
First contact with Lear

Dominique Bouthinon & Henry Soldano

L.I.P.N, UMR-CNRS 7030, Université Paris-Nord,
93430 Villetaneuse, France

dominique.bouthinon@lipn.univ-paris13.fr

henry.soldano@lipn.univ-paris13.fr

1 Introduction

Lear is a relational concept-learning system implemented in swi-prolog (http:
//www.swi-prolog.org/index.txt [1]). It learns a set of first order clauses from
ambiguous examples represented as clausal theories. Lear is based on theoretical
ideas described in [2].

2 Directories of Lear

Once you have downloaded (and uncompressed) Lear you have a directory lear
containing three directories:

– programs containing the prolog files implementing Lear, and the python
scripts used to perform miscellaneous learnings,

– examples containing the example files,

– documentation containing the documentation files.

3 Configure your system

Lear can be executed on every system that can run swi-prolog. To configure and
execute properly Lear you must:

1. go to the programs directory and make executable all files *.pl and *.sh,

2. install swi-prolog and set the configuration file of your system with the path
to swi-prolog (http://www.swi-prolog.org/index.txt),

3. set an environment variable LEAR DIR with the path to the directory pro-
grams mentioned at the previous section. As an illustration assume that the
path to lear is usr/local/lear then set the variable as follows:
export LEAR_DIR=/usr/local/lear/programs,

4. edit the file topLear3.pl located in the directory programs and replace the
first line #! /usr/local/bin/swipl by the access to the place where you
have installed swipl.

2 Lear user’s manual

4 Representing ambiguous examples and background
knowledge in Lear format

We give hereafter an illustration of the representation of the background knowl-
edge and the ambiguous examples with a problem where we want to learn the
definition of the father relation.

4.1 Background knowledge

The background knowledge, shared by all examples, is put in a file father.int bkg.

% specify the target relation

target_relation(father(_X,_Y)).

% types of the arguments of the target relation

target_mode(father(person, person)).

/* declaration of the types of the arguments of the predicates

used to describe the examples and the hypotheses */

mode(person(name)).

mode(parent(name, +name)). (+ indicates the second argument person

must be instantiated for Lear to consider this atom)

mode(male(name)).

mode(female(name)).

mode(age(name, year)).

/* parameters relative to variables appearing in the hypotheses */

% all variables of type person will be under OI constrainst

types_under_oi([name]).

% variables of types appearing in the following list can be replaced by constants

types_instantiable([year]).

/* all clauses appearing in the list are irrelevant (here empty list) */

irrelevant([]).

/* let empty */

non_abducible_predicates([]).

/* clauses describing background knowledge */

background_knowledge(

[

% noone is parent of himself

<- parent(X,X),

% Y cannot be parent of X whether X is parent of Y

<- parent(X,Y) and parent(Y,X),

Concept Learning from (very) Ambiguous Examples 3

person(X) <- parent(X,Y),

person(Y) <- parent(X,Y),

male(X) or female(X) <- person(X)

% noone is both male and female,

<- male(X) and female(X)

]

).

4.2 Ambiguous examples

The file father.int contains the ambiguous examples.

/* =========================== POSITIVE EXAMPLES ============================ */

target(1, pos, father(john, mary)).

pos(1, [male(john), female(mary), <- parent(mary, john)]).

domains(1, pos, [person([john, mary])]).

target(2, pos, father(david, steve)).

pos(2, [parent(david, steve), male(david), male(steve)]).

domains(2, pos, [person([david, steve])]).

/* =========================== NEGATIVE EXAMPLES ============================ */

target(1, neg, father(katy, ellen)).

neg(1, [parent(katy, ellen), female(ellen)]).

domains(1, neg, [person([katy, ellen])]).

target(2, neg, father(oliver, philipp)).

neg(2, [male(oliver), male(philipp)]).

domains(2, neg, [person([oliver, philipp])]).

Each ambiguous example is described by three predicates target/3, pos/2 (or
neg/2 for the negative examples) and domains/3. The first argument of each
predicate is a number that identify the example, and the second argument of
target and domains identify whether this is a positive or a negative example.
Note that a positive and a negative example can have the same number, they
will be discriminated by their second argument.

The third argument of target describes a ground instance of the target rela-
tion. This instance is assumed true whether the example is positive, false whether
it is negative. As an illustration father(john, mary) associated with the positive

4 Lear user’s manual

example 1 means that john is mary’s father, while father(katy, ellen) associated
with the negative example 3 means that katy is ellen’s father.

