1 Notations

Definition 1 (Notations for trees). We denote T the set of binary trees, with metavariable for trees ranging over

L)
7
s,t,u,v.... We denote by e the tree with just a leaf and by *

number of nodes (and leafs) in t.

U the binary tree with sons t and s. The size #(t) is the

For any t € T, the node (or leaf) of x € t are denoted by metavariable x,y, z, .... Given a node x € t, we denote t,

the subtree of x with root x. For x,y € t, we denote x <; y if y € t,.
For x € t, we denote D(x) € N the depth of x in t (with the depth of the root being 0).
Given s,t € T and x € t we denote t{s/x} the tree t where the subtree t, is erased and replaced by s.

Definition 2 (Duplication). given x € t, we denote

£ o= t{ 0 /x} 2% = t{e/x}

the tree where the subtree t, hase been duplicated and erased, respectivelly.

Definition 3. We define a probabilistic reduction of a tree as t — 1>* with probability # () for any x € t.

Definition 4. The expected value of # (t) after one reduction is denoted :

Z # (tz.x)

XEL

Ey(t) = ———
#(1) 70
the expected growth of # () after one reduction is denoted :
#0) = E()-#@),

we also denote E’;(t) and ’;(t) the expexted and Growth values after k steps.

(D

2

Conjecture 1 (Devroye). The serie given by the expected value of the size the n™ reduction of any tree t € T is

quasilinear :
Ei(®) ~ nlog(n).

1.1 Counting large chains

Definition 5. A (large) chain of t is a seqence x| <; -+ <, x,, of element of t. We use (n)(t) to denote the number of
large chains of length n in t. We use (n)*(t) to denote the number of large chains of length n in t that do not contain the

root.
Eoy(u) and 3 (u) are defined as expected.

Proposition 1. We know the following trivial equations :

0y =0)») =1 (n)(1) = Z(n’>*(t) (" + 1)@ = (n+ 1)(1) = (m)(1) .

n’<n

Lemma 6.

#0) = [11®

Proof. Trivial



Lemma 7. Forn;,n, >0:
2 (D,;(lx)) () =+ DO

and in particular forn; = 0andny, = n :

Dim) = (DO

X€Er

Proof. The sum ., (D;q(x)) [12](z,) corresponds to counting the diferents output of the procedural :
1

— choose x € ¢,
— choose n; elements y; <; -+ <, yp, < X,
— choose ny elements z; <;, -+ <4, Ty, le, X <21 S0 S Ty
In the end, we are counting all the y; <; -+ <; yp, <p X < 21 < -0+ <4 2y, Which gives (ny + np + 1)(2). ]

Proposition 2.
2)(t
(2)(1) 1
(1))
2.x
Proof. Recall that 4(7) := %g) — #(¢) thus we have first to calcul # (tz'x). For this, we remark that the choosen
y € t>* can be either in #** or in one of the two copies of t,, thus :

#() = wm@® =

#(2) = #()+ 24
But choosing an element of 1 is the same as choosing an element of 7 which is not in ¢, or which is x ; thus

#(tO-X) =#() —#(t)+ 1,

so that
#(2) = #O+#EI+1.
In the end, we have :
DO+ #)+ 1) > #)
A= 0 “HO= o !
We can conclud by Lemmas [6]and[7]:
(2)®
w et

This result can be generalised to any chain size :
Theorem 8. (o;(1) = 0 and foranyn > 1:

_ @+ D@ + Qn = DAn)(@) + (n— 1).dn = 1)(1)
a #() )

(@)

Proof. Recall that ,(¢) := %:;’2‘) —(n)(¢) thus we have first to calcul (n)(z>*). For this, we remark that the choosen

Y1 <px o+ <pax yp € 1% are either all in /%%, or there is #’ < n such that y; <p.« -+ <px Y <px X <px Vsl -+ <px Yn
with y,41, ..., ¥, in one (and only one) of the copies of 7., thus :

W@ = 2y (D’(fl),”)xn—n’)(rx).

