -τ̄+)

τ̄α(ΣiQi)+ := Σiτ̄α(Q+
i )

n , 1 or k1 , 1 the Qi j are not sums
(T -·+)

(Πi≤nΣ j≤ki Qi j)+ := Σ j1≤k1,...,kn≤knΠi≤nQ+
i ji

(b) Distribution of the sum

(T -id)
x+ := x

(T -cλ)
(λx.M)+ ⇒ λx.M+

M is not an abstraction (T -c@)
(M N)+ := M+ N+

M is not an abstraction (T -cτ)
τα(M) := τα(M+)

k , 1 (T -cs)
(Σi≤kMi)+ := Σi≤kM+

i
(c) Contextual rules

Figure 9. Full parallel reduction

– If M1 = λx.M0:
∗ Either N = (λx.N0) N2 with Mi ⇒ Ni (for i ∈ {0, 2}).

By IH, Ni ⇒ M+
i and N ⇒ M+

0 [M+
2 /x] = M+.

∗ Or N = N1[N2/x] with Mi ⇒ Ni (for i ∈ {0, 2}).
By IH, Ni ⇒ M+

i and N ⇒ M+
0 [M+

2 /x] = M+.
– If M1 = Σi∈I τ̄ai→αi(Qi):

∗ Either N = (Σi, jτ̄a→αi(Pi, j)) N2 with M2 ⇒ N2 and Qi = ΣiP′i, j and P′i, j ⇒ Pi, j .
By IH, N2 ⇒ M+

2 and, moreover,
Pi, j ⇒ Q+

i, j = ΣkQ′i, j,k where Q′i, j,k that are not sums.
Thus N ⇒ Σi, j,kτ̄αi(Q

′
i, j,k·Πγ∈aiτγ(M+

2 )) = M+.
∗ Or N = Σi, jτ̄αi(Pi, j·Πγ∈aiτγ(N2)) with M2 ⇒ N2 and Qi ⇒ Σ jPi, j.

By IH, N2 ⇒ M+
2 and, moreover,

Σ jPi, j ⇒ Q+
i = Σ j,kQ′i, j,k where Q′i, j,k that are not sums and Pi, j ⇒ ΣkQ′i, j,k.

Thus N ⇒ Σi, j,kτ̄αi(Q
′
i, j,k·Πγ∈aiτγ(M+

2 )) = M+.
• If Q = τα(M):

– If M is not an abstraction:
Then P = τα(N) for some N such that M ⇒ N.
By IH, N ⇒ M+ and thus P⇒ λx.M+ = Q+.

– If α = a→α and M = λx.M′:
∗ Either P = τa→α(λx.N) with M ⇒ N.

By IH, N ⇒ M′+ and P⇒ τα(M′+[ε̄a/x]) = Q+.
∗ Or P = τα(N[ε̄a/x]) with M′ ⇒ N.

By IH, N ⇒ M′+ and P⇒ τα(M′+[ε̄a/x]) = Q+.
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– If M = Σiτ̄βi(Qi):
∗ Either N = τα(Σi, jτ̄βi(P

′
i, j)) with Qi = Σ jPi, j and Pi, j ⇒ P′i, j.

By IH, P′i, j ⇒ P+
i, j. Thus, N ⇒ Σ{i|α≤βi}Σ jP+

i, j = Σ{i|α≤βi}Q
+
i = Q+.

∗ Or N = Σ{i|α≤βi}Q
′
i with Qi ⇒ Q′i .

By IH, Q′i ⇒ Q+
i . Thus, N ⇒ Σi|α≤βi Q

+
i = Q+.

• If M = ΣiMi:
Then N = ΣiNi with Mi ⇒ Ni.
By IH, Ni ⇒ M+

i and N ⇒ ΣiM+
i = M+.

• If M = τ̄α(ΣiQi) where none of the Qi are sums:
Then we can only apply rules (P-τ̄+) and (P-·+). Thus there are J and a surjective function
φ : I → J such that N = Σ j∈J τ̄α(Σi∈φ−1( j)Pi) and Qi ⇒ Pi.
By IH, Pi ⇒ Q+

i and N ⇒ Σi∈I τ̄α(Q+
i ) = M+.

• If Q = Πi≤nΣ j≤ki Qi j where none of the Qi j are sums and where either n , 1 or one of the
ki , 1 :
Then there are, for all i ≤ n, Ji and φi : ~1, ki� → Ji such that P = Σ(ti)i∈(Ji)iΠi≤nΣ j|φ( j)=ti Pi j
with Qi j ⇒ Pi j.
By IH, Pi j ⇒ Q+

i j and P⇒ Σ j1≤k1... jn≤knΠi≤nQ+
i ji

= Q+.

Theorem 2.24 (Confluence). The calculus Λτ(D) with the reduction→ is confluent:

M →∗ M2

→
∗

 

→
∗

M1 →
∗ M′

Proof. By Lemma ??, ⇒ is strongly confluent. This means that, for any M1 ⇐ M ⇒ M2, we
have M1 ⇒ M+ ⇐ M2. By chasing diagrams, we obtain the confluence of⇒ and we conclude by
Lemma ?? stating that⇒∗=→∗.

2.3.2. Standardization theorem.
This section is dedicated to the proof of Theorem ?? stating a version of the standardization theorem
for Λτ(D). The proof is directly inspired by Kashima’s proof [?].

Definition 2.25. The standard reduction, denoted by⇒st is defined in Figure ??.

Proposition 2.26. We have the following inclusions:
• ⇒st ⊆ →

∗,
• id ⊆⇒st, i.e.,⇒st is reflexive,
• →∗h ⊆ ⇒st,
• ⇒st ⊆ →

∗
h→
∗
6h where→∗

6h is the reflexive transitive closure of→6h=→ − →h.

Proof. • The inclusion⇒st ⊆→
∗ is obtain by easy induction (using each time the transitivity

on→∗h⊆→
∗ and on the corresponding contextual rule of Figure ?? applied on the inductive

hypothesis).
• The inclusion id ⊆⇒st derives from an easy induction using id ⊆→∗h.
• The inclusion→∗h ⊆ ⇒st is obtained from a case analysis and the inclusion id ⊆⇒st.
• Let M,N ∈ Λτ(D) (resp. P,Q ∈ Tτ(D)) be such that M ⇒st N (resp. P⇒st Q). We will show

that M →∗h→
∗
6h N (resp. P→∗h→

∗
6h Q) by induction on N (resp. Q):
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M →∗h x
(S -x)

M ⇒st x
M →∗h λx.M0 M0 ⇒st N0

(S -λ)
M ⇒st λx.N0

M →∗h M1 M2 M1 ⇒st N1 M2 ⇒st N2
(S -@)

M ⇒st N1 N2

P→∗h τα(M) M ⇒st N
(S -τ)

P⇒st τα(N)
M →∗h Σiτ̄αi(Pi) ∀i, Pi ⇒st Qi

(S -τ̄)
M ⇒st Σiτ̄αi(Qi)

P→∗h ΣiPi ∀i, Pi ⇒st Qi
(S -+)

P⇒st ΣiQi

P→∗h ΠiPi ∀i, Pi ⇒st Qi
(S -·)

P⇒st ΠiQi

Figure 10. Definition of the standard reduction

– If N = x with M →∗h x: trivial.
– If N = λx.N0, then M →∗h λx.M0 and M0 ⇒st N0. By IH M0 →

∗
h→
∗
6h N0 so that Rule

(h-cλ) gives M →∗h λx.M0 →
∗
h→
∗
6h λx.N0.

