Approximating functional programs: Taylor subsumes Scott, Berry, Kahn and Plotkin

Davide Barbarossa and Giulio Manzonetto

barbarossa@lipn.univ-paris13.fr
LIPN, Université Sorbonne Paris Nord

May 5, 2020

Possible behaviours of a program $F=F\{x\}$

\(\left.$$
\begin{array}{c|c|c}\hline \text { Normalizing } & & \text { Meaningless } \\
\hline z \leftarrow 1 & & \begin{array}{c}\text { while(True }\{ \\
z \leftarrow \frac{z+x / z}{2} \\
\text { write } i \text {-th digit of } z\end{array}
$$

F(2)=1,5 \& \}\end{array}\right]\)| DoNothing |
| :--- |

Possible behaviours of a program $F=F\{x\}$

Normalizing	Solvable (Babylonians)	Meaningless
$\begin{aligned} & z \leftarrow 1 \\ & z \leftarrow \frac{z+x / z}{2} \end{aligned}$ write i-th digit of z	$\begin{aligned} & z \leftarrow 1 ; i \leftarrow 0 \\ & \text { while(True) }\{ \\ & \quad i++ \\ & \quad z \leftarrow \frac{z+x / z}{2} \end{aligned}$ write i-th digit of z \}	```while(True){ DoNothing }```
$F(2)=1,5$	$\begin{aligned} F(2) & \rightarrow 1,41 \\ & \rightarrow 1,414 \\ & \rightarrow 1,4142 \\ & \cdots \rightarrow \infty \sqrt{2} \end{aligned}$	$F(2)$ produces no information!

Böhm Trees

λ-calculus (Church)
The set Λ of programs is given by $M::=x|\lambda x \cdot M| M M$. Computation step: $(\lambda x . M) N \rightarrow M\{N / x\}$.

Böhm trees (Barendregt)

The map BT : $\Lambda \rightarrow \mathcal{B}$ associates each λ-term F with its Böhm tree:

$$
\mathrm{BT}(F):=\mathrm{BT}(\operatorname{hnf}(F)), \quad \mathrm{BT}(F):=\perp \text { if } F \text { is unsolvable, }
$$

$$
\operatorname{BT}\left(\lambda \vec{x} \cdot y Q_{1} \ldots Q_{k}\right):=>_{\operatorname{BT}\left(Q_{1}\right)}^{\cdots \vec{x} \cdot y} \quad \cdots \quad \operatorname{BT}\left(Q_{k}\right)
$$

The equivalence $=_{\mathrm{BT}}$ is a λ-theory. So $\mathcal{B}_{\Lambda} \simeq \Lambda /=_{\mathrm{BT}}$ is a semantics for Λ. The set of all normal forms is dense in \mathcal{B}_{Λ} (in analogy with \mathbb{Q} dense in \mathbb{R}).

Finite approximants

- The set \mathcal{A} of finite approximants is defined as:

$$
P::=\perp \mid \lambda \vec{x} \cdot y P \ldots P
$$

with the intuition that \perp means no information.

- Fix \leq the prorder on \mathcal{A} generated by taking $\perp \leq P$ for all P.
- The set $\mathcal{A}(F)$ of the finite approximants of $F \in \Lambda$ is:

$$
\mathcal{A}(F):=\left\{P \in \mathcal{A} \text { s.t } \exists N \in \Lambda \text { s.t } F \rightarrow_{\beta} N \geq P\right\}
$$

Approximation Theorem

$$
\mathrm{BT}(F)=\sup _{P \in \mathcal{A}(F)} P
$$

in analogy to the fact that $\sqrt{2}$ is the limit of BabylonianProgram(2).

Derivatives!