0<n’'<n



But choosing a n-chain in 1 is the same as choosing a n-chain in ¢ with no elements in 7, exepts for x ; thus

Wy = - (D’(’;),“).<n—n’>*(rx>,

0<n’<n

so that (notice that n — n’ > 0 when n’ < n)

n

WE-mo =Y (D’(’“),+1).(2.<n—n'><rx>—<n—n’>*<zx>> - ) (D'(x),+1).<<n—n’><tx>+<n—n'—1>(rx>)

n

0<n’<n 0<n’<n

Using that (’I; i i) = (’]i) + (n _I:_ 1) we have :
D,(x)) N (D,(x>

2.x _
)P = () + Z(( o B I

0<n’<n

)).(2-<n ')t —(n—n') (1),

In the end, we have :

2

0<n’<n ( X€t X€t XEt X€Et

> (P = e 3 (0 o=+ 3 (P60 == v+ (25 Jan - = i

m@® = #0)

By applying Lemma 7] whenever n’ # 0, we get :
D7 [+ D@ + @) + )@ + (1= 1) + (G + 1O + (1))

O<n’<n

w@® = 0
he n(n + 1)(0) + (2n — 1))@ + (n — Dl — 1))
w@® = ¥ .

1.1.1 Factorials ?

We use |
A= Y =)
I<isn "

to denote the alternation of sequences.
Proposition 3. foranyn>1:
_ (n+ D@ + (m@)
a,l)=—7"—.
#(1)

Proof. By induction on n :

- 1- — OO+HO
Forn=1: (1>(l) =
Forn+1:

N | 3 -
Z %(—1)"“_' OO = e —n Z :1_'72(_1)"_1 o)

I<isn+l I<isn =77
_ n+1D{n+2)@0)+Cn+ 1).(n+ 1)) + nin)@) o (n+ 1)) + (n)(t)
#(1) ' #(1)
Cm+ D+ 2)@O) + (m+ Dn + 1)@
- #(1)



Proposition 4. foranyn>1:

-1 n—i—1
A@=1  A®=0  A@=0-1)> S
2<i<n :

1.1.2

Given a tree ¢, we can compute the characteristic {_)() for a virtual mean-tree E(¢). We can itterate the process and
compute the caracteristic of the virtual mean tree of the virtual meen tree and so on (remark that this is unfortunatelly
not the virtual mean tree after k etape). We then define a sequence of functions g acting like

(@) = > (n+1)(E) (o))"

n>0

Let uy, defined for k > 0,n > 1 by :
Uop = 1

Ny pe1 + 20— Dy + (0 — 1)y g

Uk+1,n *= Uk u
k,1

Let vy, defined by vi,, := Uy 41, 1.€.
V()yn =1

M+ Dvgper + Cn+ Doy + nvgp—

Vi+ln = Vi+ln T
Vi,0

Let g, a function defined by :
2@ = ) viad"

n>0
So that : |
8o(2) = T—
-2

and

1) = @) + )

((n + Doviper + Qu+ 1)y, + v - )Zn
n>0

Vi,0

Yoo (0 + Dovier + @+ Dovgy + nvgp-1) 2"
V0

Dm0+ Dovi 12t + 2020+ Do n2” + Yo BVkn-17"
Vi0

0 1VknZ" ™+ Bnon + D)2 + Fmo(n + 1)y
Vi0

= g(2) + Din0 Vin-n-(1 + 22 + Zz;Z"_l + 2inz0 Vien-(1 + Z)nvk,o

2+ 1D%g,(2) + (2 + Dgi(2)

81(0)

=gi(2) +

=gi(2) +

= gi(2) +

=gi(2) +



1.2 Profile evolution

Definition 9. The nth slice of t, that we write t,, is the number of node at depth n in t.
The profile of t, writen ¢, is the polynomial ¢,(x) = Y, t,.x"
The profile of t on 1/2, writen U(t) is the number U(t) = q),( )= i
Es, (), Eg(D), Ey(®), s,(t), o) and y(t) are defined as expected.