– If N = N1 N2, then M →∗h M1 M2, M1 ⇒st N1 and M2 ⇒st N2. By induction
hypothesis M1 →

∗
h M′1 →

∗
6h N1 for some M′1 ∈ Λτ(D).

∗ If M′1 is not an abstraction, then there is no abstraction in the sequence
M1 →h · · · →h M′1 and by Rule (h-c@), M →∗h M1 M2 →

∗
h M′1 M2 →

∗
6h N1 M2.

∗ Otherwise, there is a first abstraction M′′1 such that M1 →
∗
h M′′1 →

∗ M′1 with no
abstraction in the sequence M1 →h · · · →h M′′1 .
In this case, by Rule (h-c@),
M →∗h M1 M2 →

∗
h M′′1 M2 →

∗
6h M′1 M2 →

∗
6h

N1 M2 →
∗
6h N1 N2.

– If Q = τα(N), then the argument is similar:
There is M such that P →∗h τα(M) and M ⇒st N. By IH, there is M′ such that M →∗h
M′ →∗

6h N. Either M′ is not an abstraction and since there is no abstraction in the se-
quence M→h · · ·→h M′, we have, by Rule (h-cτ), that P→h τα(M)→∗hτα(M′)→∗

6hτα(N).
Otherwise there is a first abstraction M′′ in the sequence M →h · →h M′′→h · · ·→hM′,
and we have, by Rule (h-cτ), that P→h τα(M)→∗h τα(M′′)→∗

6h τα(N).
– If N = Σiτ̄αi(Qi), there are (Pi)i such that M →∗h Σiτ̄αi(Pi) and Pi ⇒st Qi for all i.

By IH, for all i, Pi →
∗
h P′i →

∗
6h Qi for some P′i ∈ Λτ(D). For all i, if P′i is not a sum

(with n , 1 arguments) we set P′′i = P′i , otherwise there is a first sum P′′i such that
Pi →

∗
h P′′i →

∗
h P′i .

Then, using Rule (h-cτ̄) we have, for all i, τ̄αi(Pi)→∗h τ̄αi(P
′′
i )→∗

6h τ̄αi(Qi).
Thus, using Rule (h-cs), we have M →∗h Σiτ̄αi(Pi)→∗h Σiτ̄αi(P

′′
i )→∗

6h Σiτ̄αi(Qi).
– If Q = Πi(Qi) then the argument is similar:

There are (Pi)i such that P →∗h ΠiPi and Pi ⇒st Qi for all i. By IH, for all i,
Pi →

∗
h P′i →

∗
6h Qi for some P′i ∈ Λτ(D). For all i, if P′i is not a sum (with n , 1 argu-

ments) we set P′′i = P′i , otherwise there is a first sum P′′i such that Pi →
∗
h P′′i →

∗
h P′i .

Then, using Rule (h-c·), we have P→∗h ΠiPi →
∗
h ΣiP′′i →

∗
6h ΣiQi.

– If Q = Σi(Qi), there are (Pi)i such that P →∗h ΣiPi and Pi ⇒st Qi for all i. By IH, for
all i, Pi →

∗
h P′i →

∗
6h Qi and, by Rule (h-·), ΣiPi →

∗
h ΣiP′i →

∗
6h ΣiQi.

Lemma 2.27. Ultimately, sums will necessarily commutes with τ̄, with products and with τ:
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(1) If P→∗h Σ j≤kQ j, then there for all j ≤ k is P j →
∗
h Q j such that

τ̄α(P)→∗h Σ j≤kτ̄α(P j).

(2) Similarly, if P→∗h Σ j≤kQ j, then for all j ≤ k, there is P j →
∗
h Q j such that

Q·P→∗h Σ j(Q·P j).

(3) Similarly, if M →∗h Σ j≤kτ̄β j(Q j), then for all j ≤ k, there is P j →
∗
h Q j such that

τα(M)→∗h Σ{ j|β j≥α}P j.

Proof. The proof follows the exact same pattern for each cases.
(1) Let P→n

h Σ j≤kQ j. The proof is by induction on the lexicographically ordered (n, P).
• If n = 0 then this is Rule (τ̄+).
• If P = Σi≤k′P′i with k′ , 1, there is a surjective φ : [1, k] → [1, k′] such that P′i →

ni
h

Σ j∈φ−1(i)Q j with n = Σini. By IH on each P′i , there are (P j) j∈φ−1(i) such that, for all

i ≤ k′, τ̄α(P′i) →
∗
h Σ j∈φ−1(i)τ̄α(P j) with P j →

∗
h Q j. Thus τ̄α(P)

τ̄+
−→hΣi≤k′ τ̄α(P′i) →

∗
h

Σi≤k′Σ j∈φ−1(i)τ̄α(P j).
• Otherwise, we can decompose the reduction by P→h P′ →n−1

h Σ j≤kQ j. Since P is not
a sum we can apply the rule H-cτ̄ so that τ̄α(P) →h τ̄α(P′) and we conclude since by
IH, τ̄α(P′)→∗h Σ j≤kτ̄α(P j).

(2) Let P→n
h Σ j≤kQ j. The proof is by induction on the lexicographically ordered (n, P).

• If n = 0 then this is Rule (·+).
• If P = Σi≤k′P′i with k′ , 1, there is a surjective φ : [1, k] → [1, k′] such that

P′i →
ni
h Σ j∈φ−1(i)Q j with n = Σini. By IH on each P′i , there are (P j) j∈φ−1(i) such that,

for all i, (Q·Pi) →∗h Σ j∈φ−1(i)(Q·P j) with P j →
∗
h Q j. Thus Q·P

·+
−→hΣi≤k′(Q·Pi) →∗h

Σi≤k′Σ j∈φ−1(i)(Q·P j).
• Otherwise, we can decompose the reduction by P→h P′ →n−1

h Σ j≤kQ j. Since P is not
a sum we can apply the rule H-c· so that Q·P →h Q·P′ and we conclude since by IH,
Q·P′ →∗h Σ j≤kQ·P j.