	Analysis	λ-calculus
Application	$F(x)$	$F x$
Taylor expansion $\Theta(\cdot)$	$\sum_{n} \frac{1}{n!} F^{(n)}(0) x^{n}$	$\sum_{n} \frac{1}{n!}\left(\mathrm{D}^{n} \Theta(F) \bullet x^{n}\right) 0$

Differential λ-calculus

Programs live in the module $\mathbb{Q}^{+}\left\langle\Lambda^{r}\right\rangle_{\infty}$ and are subject to the equation:

$$
\mathrm{D}(\lambda x \cdot M) \bullet N=\lambda x \cdot\left(\frac{d}{d x} M \cdot N\right)
$$

where $\frac{d}{d x}(P Q) \cdot N:=\left(\frac{d}{d x} P \cdot N\right) Q+\left(D P \bullet\left(\frac{d}{d x} Q \cdot N\right)\right) Q$
is the linear substitution of N in M for x.
Ehrhard and Régnier:
Θ defines a function $\Lambda \rightarrow \mathbb{Q}^{+}\left\langle\Lambda^{r}\right\rangle_{\infty}$ (called the full Taylor expansion):

$$
\Theta(\cdot)=\sum_{t \in \mathcal{T}(\cdot)} \frac{1}{\mathrm{~m}(t)} t
$$

where $\mathrm{m}(t) \in \mathbb{N}$ is difficult and $\mathcal{T}(\cdot): \Lambda \rightarrow \mathcal{P}\left(\Lambda^{r}\right)$ is easy (i.e. inductive).
Furthermore,

$$
\operatorname{NF}(\Theta(\cdot))=\Theta(\mathrm{BT}(\cdot))
$$

The Resource Calculus

Define the set Λ^{r} of Resource terms:

$$
t::=x|\lambda x . t| t[t, \ldots, t]
$$

The Resource Calculus

Define the set Λ^{r} of Resource terms:

$$
t::=x|\lambda x . t| t[t, \ldots, t]
$$

The Resource Calculus

Define the set Λ^{r} of Resource terms:

$$
t::=x|\lambda x . t| t[t, \ldots, t]
$$

Reduction:

$$
(\lambda \times . t)\left[s_{1}, s_{2}, s_{3}\right] \rightarrow ?
$$

The Resource Calculus

Define the set Λ^{r} of Resource terms:

$$
t::=x|\lambda x . t| t[t, \ldots, t]
$$

Reduction:

$$
(\lambda x . t)\left[s_{1}, s_{2}, s_{3}\right] \rightarrow t\left\{s_{1} / x^{(1)}, s_{2} / x^{(2)}, s_{3} / x^{(3)}\right\}
$$

The Resource Calculus

Define the set Λ^{r} of Resource terms:

$$
t::=x|\lambda x . t| t[t, \ldots, t]
$$

We need formal (idempotent) sum $\mathbb{T}=t_{1}+\cdots+t_{n}$ of resource terms. Reduction:

$$
(\lambda \times . t)\left[s_{1}, s_{2}, s_{3}\right] \rightarrow \sum_{\sigma \in \mathfrak{S}_{3}} t\left\{s_{\sigma(1)} / x^{(1)}, s_{\sigma(2)} / x^{(2)}, s_{\sigma(3)} / x^{(3)}\right\}
$$

The Resource Calculus

Define the set Λ^{r} of Resource terms:

$$
t::=x|\lambda x . t| t[t, \ldots, t]
$$

We need formal (idempotent) sum $\mathbb{T}=t_{1}+\cdots+t_{n}$ of resource terms. Reduction:

$$
(\lambda \times . t)\left[s_{1}, s_{2}, s_{3}\right] \rightarrow \text { ? }
$$

The Resource Calculus

Define the set Λ^{r} of Resource terms:

$$
t::=x|\lambda x . t| t[t, \ldots, t]
$$

We need formal (idempotent) sum $\mathbb{T}=t_{1}+\cdots+t_{n}$ of resource terms. Reduction:

$$
(\lambda \times . t)\left[s_{1}, s_{2}, s_{3}\right] \rightarrow 0
$$

Resource terms live a tough life

They may experience non-determinism:

$$
\Delta[x, y]:=(\lambda x \cdot x[x])\left[y, y^{\prime}\right] \rightarrow y\left[y^{\prime}\right]+y^{\prime}[y]
$$

But also starvation:

$$
\Delta[\Delta, \Delta] \rightarrow(\lambda x \cdot x[x])[\Delta] \rightarrow 0
$$

As well as surfeit:

$$
(\lambda x \lambda y . x)[I][/] \rightarrow(\lambda y . I)[I] \rightarrow 0
$$

Summing up: $\quad(\lambda x . t)\left[s_{1}, \ldots, s_{n}\right] \nRightarrow 0 \Rightarrow t$ uses each s_{i} exactly once!
Main Properties:

- Linearity: Cannot erase non-empty bags (unless annihilating). \square
- Strong Normalization: Trivial, as there is no duplication. \square
- Confluence: Locally confluent + strongly normalizing. \square

Qualitative Taylor Expansion

The (support of the full) Taylor expansion is the map $\mathcal{T}(\cdot): \Lambda \rightarrow \mathcal{P}\left(\Lambda^{r}\right)$:

$$
\begin{array}{ll}
\mathcal{T}(x) & =\{x\} \\
\mathcal{T}(\lambda x . M) & =\left\{\lambda x . t \in \Lambda^{r} \text { s.t. } t \in \mathcal{T}(M)\right\} \\
\mathcal{T}(M N) & =\left\{t\left[s_{1}, \ldots, s_{k}\right] \in \Lambda^{r} \text { s.t. } k \in \mathbb{N}, t \in \mathcal{T}(M), s_{i} \in \mathcal{T}(N)\right\}
\end{array}
$$

Qualitative Taylor Expansion

The (support of the full) Taylor expansion is the map $\mathcal{T}(\cdot): \Lambda \rightarrow \mathcal{P}\left(\Lambda^{r}\right)$:

$$
\begin{array}{ll}
\mathcal{T}(x) & =\{x\} \\
\mathcal{T}(\lambda x . M) & =\left\{\lambda x . t \in \Lambda^{r} \text { s.t. } t \in \mathcal{T}(M)\right\} \\
\mathcal{T}(M N) & =\left\{t\left[s_{1}, \ldots, s_{k}\right] \in \Lambda^{r} \text { s.t. } k \in \mathbb{N}, t \in \mathcal{T}(M), s_{i} \in \mathcal{T}(N)\right\}
\end{array}
$$

Examples:

$$
\begin{array}{ll}
\mathcal{T}(\lambda x \cdot x) & =\{\lambda x \cdot x\} \\
\mathcal{T}(\lambda x \cdot x x) & =\left\{\lambda x \cdot x\left[x^{n}\right] \mid n \in \mathbb{N}\right\} \\
\mathcal{T}(\Omega) & =\left\{\left(\lambda x \cdot x\left[x^{n_{0}}\right]\right)\left[\lambda x \cdot x\left[x^{n_{1}}\right], \ldots, \lambda x \cdot x\left[x^{n_{k}}\right]\right] \mid k, n_{0}, \ldots, n_{k} \in \mathbb{N}\right\} \\
\mathcal{T}\left(\Delta_{f}\right) & =\left\{\lambda x . f\left[x^{n}\right]\left[x^{k}\right] \mid n, k \in \mathbb{N}\right\} \\
\mathcal{T}(Y) & =\left\{\lambda f . t\left[s_{1}, \ldots, s_{k}\right] \mid k \in \mathbb{N}, t, s_{1}, \ldots, s_{k} \in \mathcal{T}\left(\Delta_{f}\right)\right\}
\end{array}
$$

where $Y=\lambda f . \Delta_{f} \Delta_{f}$ and $\Delta_{f}=\lambda x . f(x x)$.

Approximating through resources

Computing the normal form:

$$
\mathrm{NF}(\mathcal{T}(M))=\bigcup_{t \in \mathcal{T}(M)} \operatorname{nf}(t)
$$

Examples
$\mathrm{NF}(\mathcal{T}(Y))=\{\lambda f . f 1, \lambda f . f[f 1], \lambda f . f[f 1, f 1], \lambda f . f[f 1, f[f 1], f[f[f 1]]], \ldots\}$. $\mathrm{NF}(\mathcal{T}(\Omega))=\emptyset$. This is the case for all unsolvables.