Proposition 5.

2x% —
(0 = 0 e
En particulier :
¢(1/2)
o 9D
Proof. S (=)t 426+ S
_ i<n [ dp + 2l1) + i>ntn
ESn(t) - #(I)
_ n. (2tn—1 _tn)
sn(® = T
2n— “in
"5(0:2%)&
#mznnl ST

2x
= % Z(n = Dt 4 2500 = ()

¢t( N+ (1)~ =)

T ¥ (t) # (t) #(1)

Proposition 6.
U()
v(@® < S0

Proof. Because for any tree, ¢,(1/2) < 2.log,(¢,(1))



2 Old (for memory)

2.1 Devroye’s conjecture

We consider a TRS Copy with two symbols e : 0 and copy : 2 and with a unic rule :

copy(x,y) — copy(copy(x,y), copy(x,y)).

The randomized strategy applied to this TRS corresponds to a variant of Remy’s algorithm.Combinatoricians have
studied this variation, which study leads to the following conjecture :

Conjecture 2 (Devroye). The serie given by the expected value of the size the n™ reduction of a term M € Copy is
quasilinear :
EL(M) ~ nlog(n).

2.2 Approche par strates

Given a tree t, we denote :

— anode x € tis an occurence of copy in ¢,

— the depth of a node x € 7 is 0 if x is the root and n + 1 is x’s father has depth n,

— the size #(¢) of ¢ is the number of nodes in ¢, which is also the number of ¢’ such thatt — ¢’,
— the strata #,¢ of ¢ is the number of nodes of depth ¢, so that

#(r) = Z #.t 3)
0
— the mean depth d(¢) is given by
ns0 NH,t
(1) Z## ; “)
— the hight H() is the maximal depth :
H(t) = max{n|#,:+0}, 5)

— the expected value of p(?), for p € {#,#,,d, H}, after one reduction is denoted :

E, (1) % ©6)
— the expected growth of p(), for p € {#, #,,d, H}, after one reduction is denoted :
p(O) = Ex0)-p), (N
— we also denote E’;,(t) and ’I‘,(t) the expexted and Growth values after k steps.
Lemma 10. Foralln>1:
Z ot = HH (21t = Ht) (8)
=
so that :
2n#, 1t — n#t,t
() = ©)
#) = 2+4d@) (10



2.3 Approche par séquances

Pour u, t des arbres, on dénote :

— t € usitestun suffix de u,

— [n](u) est le nombre de séquence x; > - - > x, dans u,
— Epn(u) et [(u) sont définit de la méme fagon.
Remarquons d’abord que

2
#u = [1](u) d(u) = HEZ; ;[n](t) = [n+1](w)+[1](w) ;(f};t) [n2](f) = [ng+na+1](u)+[n+n
On a alors 210
u
R
in general :

[n+ 1](¢) + 3.[n](¢) + 2.[n — 1](¢)
’ #(1)

m@).[1](w) =n

2.4 Approche par sous-arbres

Pour u, t des arbres, on dénote :

— lorsque ¢ € u, u; est le nombre de tels suffixes (sinon u, = 0),
E ( )._ Dl cu Uy

- =11 u) = #u b

—  s(u) = Es(u) — uy,

Remarquons d’abord que
#u = Zut = 2u.-1
t

On a alors :

(u,vy —#v — Dy, + 2, b1y
#u
ol < u,v > est une somme de < u, v >= 3, k;u; ol k; est le nombre de réductions possible t — v.

sv(u) =

2.5 Counting strict chains

Definition 11. A (strict) chain of t is a seqence x| >, - -+ >; X, of element of t. We use [n](t) to denote the number of
chains of length n in t. We use [n]*(¢) to denote the number of chains of length n in t that do not contain the root.
Ep(u) and  |y(u) are defined as expected.