(3) Let M →n
h Σ j≤kτ̄α(Q j). The proof is by induction on the lexicographically ordered (n,M):

• If n = 0 then this is Rule (ττ̄).
• If M = Σi≤k′ τ̄γi(P

′
i) with k′ , 1, there is a surjective φ : [1, k] → [1, k′] such that

τ̄γi(P
′
i) →

ni
h Σ j∈φ−1(i)τ̄β j Q j with n = Σini. By IH on each τ̄γi(P

′
i), there are (P j) j≤φ−1(i)

such that, for all i, τα(τ̄γi(P
′
i))→

∗
h Σ{ j∈φ−1(i)|α≤β j}

P j with P j →
∗
h Q j. Since the only head

reduction that can be applied on each τα(τ̄γi(P
′
i)) is (h-ττ̄), we have that τα(M) →h

Σ{ı|α≤γi}Pi →
∗
h Σ jQ j.

• The case M = λx.M′ is impossible since M →∗ Σ jτ̄β j(Q j) and no rule can erase a λ in
first position.
• Otherwise, we can decompose the reduction by M →h M′ →n−1

h Σ j≤kτ̄β j(Q j). Since
M is not an abstraction we can apply the rule (h-τ) so that τα(M) →h τα(M′) and we
conclude since by IH, τα(M′)→∗h Σ{ j|β j≥α}P j.

Lemma 2.28. For all M,N,N′ ∈ Λτ(D) such that M ⇒st N → N′, there is M′ such that M ⇒st N′.
Similarly, for all P,Q,Q′ ∈ Tτ(D) such that P⇒st Q→ Q′, there is P′ such that P⇒st Q′.

Proof. We proceed by structural induction on N:
• The case N = x is impossible since x is a normal form.
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• If N = λx.N0 then N0 → N′0 with N′ = λx.N′0. By definition of ⇒st, M →∗h λx.M0 and
M0 ⇒st N0. By IH, M0 ⇒st N′0, thus M ⇒st λx.N′0.

• The case N = 0 is impossible since 0 is a normal form.
• If N = τ̄α(Q) then the only rule that can change the form of the expression is (τ̄+) applied

in head position:

– Either N = τ̄α(Σ jQ j)
τ̄+
−→ hN′ = Σ jτ̄α(Q j). By definition of ⇒st, M →∗h τ̄α(P) and

P →∗h Σ jP j with P j ⇒st Q j. Thus, by Lemma ??, there is (P′j) j such that M →∗h
Σ jτ̄α(P′j) with P′j →

∗ P j ⇒st Q j, so that M ⇒st N′.
– Otherwise, Q→ Q′ and N′ = τ̄α(Q′). In this case, since M →∗h τ̄α(P) and P⇒st Q→

Q′, we can apply the IH so that P⇒st Q′ and M ⇒st τ̄α(Q′).
• Let N = Σi≤nNi with n > 0. Then, modulo commutativity of the sum, we can assume that

Nn → N′n, so that N′ = Σi<nNi + N′n. By definition of⇒st, M →∗h Σi≤nMi with Mi ⇒st Ni.
By induction hypothesis, Mn ⇒st N′n and we can set M ⇒st N′.
• Let N = N1 N2, then M →∗h M1 M2 with M1 ⇒st N1 and M2 ⇒st N2. There are different

cases:
– Either N1 →h N′1 and N′ = N′1 N2. In this case, the IH on M1 ⇒st N1 →h N′1 gives

M1 ⇒st N′1, so that M ⇒st N′.
– Or N2 →h N′2 and N′ = N1 N′2. In this case, the IH on M2 ⇒st N2 →h N′2 gives

M2 ⇒st N′2, so that M ⇒st N′.
– Or N1 = λx.N0 and N′ = N0[N2/x]. By definition of⇒st, M1 →

∗
h λx.M0 with M0 ⇒st

N0. By easy induction on ⇒st, one can see that M0[M2/x] ⇒st N0[N2/x]. We can
conclude since→∗⇒st⊆⇒st.

– Or N1 = Σi≤nτ̄ai→αi(Qi) and N′ = Σi≤nτ̄αi(Qi·Πγ∈aiτγ(N2)). By definition of ⇒st,
M1 →

∗
h Σi≤nτ̄ai→αi(Pi) and Pi ⇒st Qi for all i. By definition of ⇒st, one can see that

Σi≤nτ̄αi(Pi·Πγ∈aiτγ(M2))⇒st Σi≤nτ̄αi(Πγ∈aiτγ(N2)) so that M ⇒st N.
• If Q = τa→α(N), then P→∗h τa→α(M) with M ⇒st N and there are different cases:

– Either N → N′ and Q′ = τa→α(N′). In this case, the IH on M ⇒st N → N′ gives
M ⇒st N′, so that P⇒st Q′.

– Or N = λx.N0 and Q′ = τα(N0[ε̄a/x]). By definition of ⇒st, M →∗h λx.M0 with
M0 ⇒st N0. By easy induction on⇒st, one can see that M0[ε̄a/x] ⇒st N0[ε̄a/x]. We
can conclude since→∗⇒st⊆⇒st.

– Or N = Σi≤nτ̄βi(Qi) and N′ = Σi≤n|βi≥αQi. By definition of⇒st, M →∗h Σi≤nτ̄βi(Pi) and
Pi ⇒st Qi for all i. By Lemma ??, there is (P′i)i such that τα(M) →∗h Σi≤n|βi≥αP′i and
P′i ⇒st Qi so that P⇒st Q′.

• If Q = Σi≤nQi then (up to commutativity of the sum) Qn → Q′n and Q′ = Σi<nQi + Q′n.
By definition of ⇒st, P →∗h Σi≤nPi with Pi ⇒st Qi for all i. By IH on Pn ⇒st Qn → Q′n,
Pn ⇒st Q′n so that P⇒st Q′.

• If Q = Πi≤nQi then the only rule that changes the form of the expression is (·+) applied in
head position. There are two cases:

– Either Q = ΠiΣ j≤ki Qi j
·+
−→ hQ′ = Σ( ji)iΠiQi ji . By definition of ⇒st (used 2 times),

P→∗h ΠiPi and Pi →
∗
h Σ j≤ki Pi j with Pi j ⇒st Qi j for all i, j. Thus, by Lemma ??, there

is (P′i j)i j such that P→∗h Σ( ji)iΠiP′i j with P′i j →
∗ Pi j ⇒st Qi j, so that M ⇒st N′.

– Otherwise (and up to commutativity of the sum), Qn → Q′n and Q′ = Πi<nQi·Q′i . By
definition of⇒st, P →∗h ΠiPi and Pi ⇒st Qi. We can apply the IH on Pn ⇒st Qn →h
Q′n, so that P⇒st Q′.
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Theorem 2.29 (Standardization). For any reduction M →∗ N (resp. P →∗ Q), there is a standard
reduction M ⇒st N (resp. P ⇒st Q). In particular, any term M (resp. test Q) head converges iff it
reduces to a may head-normal form:

M⇓h ⇔ ∃N ∈ mhn f ,M →∗ N′ P⇓h ⇔ ∃Q ∈ mhn f , P→∗ Q′.