The second argument of pos (neg for a negative example) is a clausal theory
stipulating what is known from the point of view of the considered example.
In example 1, [male(john), female(mary),← parent(mary, john)] means that
john is a man, mary is a woman and mary is not a parent of john. There
is an ambiguity because the examples are incomplete: every unknown fact is
indeterminate. So we do not know neither whether john is a parent of mary,
nor whether john is a also woman, nor whether mary is a also a man. The
role of the background knowledge provided by parent.int bkg is to limit this
ambiguity (this background theory is shared by all the examples). For instance,
the clause ← male(X) and female(X) allows Lear to establish that john is
not a woman and mary is not a man. The clausal theory in pos (neg) describ-
ing an example in the predicate pos or neg may contains variables which will
be implicitly ground with the constants declared in the domains predicate (see
next paragraph). Also notice the possibility to use general clauses of the form
a1 or . . . or am ← b1 and . . . and bn in the clausal theories associated with exam-
ples and background knowledge.

The third argument of domains is a list containing the types of each object
involved in the example. For instance, [name([john,mary]), age([13, 45])] means
that john and mary are of the type name, and that 13 and 45 are of the type age.
Note that objects that appear neither in target nor in pos (neg) can be referenced
in domains. This means that we know nothing on such objects. For instance,
assume the declaration domains(1, pos, [name([john,mary]), pet([titi])]) associ-
ated with example 1. It means that example 1 also contains an object titi of
type pet, but we know nothing about it. Nevertheless, titi will be considered by
Lear in each predicate that accepts a pet as argument.

5 Learn with Lear

You can learn with Lear whenever you have the ambiguous examples file (fa-
ther.int) and the background knowledge file (father.int bkg).

To make a simple learning use the learn.sh script:

learn.sh father father

The first argument is the name (without extension) of the file containing the
ambiguous examples, the second one is the name (without extension) of the file
containing the background knowledge. Here the two names are equals, but they
could be different. The results of the learning are displayed at the screen:

================== FINAL SET OF RULES =====================

father(A,B) :- parent(A,B), male(A).

end of learning.

elapsed time : 0 h 0 m 0 s

Concept Learning from (very) Ambiguous Examples 5

The script learn.sh contains two declarations and two instructions:

fileEx=$1 # prefix of the file containing

the ambiguous examples (<file>.int)

fileBkg=$2 # prefix of the file containing

the background knowledge (<file>.int_bkg)

topLear3.pl -e $fileEx -B $fileBkg # build the extentional examples

topLear3.pl -f $file # learn

topLear3.pl is the main prolog program that handles the Lear options.
Notice the two steps in the script:

1. topLear3.pl -e $fileEx -b $fileBkg. The option −e means that Lear
must convert each intentional ambiguous example contained in fileEx.int in
an extensional ambiguous example represented as a set of ground clauses.
The option -B declares that the background knowledge used in this step is in
the file fileBkg.int bkg. Two files are created at the end of this step: fileEx.pl
containing the extensional ambiguous examples and fileEx.bkg containing
the background knowledge in a new format.

2. topLear3.pl -f $fileEx learns the target concept from the two files cre-
ated in 1.

Notice that the first step, which may cost times, must be achieved only once.
So the second step (learning phase) can be done several times, with different
options, from the same files fileEx.pl and fileBkg.bkg.

To display the available options associated with topLear3.pl enter:
topLear3.pl -h
The following options are displayed:

-B <file> declare the file containing the background knowledge

-c <value> make a <value> cross validation

-d <value> stop the search of a new clause whenever <value>%

of the remaining positive examples are covered

-e <file> build extensional examples from intentional ones

contained in <file>.int (option -b is mandatory)

-f <file> learn from examples contained in <file>.int and

background knowledge contained in <file>.bkg

-l only consider linked clauses in hypotheses

-w <value> declare the width of the beam (3 by default)

-p <value> accept that p% of the negative examples are not compatible

with the hypothesis

-v <value> verbosity level (0 (default), 1, 2 or 3)

You can use these options to make finer learning sessions. As an illustration
topLear3 -f father -c 10 -w 5 -v 2

runs a learning session from the examples contained in the file father.pl and

6 Lear user’s manual

the background knowledge contained in the file father.bkg. The learning process
consists in a 10 cross validation, each step lauching a beam search with a beam
of lenght 5. The level of verbosity is set to 2.

In the programs directory you have several documented python 3.2 scripts
that you can use to make specific learning sessions.

References

1. Wielemaker, J.: An overview of the SWI-Prolog programming environment. In
Mesnard, F., Serebenik, A., eds.: Proceedings of the 13th International Workshop
on Logic Programming Environments, Heverlee, Belgium, Katholieke Universiteit
Leuven (december 2003) 1–16 CW 371.

2. Bouthinon, D., Soldano, H., Ventos, V.: Concept learning from (very) ambiguous
examples. In Perner, P., ed.: MLDM. Volume 5632 of Lecture Notes in Computer
Science., Springer (2009) 465–478