Approximating through resources

Computing the normal form:

$$
\operatorname{NF}(\mathcal{T}(M))=\bigcup_{t \in \mathcal{T}(M)} \operatorname{nf}(t)
$$

Examples

$$
\begin{aligned}
& \operatorname{NF}(\mathcal{T}(Y))=\{\lambda f . f 1, \lambda f . f[f 1], \lambda f . f[f 1, f 1], \lambda f . f[f 1, f[f 1], f[f[f 1]]], \ldots\} . \\
& \operatorname{NF}(\mathcal{T}(\Omega))=\emptyset . \text { This is the case for all unsolvables. }
\end{aligned}
$$

Taylor Expansion of Böhm Trees

$$
\begin{gathered}
\mathcal{T}(\perp):=\emptyset \\
\mathcal{T}(\mathrm{BT}(M)):=\bigcup_{P \in \mathcal{A}(M)} \mathcal{T}(P)
\end{gathered}
$$

Approximating through resources

Computing the normal form:

$$
\operatorname{NF}(\mathcal{T}(M))=\bigcup_{t \in \mathcal{T}(M)} \operatorname{nf}(t)
$$

Examples
$\mathrm{NF}(\mathcal{T}(Y))=\{\lambda f . f 1, \lambda f . f[f 1], \lambda f . f[f 1, f 1], \lambda f . f[f 1, f[f 1], f[f[f 1]]], \ldots\}$.
$\operatorname{NF}(\mathcal{T}(\Omega))=\emptyset$. This is the case for all unsolvables.
The diagramm commutes!
Taylor Expansion of Böhm Trees

$$
\begin{gathered}
\mathcal{T}(\perp):=\emptyset \\
\mathcal{T}(\mathrm{BT}(M)):=\bigcup_{P \in \mathcal{A}(M)} \mathcal{T}(P)
\end{gathered}
$$

A common structure

(1) Source language \mapsto Resource version
(gain confluence and strong normalization)
(2) via a Taylor Expansion, providing:

- static analysis (coherence/cliques),
- dynamic analysis (normalization)
(3) and (when possible) a:

Commutation Theorem

$$
\mathrm{NF}(\mathcal{T}(P))=\mathcal{T}(\mathrm{BT}(P))
$$

Corollary
$\operatorname{BT}(M)=\mathrm{BT}(N) \Leftrightarrow \mathrm{NF}(\mathcal{T}(M))=\mathrm{NF}(\mathcal{T}(N))$

A common structure

(1) Source language \mapsto Resource version
(gain confluence and strong normalization)
(2) via a Taylor Expansion, providing:
"Understanding the relation between the term and its full Taylor expansion might be the starting point of a
(3) anc renewing of the theory of approximations".
Commut Ehrhard and Régnier

$$
\operatorname{NF}(\mathcal{T}(P))=\mathcal{T}(\mathrm{BT}(P))
$$

Corollary
$\mathrm{BT}(M)=\mathrm{BT}(N) \Leftrightarrow \mathrm{NF}(\mathcal{T}(M))=\mathrm{NF}(\mathcal{T}(N))$

Classic results via labelled reduction

Classic results via Resource Approximation

Equality $\bmod \mathrm{BT}$ is a λ-theory

Contextuality of Böhm trees
Let $C(\cdot)$ be a context.

$$
\mathrm{BT}(M)=\mathrm{BT}(N) \quad \Rightarrow \quad \mathrm{BT}(C(M D)=\mathrm{BT}(C(N D)
$$

Equality mod NFT is a λ-theory

Monotonicity of contexts w.r.t. $\leq_{\text {NFT }}$
Let $C(\cdot)$ be a context.
$\mathrm{NF}(\mathcal{T}(M)) \subseteq \mathrm{NF}(\mathcal{T}(N)) \quad \Rightarrow \quad \mathrm{NF}(\mathcal{T}(C(M D)) \subseteq \mathrm{NF}(\mathcal{T}(C(N D))$
Proof. Induction on C. The interesting case is $C=C_{1} C_{2}$.

Equality mod NFT is a λ-theory

Monotonicity of contexts w.r.t. \leq NFT
Let $C(\cdot)$ be a context.

$$
\mathrm{NF}(\mathcal{T}(M)) \subseteq \mathrm{NF}(\mathcal{T}(N)) \quad \Rightarrow \quad \mathrm{NF}(\mathcal{T}(C(M D)) \subseteq \mathrm{NF}(\mathcal{T}(C(N D))
$$

Proof. Induction on C. The interesting case is $C=C_{1} C_{2}$. $t \in \operatorname{NF}\left(\mathcal{T}(C(M D)) \quad \Rightarrow \quad \exists t^{\prime} \in \mathcal{T}\left(\left(C_{1} \cap M D\right)\left(C_{2} \cap M D\right)\right)\right.$ such that :