Proof. By applying successively Lemma ??. The equivalence between ⇓h and having a may-head-
normal form is an immediate consequence once noticed that whenever M →6h M′ then M ∈ mhnf
iff M′ ∈ mhn f .

2.4. Invariance for the convergence.
We will see in this section that the head convergence in at most n steps is invariant wrt the reduction.
This means that performing a non-head reduction can only reduce the length of convergence.

Theorem 2.30 (Invariance for the convergence). For any terms M → N (resp. test P→ Q) and any
n ∈ N:

M⇓h
n ⇒ N⇓h

n P⇓h
n ⇒ Q⇓h

n

Proof. By recursive invocations of Lemma ??, for any k we can close the diagrams:

M →h M1 Q →h Q1

→

k
 

→
∗

→

k
 

→
∗

M2 →
?
h M′ Q2 →

?
h Q′

where→?
h:= (→h ∪id) is either a head reduction or an equality.

Recursively invoking this diagrams, for any n we can now close the diagrams:

M →n
h M1 Q →h Q1

→
∗

 

→
∗

→
∗

 

→
∗

M2 →
≤n
h M′ Q2 →

≤n
h Q′

where→≤n
h =

⋃
i≤n →

i
h represents at most n iterations of→.

In particular, if M →∗h M′ with M′ ∈ mhn f (i.e. M converges), since M → N, there is N0 such that
N →≤n

h N0 and N →∗ N0, from the last we deduce that N0 ∈ mhn f and conclude. The same goes
for tests.

In order to prove this theorem we need a stronger notion of confluence for the cases where one
of the reduction is a head reduction.

Lemma 2.31. Any pick, M →h M1 and M → M2 (resp. Q →h Q1 and Q → Q2), between a head
reduction and any reduction verifies the diamond:

M →h M1 Q →h Q1

→  

→
∗

→  

→
∗

M2 →
?
h M′ Q2 →

?
h Q′

where→?
h:= (→h ∪id) is either a head reduction or an equality.

Proof. By induction on M and Q:
• The cases M = x and M = 0 are impossible since M →h M1.
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• If M = λx.N: then M1 = λx.N1 and M2 = λx.N2 so that N1 h←N → N2, thus, by induction,
there is N′ such that N1 →

∗ N′ ?
h←N2, finally we can choose M′ = λx.N′.

• If M = Σi≤n+2Ni: then, modulo commutativity of the sum, M1 = Nn+2
1 +Σi≤n+1Ni with

Nn+2 →h Nn+2
1 .

– Either (modulo commutativity of the sum), M2 = Nn+2
2 +Σi≤n+1Ni with Nn+2 → Nn+2

2
and by induction there is Nn+2

1 →∗ Nn+2
0

?
h←Nn+2

2 such that M′ = Nn+2
0 +Σi≤n+1Ni.

– Or (modulo commutativity of the sum), M2 = Nn+2+Nn+1
2 +Σi≤n+1Ni with

Nn+1 → Nn+1
1 , so that M′ = Nn+2

1 +Nn+1
2 +Σi≤n+1Ni.

• If M = τ̄α(Q) with Q that is not a sum: then M1 = τ̄αi(Q1) and M2 = τ̄α(Q2) with
Q1 h←Q → Q2, thus, by induction, there is Q′ such that Q1 →

∗ Q′ ?
h←Q2, finally we

can fix M′ = τ̄α(Q′).
• If M = τ̄α(Σi≤n+1Qi) and M1 = Σi≤n+1τ̄α(Qi):

– Either M2 = τ̄α(Qn+1
2 Σi≤nQi) and M′ = τ̄α(Qn+1)Σi≤nτ̄α(Qi).

– Or Qi = Σ jPi, j and M2 = Σ jτ̄α(Pi, j), then M′ = Σi, jτ̄α(Pi, j).
• If M = N L:

– If N is not an abstraction: then M1 = N1 L with N →h N1. Moreover
∗ Either M2 = N2 L with N → N2 and N2 that is not an abstraction. By induction

there is N′ such that N1 →
∗ N′?h ←N2, and M′ = N′ L.

∗ Or M2 = (λx.N2) L with N → N2 and N2 that is an abstraction: since N is not
an abstraction, this can only be the result of a (β) or a τ̄ reduction in outermost
position in N. In both cases, necessary M1 = M2.
∗ Or M2 = N L2 with L→ L2: then M′ = N1 L2.

– If N = λx.N′ : then M1 = N′[L/x] and
∗ Either M′ = M2 = M1.
∗ Or M2 = (λx.N′2) L with N′ → N2, thus M′ = N′2[L/x].

– If N = Σiτ̄αi(Qi): idem.
• If Q = τα(M):

– If M is not an abstraction: then Q1 = τα(M1) and Q2 = τα(M2) with M1 h←M → M2
and by induction hypothesis, there is M′ so that M1 →

∗ M′?h ←M2.
∗ Either M2 is not an abstraction and Q′ = τα(M′).
∗ Or M → M2 is an abstraction created by a (β) or a (τ̄) outermost reduction. In

both cases, necessary M1 = M2.
– If M = λx.N: then Q1 = τα′(N[ε̄a/x]) and

∗ Either Q2 = Q1 = Q′.
∗ Or Q2 = ταλx.N2 with N → N2, thus Q′ = τα′(N2[ε̄a/x]).

– If M = Σi≤n+1τ̄βi(P
i): then Q1 = Σ{i≤n+1|α≤βi}P

i and
∗ Either Q2 = Q1 = Q′.
∗ Or Q2 = τα

(
Σi≤nτ̄αi(P

i) + Σ jτ̄βn(R j)
)

with τ̄αn+1(Pn+1)→ Σ jτ̄β j(R
j),

thus Q′ = Σ{ j|α≤βn}R
j + Σ{i≤n|α≤βi}P

i.
• If Q = P+R: then, modulo commutativity of the sum, Q1 = P1+R with P→h P1.

– Either Q2 = P2+R with P → P2 and the induction hypothesis gives P′ so that M′ =

P′+R.
– Or Q2 = P+R2 and M′ = P1+R2.

• If Q = P·R: same as for Q = P+R except if a rule (·+) is used in outermost position. In this
case, either only one of the reduction is a (·+) and the two reductions are independents, or
both of them are (·+), which is similar to the case M = τ̄α(Σi≤n+1Qi).
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3. Proof

3.1. Hyperimmunity implies full abstraction.

In this subsection we show that if D is sensible for Λτ(D) and is hyperimmune, D is inequa-
tionally fully abstract for Λ, that is Theorem ??. We use the full abstraction of D for Λτ(D) of
Theorem ?? (or rather its technical counterpart: Theorem ??) in order to express the problem in a
purely syntactical form:

~M� , ~N� ⇐⇒ ∃α ∈ P, α ∈ ~M� − ~N� or conv.
(1)
⇐⇒ ∃α ∈ P, τα(M)⇓ and τα(N)⇑ or conv.