Proposition 7. The number of n-chains that do not contain the root is recursivelly given by :
orm=1 [n+11°@®) = [n + 11(1) — [n]"(1) .

Lemma 12.

#0) = [11®

Proof. Trivial m]

Lemma 13. Forny,ny >0 :

Z(Dt(n)[nz]*(rx) = mrmsllo)

n
xet 1



thus for ny > 0
2 (DZ(IX)) (2l = [+ + 1@ + [+ ma](0)

and in particular forn; = 0andn, =n>0:

D) = I+ 1@+ ) -

X€t

Notice that :

3 (D ’(x)) O) = [nl+110)

n
Xet 1

Proof. The sum ), ., (D; (x)) [12](z,) corresponds to counting the diferents output of the procedural :
1

— choose x € ¢,
— choose n; elements y; <; -+ <; yn, <; X,
— choose n, elements z; <;_ -+ <, z,, that are not the root x, i.e., x <; 21 <; *** <; Zp,
In the end, we are counting all the y; <; -+ <; yn, <t X <t 21 < -+ * <t Zn,, Which gives [n; + ny + 1](?). ]

Proposition 8.

[2]()
n = H = —+2
#(0) (o) 110
Proof. Recall that 4(1) := Z"%[(;h) — #(¢) thus we have first to calcul # (tz'x). For this, we remark that the choosen
y € £** can be either in /%~ or in one of the two copies of t,, thus :
# (t“) = # <t0.x) +2.4(1,) .

But choosing an element of 1 is the same as choosing an element of 7 which is not in ¢, or which is x ; thus

#(t(”) —H#(O)—H#E)+ 1,

so that
#(2) = #O+#EI+ 1.
In the end, we have :
DHO+# @)+ 1) D #)
= 0 “HO= S !
We can conclud by Lemmas[12]and [[3]:
() = i+ - RO,
[11(®) [11(®)

This result can be generalised to any chain size :

Theorem 14. (5(t) = 0 and foranyn > 1 :

nln+11(0) + Gn = D.[n](®) + 2(n = 1).[n = 1](¢)

m® = ¥0)



Proof. Recall that [,;(¢) := &+})@2) —[1](¢) thus we have first to calcul [1](#2*). For this, we remark that the choosen

Y1 <px -++ <px yp € 1% are either all in 9%, or there is n’ < n such that y; <p« -+ <px Yy <px X <px Ypyp - - Yo With
Yw+1s ---» Yn in one (and only one) of the copies of ¢,, thus :

N . D,(x) + 1 ,
P = 42y ( “ ) In =1t
0<n’<n
But choosing a n-chain in 1% is the same as choosing a n-chain in ¢ with no elements in 7, exepts for x ; thus
N D,(x) + 1 -
P = - ) ( “ ) =T,
0<n’<n
so that (notice that n — n’ > 0 when n’ < n)

Y = o+ Z(

O<n’<n

Using that (zi i) = (’Ii) + (n f_ 1) we have :
Dz(x)) " (Dt(x)

M@ = o+ Y (( s n,_1)>.([n—n’1(rx>+[n—n'—1]*(zx)>,

0<n’'<n

D’(j?,*1).(2.[n—n’](m—[n—n']*(a» = o Yy (D’(fl)f1).<[n—n’]<tx)+[n—n'—1]*(@)),

0<n’<n

In the end, we have :

3 [Z (D ;f,x)) TGRS (ffx{) =1+ Y (D jf,x)) [—n = 1)+ Y (ffx{) [n—n' - 1]*<rx>)

0<n’<n \ x€t X€t X€Et xet

m@® = 50

By applying Lemma[[3|whenever n’ # 0, we get :

D (#1160 + @) + (710 + [ = 11@) + 1) + 1= 110)) + (I + 1) + [12](0) + [110))
_ O<n'<n

m@® =

#(1)
ie.,
nln+ 1]1(0) + Gn—=1).[n](®) + 2(n - 1).[n — 1](2)

m@® = #(0)
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