$\operatorname{nf}\left(s_{1}\right)\left[\operatorname{nf}\left(u_{1}\right), \ldots, \operatorname{nf}\left(u_{k}\right)\right]$
with $\operatorname{nf}\left(s_{1}\right) \subseteq \operatorname{NF}\left(\mathcal{T}\left(C_{1} \cap M D\right)\right)$
and $\operatorname{nf}\left(u_{1}\right), \ldots, \operatorname{nf}\left(u_{k}\right) \subseteq \operatorname{NF}\left(\mathcal{T}\left(C_{2} \cap M D\right)\right)$

Equality mod NFT is a λ-theory

Monotonicity of contexts w.r.t. \leq NFT
Let $C(\cdot)$ be a context.

$$
\mathrm{NF}(\mathcal{T}(M)) \subseteq \mathrm{NF}(\mathcal{T}(N)) \quad \Rightarrow \quad \mathrm{NF}(\mathcal{T}(C(M D)) \subseteq \mathrm{NF}(\mathcal{T}(C(N D))
$$

Proof. Induction on C. The interesting case is $C=C_{1} C_{2}$. $t \in \operatorname{NF}\left(\mathcal{T}(C(M D)) \quad \Rightarrow \quad \exists t^{\prime} \in \mathcal{T}\left(\left(C_{1} \cap M D\right)\left(C_{2} \cap M D\right)\right)\right.$ such that :

$$
\operatorname{nf}\left(s_{1}\right)\left[\operatorname{nf}\left(u_{1}\right), \ldots, \operatorname{nf}\left(u_{k}\right)\right]
$$

with $\operatorname{nf}\left(s_{1}\right) \subseteq \operatorname{NF}\left(\mathcal{T}\left(C_{1} \mid M D\right)\right) \subseteq \operatorname{NF}\left(\mathcal{T}\left(C_{1} \mid N D\right)\right)$
and $\operatorname{nf}\left(u_{1}\right), \ldots, \operatorname{nf}\left(u_{k}\right) \subseteq \operatorname{NF}\left(\mathcal{T}\left(C_{2}(M D)\right) \subseteq \operatorname{NF}\left(\mathcal{T}\left(C_{2}(N D)\right)\right.\right.$.
Easily conclude that $t \in \operatorname{NF}(\mathcal{T}(C(N D))$.

Unsolvables are computationally meaningless

Genericity Property
Let U unsolvable. If $C(U)$ has a β-nf, then $C(U)={ }_{\beta} C(M) \forall M \in \Lambda$.

Unsolvables are computationally meaningless

Genericity Property
Let U unsolvable. If $C(U)$ has a β-nf, then $C(U)={ }_{\beta} C(M) \forall M \in \Lambda$.
Proof. $C(U)$ normalizable $\quad \Rightarrow \quad \exists t \in \operatorname{NF}(\mathcal{T}(C(U)))$ such that:

$$
" \mathrm{nf}_{\beta}(C(U))=t " \text { and all its bags are singletons. }
$$

So $\exists t^{\prime} \in \mathcal{T}(C(U D)$ such that:

$$
t^{\prime}=c\left(s_{1}, \ldots, s_{k}\right) \longrightarrow t+\mathbb{T}
$$

for some $c \in \mathcal{T}\left(C(\cdot \mid)\right.$ and $s_{1}, \ldots, s_{k} \in \mathcal{T}(U)$.

Unsolvables are computationally meaningless

Genericity Property
Let U unsolvable. If $C(U)$ has a β-nf, then $C(U)={ }_{\beta} C(M) \forall M \in \Lambda$.
Proof. $C(U)$ normalizable $\quad \Rightarrow \quad \exists t \in \operatorname{NF}(\mathcal{T}(C(U)))$ such that:

$$
" \mathrm{nf}_{\beta}(C(U))=t " \text { and all its bags are singletons. }
$$

So $\exists t^{\prime} \in \mathcal{T}(C(U))$ such that:

for some $c \in \mathcal{T}\left(C(\cdot \mid)\right.$ and $s_{1}, \ldots, s_{k} \in \mathcal{T}(U)$.