(2)
=⇒ ∃C ∈ Λ(|.|), C(|M|)⇓ and C(|N |)⇑ or conv.

⇐⇒ M .H∗ N

Here (1) is given by Theorem ?? so that we only have to prove (2) which is done in the proof of
Theorem ?? by induction on the finite reduction τα(M)⇓. However, the proof require a specific
treatment of the case where M = I (we have some η∞-ex pensions issues) this is the purpose of the
key-lemma (Lemma ??). This key-lemma is assuming that (2) is false for M = I (and any N) then
co-inductively constructs a counterexample (αn)n the hyperimmunity by unfolding τα(N)⇑.

Before that, we need the technical Lemma ?? in order to refute the operational equivalence
between two λ-terms in easy cases.

Lemma 3.1 ([?]). Let M = λx1...xn.y M1 · · ·Mk ∈ Λ and let N = λx1...xn′ .y′ N1 · · ·Nk′ ∈ Λ be
λ-terms such that M vH∗ N. Then:

(1) y = y′,
(2) n − k = n′ − k′,
(3) if i ≤ k and i ≤ k′ then Mi vH∗ Ni,
(4) if i > k and i ≤ k′ then xi−k vH∗ Ni,
(5) if i ≤ k and i > k′ then Mi−k vH∗ xi.

Proof. From each i ≤ 5, assuming statements (1)...(i-1) and refuting statement (i), we can exhibit a
context C ∈ Λ(|·|) such that C~M�⇓h and C~N�⇑h.

3.1.1. The key-lemma.
From now on, we consider an extensional K-model D that is hyperimmune and sensible for Λτ(D).
The following lemma is a key lemma that introduces the hyperimmunity in the picture. It basically
states that if τα(N[ε̄α/x0])⇑h then N AH∗ x0.

Lemma 3.2. Let α ∈ D and a0, . . . , ak ∈ A f (D) be such that α ∈ a0.
Let N ∈ Λ and x0, . . . , xk be such that τα(N[ε̄a0/x0, . . . , ε̄ak/xk])⇑h. Then N AH∗ x0.
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Proof. We define the recursive function gN′ for any N′ ∈ Λ such that N′ wH∗ x0, it is done by
recursively defining gN′(k) for k ∈ N:
Since N′ wH∗ x0, N′ is converging, and by Lemma ?? N′ →∗h λy1...yn.x0 N1 · · ·Nn with Nm wH∗ ym
for all m ≤ n. We then define gN′(0) = n and gN′(k + 1) = maxi≤ngNi(k).
We will show that assuming N wH∗ x0 contradicts the hyperimmunity of D by showing that:

There exists (αn)n≥0 with α0 = α and for all n, αn = an
1→· · · a

n
gN (n)→α

′
n and αn+1 ∈

⋃
i≤gN (n) an

i .

We are constructing (αn)n by co-induction.
Since N wH∗ x0, it is converging, and by Lemma ??, N →∗ λy1...yn.x0 N1 · · ·Nn with Nm wH∗ ym
for all m ≤ n.
We will assume that α = b1→· · ·→bn→α

′ and a0 = {α, β1, . . . , βt} with βi = ci
1→· · ·→ci

n→β
′
i

(always possible since “→” is a bijection).
Then (notice the use of a calculation done in Example ??)

τα(N[s])→∗ τα(λy1...yn.ε̄a0 N1[s] · · ·Nn[s])
τ
→∗hτα′(ε̄a0 N1[s, s′] · · ·Nn[s, s′])
Ex??
−→∗τα′(Σd1→···dn→δ∈a0 τ̄δ(Πm≤nΠγ∈dmτγ(Nm[s, s′])))
ττ̄
→hΠm≤nΠγ∈bmτγ(Nm[s, s′]) + Σ{i≤t|α′≤β′i }Πm≤nΠγ∈ci

m
τγ(Nm[s, s′])

with [s] = [ε̄a0/x0, . . . , ε̄ak/xk] and [s′] = [ε̄b1/y1, . . . , ε̄bn/yn].
Since τα(N[s]) diverges, by standardization theorem (Th. ??), the test Πm≤nΠγ∈bmτγ(Nm[s, s′]) di-
verges. In particular there is m ≤ n and γ ∈ bm such that τγ(Nm[s, s′]) diverges.
Since Nm wH∗ ym and τγ(Nm[s, s′])⇑h, the co-induction gives (γk)k such that γ0 = γ and for
all k, γk = ck

1→· · · c
k
gNm (k)→γ

′
k and γk+1 ∈

⋃
i≤gNm (k) ak

i . In this case we can define (αk)k as fol-
lows:

α0 = α ∀k, αk+1 = γk

This is sufficient since:

m ≤ n = gN(0) gNm(k) ≤ sup j≤ngN j(k) = gN(k + 1)

3.1.2. Inequational completeness.

Theorem 3.3 (Inequational full completeness). For all M,N ∈ Λ,

M vH∗ N ⇒ ~M�~x ⊆ ~N�~x.

Proof. We will prove the equivalent (by Theorem ??) statement:
Let α ∈ D and a0, . . . , ak ∈ A f (D).
Let {x0, . . . , xk} ⊇ FV(M) be a set of variables, and let [s] = [ε̄a0/x0 · · · ε̄ak/xk].
If6 τα(M[s])⇓h

n and τα(N[s])⇑h then M 6vH∗ N.
The statement is proved by induction on the length n of the reduction τα(M[s])⇓h

n:
• The case n = 0:

Then τα(M[s]) is in normal form without free variables, which is impossible.

6Recall that M⇓h
n means that M may-head converges in at most n steps
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• The case n ≥ 1:
Since τα(M[s])⇓h

n, by applying the sensibility for Λτ(D), the interpretation of τα(M[s])⇓h
n

is non empty. By Remark ??, the interpretation of M is also non empty. Thus, reapplying
the sensibility, M is converging to a head-normal form M →∗h λy1...yn.z M1 · · ·Mm. We can
then make some assumptions:

– We can assume that N →∗h λy1...yn′ .z′ N1 · · ·Nm′ :
In fact, if N does not converge then trivially M 6vH∗ N.

– We can assume that n′ ≥ n:
In fact, if n′<n then we can always define N′ = λy1...yn′yn′+1...yn.z′ N1 · · ·Nm′ yn′+1 · · · yn
(with yn′+1...yn < FV(z′ N1 · · ·Nm′)), and we would have N′ ≡H∗ N and τα(N′[s])⇑h.

– We can assume that n=0:
In fact, let a0→· · · an→α

′=α, [s′]=[ε̄a0/y1, . . . , ε̄an/yn], N′ = λyn+1...yn′ .z′ N1 · · ·Nm′

and M′ = z M1 · · ·Mm. Since τα(M[s])→∗ τα′(M′[s, s′]) (resp. τα(N[s])→∗ τα′(N′[s, s′])),
by confluence and standardization theorems (Th. ?? and Th.??), the convergences of
τα(M[s]) (resp. τα(N[s])) and τα′(M′[s, s′]) (resp. τα′(N′[s, s′])) are equivalent. Ap-
plying Theorem ??, we thus have τα′(M′[s, s′])⇓h

n and τα′(N′[s, s′])⇑h.
Moreover M′ vH∗ N′ ⇔ M vH∗ N so that the property on M′ and N′ is equivalent to
the same property on M and N.

– We can assume that z′ = z = x0:
Since {x0 . . . xk} ⊇ FV(M), there is j ≤ k such that z = x j, for simplicity we assume
that j = 0. Then we can remark that by Item (??) of Lemma ??, either M 6vH∗ N
or z′ = z = x0, we will thus continue with the second case.

Altogether we have:

M →∗h x0 M1 · · ·Mm N →∗h λy1...yn′ .x0 N1 · · ·Nm′

The case M = x0 corresponds exactly to the hypothesis of Lemma ?? that concludes
by M = x0 6vH∗ N. We are now assuming that m ≥ 1.

By Lemma ??, either M 6vH∗ N or the following holds:
– m = m′ − n′, and in particular m ≤ m′

– for i ≤ m, Mi vH∗ Ni
– for m < i ≤ m′, yi−m vH∗ Ni.

We will assume that m = m′ − n′ and then refute Mi vH∗ Ni or yi vH∗ Nm+i for some i ≤ n′;
we then conclude that M 6vH∗ N.

In the following we unfold
– α = b1→· · ·→bn′→α

′,
– a0 = {β0 . . . βr},
– for all t ≤ r, βt = ct

1→· · · c
t
m→β

′
t ,

– and for all t ≤ r, β′t = ct
m+1→· · · c

t
m′→β

′′
t .

Moreover we set [s′] = [ε̄b1/y1 . . . ε̄bn′ /yn′].

Then we have:

τα(M[s]) →∗ τα(ε̄a0 M1[s] · · ·Mm[s]) (3.1)
τ̄
→m

h
ττ̄
→h Σ{t≤r|α≤β′t }Πi≤mΠγ∈ct

i
τγ(Mi[s]). (3.2)

By Theorem ??, τα(ε̄a0 M1[s] · · ·Mm[s])⇓h
n. Moreover, since the head reduction (??) is pre-

fix of any head reduction sequence starting from τα(ε̄a0 M1[s] · · ·Mm[s]), the
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test Σ{t≤r|α≤β′t }Πi≤mΠγ∈ct
i
τγ(Mi[s]) head converges in (n−m−1) steps so that there exists t0≤r

such that α ≤ β′t0 and for all i ≤ m and all γ ∈ ct0
i , we have Mi[s]⇓h

n−1.
Similarly we have:

τα(N[s]) →∗ τα(λy1...yn′ .ε̄a0 N1[s] · · ·Nm′[s])
τ
→n′ τα′(ε̄a0 N1[s, s′] · · ·Nm′[s, s′]))
τ̄
→m′ τα′(Σt≤rτ̄β′′t (Πi≤m′Πγ∈ct

i
τγ(Ni[s, s′])))

ττ̄
→ Σt≤r|α′≤β′′t Πi≤m′Πγ∈ct

i
τγ(Ni[s, s′]).

Thus, by standardization (Th. ??), Σt≤r|α′≤β′′t Πi≤m′Πγ∈ct
i
τγ(Ni[s, s′]) diverges. Thus there are

two cases:
– Either α′ 6≤ β′′t0 : which is impossible since α≤β′t0 .
– Or there are i ≤ m′ and γ ∈ ct0

i such that τγ(Ni[s, s′]) diverges.
∗ Either i ≤ m:

Then since τγ(Mi[s, s′]) = τγ(Mi[s])⇓h
n−1, the induction hypothesis yields

that Mi 6vH∗ Ni.
∗ Or m < i:

Since α ≤ β′t0 we have bi−m ≥ ct0
i and γ ≤ γ′ ∈ bi−m. Moreover, using The-

orem ?? and γ ≤ γ′, we have that τγ′(Ni[s, s′]) diverges. Thus we can apply
Lemma ?? that results in yi−m 6vH∗ Ni.

Theorem 3.4 (Hyperimmunity implies full abstraction). Any extensional K-model D that is hyper-
immune and sensible for Λτ(D) is inequationally fully abstract for the pure λ-calculus.

Proof. Inequational adequacy: inherited from the inequational sensibility of D for Λτ(D). Indeed,
for any M,N ∈ Λ and C ∈ Λ(|·|), if ~M�~xD ⊆ ~N�~xD and if C(|M|)⇓h, then by sensi-
bility ~C(|N |)�~x

′

D ⊇ ~C(|M|)�~x
′

D , ∅ and (still by sensibility) ~C(|N |)�~x
′

D converges.
Inequational completeness: for all M,N∈Λ such that ~M�~x * ~N�~x, there is (~a, α) ∈ ~M�~x−~N�~x,

thus by Theorem ??, M 6vH∗ N.

3.2. Full abstraction implies hyperimmunity.

3.2.1. The counterexample.
In this section, we are assuming that D is sensible for Λτ(D) but is not hyperimmune. Then we will
construct a counterexample (Jg 0) for the full abstraction such that (Jg 0) ≡H∗ I and ~Jg 0� , ~I�
resulting in Theorem ??.

By Definition ??, if D is hyperimmune, then there exist a recursive g : (N → N) and a fam-
ily (αn)n≥0 ∈ DN such that αn = an,1→· · ·→an,g(n)→α

′
n with αn+1 ∈

⋃
k≤g(n) an,k.

We will use the function g for defining a term Jg (Eq. ??) such that (Jg 0) is observationally
equal to the identity in Λ (Lemma ??) but can be distinguished in Λτ(D) (Cor. ??). From this latter
statement and the full abstraction for Λτ(D) (Th. ??), we will obtain that ~Jg 0�D , ~I�D, and thus
we conclude with Theorem ??.

Let (Gn)n∈N be the sequence of closed λ-terms defined by:

Gn := λuex1...xg(n).e (u x1) · · · (u xg(n)) (3.3)
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The recursivity of g implies that of the sequence Gn. We can thus use the Proposition ?? that
build G ∈ Λ such that:

G n→∗ Gn. (3.4)
Recall that S denotes the Church successor function and Θ the Turing fixedpoint combinator. We
define:

Jg := Θ (λuv.G v (u (S v))). (3.5)
Then:

Jg n→∗ Gn (Jg n+1). (3.6)

Lemma 3.5. For all n ∈ N, all α ∈ D and all b = {β1, ...., βk} ⊆ D, let:
• α = a1→· · ·→ag(n)→α

′,
• for all j ≤ k, β j = b j,1→· · ·→b j,g(n)→β

′
j,

we have:
τα(Jg n ε̄b) →∗→h Σ{ j≤k|α′≤β′j}Πi≤g(n)Πγ∈b j,iτγ(Jg n+1 ε̄ai).