Unsolvables are computationally meaningless

Genericity Property

Let U unsolvable. If $C(U)$ has a β-nf, then $C(U)={ }_{\beta} C(M) \forall M \in \Lambda$.
Proof. $C(U)$ normalizable $\quad \Rightarrow \quad \exists t \in \operatorname{NF}(\mathcal{T}(C(U)))$ such that:

$$
" \operatorname{nf}_{\beta}(C(U))=t " \text { and all its bags are singletons. }
$$

So $\exists t^{\prime} \in \mathcal{T}(C(U D)$ such that:

for some $c \in \mathcal{T}(C(\cdot))$ and $s_{1}, \ldots, s_{k} \in \mathcal{T}(U)$. (U unsolvable $\left.\Rightarrow \operatorname{nf}\left(s_{i}\right)=0\right)$

Unsolvables are computationally meaningless

Genericity Property
Let U unsolvable. If $C(U)$ has a β-nf, then $C(U)={ }_{\beta} C(M) \forall M \in \Lambda$.
Proof. $C(U)$ normalizable $\quad \Rightarrow \quad \exists t \in \operatorname{NF}(\mathcal{T}(C(U)))$ such that:

$$
" \mathrm{nf}_{\beta}(C(U))=t " \text { and all its bags are singletons. }
$$

So $\exists t^{\prime} \in \mathcal{T}(C(U))$ such that:

for some $c \in \mathcal{T}(C(\cdot \mid))$ and $s_{1}, \ldots, s_{k} \in \mathcal{T}(U)$.

Unsolvables are computationally meaningless

Genericity Property

Let U unsolvable. If $C(U)$ has a β-nf, then $C(U)={ }_{\beta} C(M) \forall M \in \Lambda$.
Proof. $C(U)$ normalizable $\quad \Rightarrow \quad \exists t \in \operatorname{NF}(\mathcal{T}(C(U)))$ such that:

$$
" \mathrm{nf}_{\beta}(C(U))=t " \text { and all its bags are singletons. }
$$

So $\exists t^{\prime} \in \mathcal{T}(C \ U D)$ such that:

for some $c \in \mathcal{T}\left(C(\cdot D)\right.$ and $s_{1}, \ldots, s_{k} \in \mathcal{T}(U)$.
No hole can occur in c!
Therefore : $t^{\prime}=c\left(s_{1}, \ldots, s_{k}\right)=c \in \mathcal{T}(C(M))$ and hence $t \in \operatorname{NF}(\mathcal{T}(C(M D))$.
Since and bags of t are singletons, " $t=\operatorname{nf}_{\beta}(C(M D)$ ".

Perpendicular Lines Property

PLP: If a context $C(\cdot, \ldots, \cdot): \Lambda^{n} \rightarrow \Lambda$ is constant on n perpendicular lines, then it must be constant everywhere.

Perpendicular Lines Property

PLP: If a context $C(\cdot, \ldots, \cdot): \Lambda^{n} \rightarrow \Lambda$ is constant on n perpendicular lines, then it must be constant everywhere.

True in $\Lambda /=_{\text {BT }}$, Barendregt's Book 1982 Proof: via Sequentiality.
?? in $\Lambda^{\circ} /_{=_{\text {вт }}}$
False in $\Lambda^{\circ} /=_{\beta}$, Barendregt \& Statman 1999 Counterexample: via Plotkin's terms.

True in $\Lambda /={ }_{\beta}$, De Vrijer \& Endrullis 2008 Proof: via Reduction under Substitution.

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & ={ }_{\mathrm{BT}} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{BT} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & = & { }_{\mathrm{BT}}
\end{array} N_{n} . \quad \Rightarrow \vec{Z}, C(\vec{Z})={ }_{\mathrm{BT}} N_{1} .\right.
$$

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & ={ }_{\mathrm{BT}} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{BT} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & ={ }_{\mathrm{BT}} & N_{n}
\end{array} \quad \Rightarrow \quad \forall \vec{Z}, C(\vec{Z})={ }_{\mathrm{BT}} N_{1} .\right.
$$

How can a context $C(0 \cdot)$ be constant in $\Lambda /=_{\text {BT }}$?
(1) $C(\cdot)$ does not contain the hole at all (the trivial case);
(2) the hole is erased during its reduction;
(3) the hole is "hidden" behind an unsolvable;
(9) the hole is never erased but "pushed into infinity".