Proof. We can reduce:

τα(Jg n ε̄b)
Eq(??)
−→ ∗ τα(G n (Jg n+1) ε̄b)

Eq(??)
−→ ∗ τα(Gn (Jg n+1) ε̄b)

Eq(??)
−→ ∗ τα

(
(λue~xg(n).e (u x1) · · · (u xg(n))) (Jg n+1) ε̄b

)
β
→2

h τα
(
λ~xg(n).ε̄b (Jg n+1 x1) · · · (Jg n+1 xg(n))

)
τ
→

g(n)
h τα′

(
ε̄b (Jg n+1 ε̄a1) · · · (Jg n+1 ε̄ag(n))

)
τ̄
→

g(n)
h τα′(Σ j≤kτ̄β′j(Πi≤g(n)Πγ∈b j,iτγ(Jg n+1 ε̄i)))
ττ̄
→h Σ{ j≤k|α′≤β′j}Πi≤g(n)Πγ∈b j,iτγ(Jg n+1 ε̄ai)

Lemma 3.6. For all n, we have Jg n ≡H∗ I.

Proof. Let D∞ be defined as in Example ??, it is fully abstract forH∗.7 It results that it is sufficient
to verify that ~Jg n�D∞ = ~I�D∞ , or equivalently (Th. ??) to verify that :

∀α ∈ D∞, τα(Jg n)⇓h ⇔ τα(I)⇓h.

Trivially τa0→α(I) converges iff there is β such that α ≤ β ∈ a0. Conversely we can prove by
induction on a0 that τα(Jg n ε̄a0) converges iff there is β such that α ≤ β ∈ a0 and conclude by
extensionality.

If we denote α = a1→· · ·→ag(n)→α
′, Lemma ?? gives that:

τα(Jg n ε̄a0) →∗→h Σ{b1→···bg(n)→β′∈a0 |α′≤β′}Πi≤g(n)Πγ∈biτγ(Jg n+1 ε̄ai).

By induction hypothesis and standardisation, this test converges iff there is β = b1→· · · bg(n)→β
′∈ a0

such that α′ ≤ β′ and for all i ≤ g(n) and all γ ∈ bi, γ ≤ δ ∈ ai, i.e., for all i, bi ≤ ai. Equivalently,

7Notice that the full abstraction of D∞ for H∗, that has been proved for decade [?, ?], can be recovered as we have
seen in Example ?? that D∞ is hyperimmune.
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this test converges iff α ≤ β ∈ a0. Thus, using the standardization (Th. ??), τα(Jg n ε̄a0) converges
iff α ≤ β ∈ a0.

Lemma 3.7. For all n ∈ N, all α ∈ D and all b ∈ A f (D), if β 6≥ α for all β ∈ b, then:

τα(Jg n ε̄b)⇑h

Proof. Let {β1, ...., βl} = b and, for all j ≤ l, let b j,1→· · ·→b j,l→β
′
j = β j.

We are proving by induction on k that there is no convergence in k steps:8

We assume that τα(Jg n ε̄b)⇓h
k+1.

From Lemma ??, we have:

τα(Jg n ε̄b) →∗→h Σ{ j≤l|β′j≤α
′}Πi≤g(n)Πγ∈b j,iτγ(Jg n+1 ε̄ai)

By Theorem ??, and since the last head reduction was necessary, the resulting term converges in k
steps. Thus there exists j ≤ l such that β′j ≥ α

′ and for all i ≤ g(n) and each γ ∈ b j,i, τγ(Jg n+1 ε̄ai)
converges in k steps.
Let j ≤ l be such that β′j ≥ α

′. Since β j 6≥ α, there is i such that b j,i 6≤ ai, i.e., there is γ ∈ b j,i such
that for all δ ∈ ai, γ 6≤ δ and by induction we get a contradiction to τγ(Jg n+1 ε̄ai)⇓

h
k.

We recall that (αn)n is given by the counterexample of the hyperimmunity, and that for
all n, αn = an,1→· · ·→an,g(n)→α

′
n and αn+1 ∈

⋃
k≤g(n) an,k.

Lemma 3.8. For any n ∈ N and any anti-chain b = {αn, β1, ...., βk}, then:

ταn((Jg n) ε̄b)⇑h.

In particular, τα0(Jg 0 ε̄α0)⇑h.

Proof. We unfold β j = b j,1→· · ·→b j,g(n)→β
′
j.

We are proving by induction on k that there is no convergence in k steps:9

We assume that τα(Jg n ε̄b)⇓h
k+1.

From Lemma ??, we have:

τα(Jg n ε̄b) →∗→h Πi≤g(n)Πγ∈aniτγ(Jg n+1 ε̄ai) + Σ{ j≤l|α′n≤β′j}Πi≤g(n)Πγ∈b jiτγ(Jg n+1 ε̄ai).

By Theorem ??, and since the last head reduction was necessary, the resulting term converges in k
steps. Thus one of the addends should converges in k steps, however:

• The fist member Πi≤g(n)Πγ∈aniτγ(Jg n+1 ε̄ai) does not since there is i ≤ g(n) such that
αn+1 ∈ ani and by induction, ταn+1(Jg n+1 ε̄ai) cannot converges in k steps.
• The second member of the sum diverges by Lemma ??.

For any j ≤ l such that β′j ≥ α′n we know that β j 6≥ αn since {αn, β1, ..., βl} is an anti-
chain. Thus there is always i ≤ g(n) such that b j,i 6≤ an,i, i.e., there is γ ∈ b j,i such that for
all δ ∈ an,i, γ 6≤ δ. We can conclude by Lemma ?? that τγ(Jg n+1 ε̄ai) diverges.

Theorem 3.9 (Full abstraction implies Hyperimmunity). If D is not hyperimmune, but sensible for
Λτ(D), then it is not fully abstract for the λ-calculus.

Proof. Since τα0(I ε̄α0)
β
→h

ττ̄
→h ε, we have that ~τα0(I ε̄α0)�,∅, while by Lemma ?? we have

that ~τα0(Jg 0 ε̄α0)�=∅, and thus ~Jg 0� , ~I�. Hence, by Lemma ??, D is not fully abstract.

8We could have used a co-induction, but justifying the productivity is not easy (it uses Theorem ??).
9See footnote ??
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Appendix A. Appendix

A.1. Lemma ??.

Lemma ?? If D is sensible for Λτ(D) then:

(~ab, α) ∈ ~M�~yx ⇔ (~a, α) ∈ ~M[ε̄b/x]�~y,

(~a, α) ∈ ~M�~y ⇔ ~a ∈ ~τα(M)�~y.