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & ={ }_{\mathrm{NFT}} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{NFT} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & =\mathrm{NFT} & N_{n}
\end{array} \quad \Rightarrow \quad \forall \vec{Z}, C(\vec{Z})={ }_{\mathrm{NFT}} N_{1} .\right.
$$

How can a $c \in \mathcal{T}(C(\cdot \cdot))$ s.t. $\operatorname{nf}(c) \neq 0$ be constant in Λ^{r} ?
(1) c does not contain the hole at all (the trivial case);
(2) the hole is erased during its reduction ;
(3) the hole is "hidden" behind an unsolvable;
(9) the hole is never erased but "pushed into infinity".

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & =\mathrm{NFT} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{NFT} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & =\mathrm{NFT} & N_{n}
\end{array} \quad \Rightarrow \quad \forall \vec{Z}, C(\vec{Z})={ }_{\mathrm{NFT}} N_{1} .\right.
$$

How can a $c \in \mathcal{T}(C(\cdot \cdot))$ s.t. $\operatorname{nf}(c) \neq 0$ be constant in Λ^{r} ?
(1) c does not contain the hole at all (the trivial case);
(2) the hole is crased during its reduction (linearity);
(3) the hole is "hidden" behind an unsolvable;
(9) the hole is never erased but "pushed into infinity".

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & =\mathrm{NFT} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{NFT} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & =\mathrm{NFT} & N_{n}
\end{array} \quad \Rightarrow \quad \forall \vec{Z}, C(\vec{Z})={ }_{\mathrm{NFT}} N_{1} .\right.
$$

How can a $c \in \mathcal{T}(C(\cdot \cdot))$ s.t. $\operatorname{nf}(c) \neq 0$ be constant in Λ^{r} ?
(1) c does not contain the hole at all (the trivial case);
(2) the hole is erased during its reduction (linearity);
(3) the hole is "hidden" behind an unsolvable (strong normalization);
(9) the hole is never erased but "pushed into infinity".

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & =\mathrm{NFT} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{NFT}_{\mathrm{NFT}} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & =_{\mathrm{NFT}} & N_{n}
\end{array} \quad \Rightarrow \quad \forall \vec{Z}, C(\vec{Z})={ }_{\mathrm{NFT}} N_{1} .\right.
$$

How can a $c \in \mathcal{T}(C(\cdot \cdot))$ s.t. $\operatorname{nf}(c) \neq 0$ be constant in Λ^{r} ?
(1) c does not contain the hole at all (the trivial case!);
(2) the hole is erased during its reduction (linearity);
(3) the hole is "hidden" behind an unsolvable (strong normalization);
(9) the hole is never erased but "pushed into infinity" (finiteness).

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & =_{\mathrm{NFT}} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{NFT} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & =\mathrm{NFT} & N_{n}
\end{array} \quad \Rightarrow \quad \forall \vec{Z}, C(\vec{Z})=\mathrm{NFT} N_{1} .\right.
$$

Claim.
If $c \in \mathcal{T}(C(\cdot))$ then:

$$
\operatorname{nf}(c) \neq 0 \quad \Rightarrow \quad c \text { contains no hole. }
$$

PLP	β	BT
open	\checkmark	\checkmark
closed	X	$?$

By induction on the size of c.

Idea of the proof

Perpendicular Lines Property

$$
\forall Z\left\{\begin{array}{ccc}
C\left(Z, M_{12}, \ldots \ldots, M_{1 n}\right) & =\mathrm{NFT} & N_{1} \\
C\left(M_{21}, Z, \ldots \ldots, M_{2 n}\right) & =\mathrm{NFT} & N_{2} \\
\ddots & \vdots & \vdots \\
C\left(M_{n 1}, \ldots, M_{n(n-1)}, Z\right) & =\mathrm{NFT} & N_{n}
\end{array} \quad \Rightarrow \quad \forall \vec{Z}, C(\vec{Z})=\mathrm{NFT} N_{1} .\right.
$$

Our proof does not need open terms!
PLP holds in $\Lambda^{\circ} /=_{\text {вт }}$

The End!