Proof. For this proof we use the intersection type system of Figure ??. Such a change of viewpoint
replaces the statement by:

Γ, x : a ` M : α ⇔ Γ ` M[ε̄a/x] : α

Γ ` M : α ⇔ Γ ` τα(M)
• Γ, x : a ` M : α ⇒ Γ ` M[ε̄a/x] : α and Γ, x : a ` Q ⇒ Γ ` Q[ε̄a/x]:

By structural induction on M and Q:
– If M = x: then α ≤ β ∈ a and by definition Γ ` ε̄a : α.
– If M = y , x: trivial.
– If M = λy.N: then α = b→β and Γ, y : b, x : a ` N : β thus by IH, Γ, y : b ` N[ε̄a/x] : β

and thus Γ ` M[ε̄a/x] : α.
– If M = N1 N2: then there exists b such that Γ, x : a ` N1 : b→α and for all β ∈ b,

Γ, x : a ` N2 : β. Thus by IH, Γ ` N1[ε̄a/x] : b→α and for all β ∈ b, Γ ` N2[ε̄a/x] : β
and thus Γ ` M[ε̄a/x] : α.

– If M = Σiτ̄αi(Qi): then there exists i such that α = αi and Γ, x : a ` Qi. Thus by IH,
Γ ` Qi[ε̄a/x] and thus Γ ` M[ε̄a/x] : α.

– If Q = ΣiQi: then there exists i such that Γ, x : a ` Qi. Thus by IH, Γ ` Qi[ε̄a/x] and
thus Γ ` Q[ε̄a/x].

– If Q = ΠiQi: then for all i, Γ, x : a ` Qi. Thus by IH, for all i, Γ ` Qi[ε̄a/x] and thus
Γ ` Q[ε̄a/x].

– If Q = τβ(M): then Γ, x : a ` M : β. Thus by IH, Γ ` M[ε̄a/x] : β and thus Γ ` Q[ε̄a/x].
• Γ, x : a ` M : α ⇔ Γ ` M[ε̄a/x] : α:

and Γ, x : a ` Q ⇔ Γ ` Q[ε̄a/x]:
By structural induction on M and Q:

– If M = x then Γ ` ε̄a : α and by definition Γ, x : a ` x : α, i.e, Γ, x : a ` M : α
– If M = y , x: trivial.
– If M = λy.N: then α = iD(b→β) and Γ, y : b ` N[ε̄a/x] : β thus by IH, Γ, y : b, x : a `

N : β and thus Γ, x : a ` M : α.
– If M = N1 N2: then there exists b such that Γ ` N1[ε̄a/x] : b→α and for all β ∈ b,

Γ ` N2[ε̄a/x] : β. Thus by IH, Γ, x : a ` N1 : b→α and for all β ∈ b, Γ, x : a ` N2 : β
and thus Γ, x : a ` M : α.

– If M = Σiτ̄αi(Qi): then there exists i such that α = αi and Γ ` Qi[ε̄a/x]. Thus by IH,
Γ, x : a ` Qi and thus Γ, x : a ` M : α.

– If Q = ΣiQi: then there exists i such that Γ ` Qi[ε̄a/x]. Thus by IH, Γ, x : a ` Qi and
thus Γ, x : a ` Q.

– If Q = ΠiQi: then for all i, Γ ` Qi[ε̄a/x]. Thus by IH, for all i, Γ, x : a ` Qi and thus
Γ, x : a ` Q.
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– If Q = τβ(M): then Γ ` M[ε̄a/x] : β. Thus by IH, Γ, x : a ` M : β and thus Γ, x : a ` Q.
• Γ ` τα(M) ⇔ Γ ` M : α: by definition of the inference rule for τα

A.1.1. Lemma ??.

Lemma ?? Let M = λx1...xn.y M1 · · ·Mk ∈ Λ and let N = λx1...xn′ .y′ N1 · · ·Nk′ ∈ Λ be such that
M vH∗ N. Then:

(1) y = y′,
(2) n − k = n′ − k′,
(3) if i ≤ k and i ≤ k′ then Mi vH∗ Ni,
(4) if i > k and i ≤ k′ then xi−k vH∗ Ni,
(5) if i ≤ k and i > k′ then Mi−k vH∗ xi.

Proof. In the following, M = λx1...xn.y M1 · · ·Mk and N = λx1...xn′ .y′ N1 · · ·Nk′ .
If y , y′, then M 6vH∗ N, indeed:
• If y′ is free in M and N then by setting C(|.|) = (λy′.(|.|)) Ω we have C(|M|)⇓h and C(|N |)⇑h.
• If y′ = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 Ω we have C(|M|)⇓h and C(|N |)⇑h.

Now we suppose that M = λx1...xn.y M1 · · ·Mk and N = λx1...xn′ .y N1 · · ·Nk′ .
If n − k , n′ − k′, then M 6vH∗ N:
• If y is free in M and N, then by setting C(|.|) = (λy.(|.|) x1 · · · xn′+k) (λz1...zk′+ku.u) Ω we have

C(|M|)⇓h and C(|N |)⇑h:
• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk′+ku.u) xi+1 · · · xn′+k Ω we

have C(|M|)⇓h and C(|N |)⇑h.
Now we suppose that n − k = n′ − k′.
If there is i such that i ≤ k, i ≤ k′ and Mi 6vH∗ Ni then there is C′(|.|) such that C′(|Mi|)⇓h and

C′(|Ni|)⇑h:
• If y is free in M and N, then by setting C(|.|) = (λy.(|.|)) (λz1...zk+k′ .C′(|zi|)) we have C(|M|)⇓h

and C(|N |)⇑h.
• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk+k′ .C(|zi|)) we have C(|M|)⇓h

and C(|N |)⇑h.
If there is i such that k < i ≤ k′ and xi−k 6vH∗ Ni then there is C′(|.|) such that C′(|xi−k|)⇓h and

C′(|Ni|)⇑h:
• If y is free in M and N, then by setting C(|.|) = (λy.(|.|) x1 · · · xn+k) (λz1...zk+k′ .C′(|zi|)) we have

C(|M|)⇓h and C(|N |)⇑h.
• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk+k′ .C(|zi|)) x j+1 · · · xn+k we

have C(|M|)⇓h and C(|N |)⇑h.
If there is i such that k′ < i ≤ k and Mi 6vH∗ xi−k′ then there is C′(|.|) such that C′(|Mi|)⇓h and

C′(|xi−k′ |)⇑h:
• If y is free in M and N, then by setting C(|.|) = (λy.(|.|) x1 · · · xn+k) (λz1...zk+k′ .C′(|zi|)) we have

C(|M|)⇓h and C(|N |)⇑h.
• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk+k′ .C(|zi|)) x j+1 · · · xn+k we

have C(|M|)⇓h and C(|N |)⇑h.


