Tropical Mathematics and Linearity in the $\lambda\text{-Calculus}$

Davide Barbarossa and Paolo Pistone

davide.barbarossa@unibo.it https://lipn.univ-paris13.fr/~barbarossa/

Dipartimento di Informatica

ALMA MATER STUDIORUM Università di Bologna

This work has been supported by the ERC CoG DIAPASoN, GA 818616.

Trends in Linear Logic and Applications (TLLA) 2023

How many duplications/erasures to normal form ?

How many duplications/erasures to normal form ?

Two *orthogonal* approaches:

- Metric approach: "Duplication as sensitivity" easy terms, difficult types – types handle duplication
- *Differential approach*: "Duplication as linear substitution" difficult terms, easy types terms handle duplication

Bounded duplication ST λ C (bST λ C) – syntax

$$M ::= x \mid \lambda x.M \mid MM \qquad A ::= X \mid !_n A \multimap A$$

	$\Gamma \vdash M : A$	$\Gamma, \mathbf{x} :_n B, \mathbf{y} :_m B \vdash \mathbf{M} : A$		
$x:_1 A \vdash x: A$	$\overline{\Gamma, \mathbf{x}:_{0} B \vdash \mathbf{M}: A}$	$\overline{\Gamma, \mathrm{x}:_{n+m}B \vdash \mathrm{M}}$	${x/y}:A$	
$\Gamma, x :_n A \vdash M : B$		$\Gamma \vdash M :!_n A \multimap B$	$\Delta \vdash \mathbb{N} : A$	
$\overline{\Gamma \vdash \lambda \mathbf{x}.\mathbf{M}:!_n A \multimap B}$		$\Gamma + n\Delta \vdash MN : B$		

Bounded duplication ST λ C (bST λ C) – syntax

$$M ::= x \mid \lambda x.M \mid MM \qquad A ::= X \mid !_n A \multimap A$$

	$\Gamma \vdash M : A$	$\Gamma, \mathfrak{x} :_{n} B, \mathfrak{y} :_{m} B \vdash \mathfrak{M} : A$		
$\mathbf{x}:_{1} A \vdash \mathbf{x}: A$	$\overline{\Gamma, \mathtt{x}:_{0} B \vdash \mathtt{M}: A}$	$\overline{\Gamma, \mathbf{x}:_{n+m} B \vdash \mathbf{M}\{\mathbf{x}/\mathbf{y}\}: A}$		
$\Gamma, \mathbf{x} :_n A \vdash \mathbf{M} : B$		$\Gamma \vdash M :!_n A \multimap B$	$\Delta \vdash \mathtt{N} : A$	

 $\Gamma \vdash \lambda \mathbf{x}.\mathbf{M} :: {}_{n}A \multimap B \qquad \qquad \Gamma + n\Delta \vdash \mathbf{MN} : B$

$$z:_{2} X \vdash (\lambda xy.yxx) z: !_{1}(!_{1} X \multimap !_{1} X \multimap X) \multimap X$$

Differential ST λ C (ST $\partial\lambda$ C) – syntax

 $\mathsf{M} ::= \mathsf{x} \mid \lambda \mathsf{x}.\mathsf{M} \mid \mathsf{M}\mathbb{T} \mid \mathsf{D}[\mathsf{M},\mathsf{M}] \qquad \mathbb{T} ::= \mathsf{O} \mid \mathsf{M} \mid \mathsf{M} + \mathbb{T} \qquad A ::= X \mid A \to A$

	$\Gamma, \mathtt{x} : A \vdash \mathtt{N}$	11 : B	$\Gamma \vdash M : A \rightarrow B$	$\Gamma \vdash \mathbb{N} : A$
$\Gamma, x: A \vdash x: A$	$\Gamma \vdash \lambda \mathbf{x}. \mathbb{M} : \boldsymbol{A} \to \boldsymbol{B}$		$\Gamma \vdash D[\mathtt{M},\mathtt{N}]: A \to B$	
	$\Gamma \vdash \mathtt{M} : A \to B$	$\Gamma \vdash \mathbb{T} : A$	$\Gamma \vdash \mathtt{M}_1 : A \stackrel{(n \geq 2)}{\cdots}$	$\Gamma \vdash M_n : A$
$\Gamma \vdash 0 : A$	$\Gamma \vdash M \mathbb{T} : B$		$\Gamma \vdash M_1 + \cdots$	$+M_n: A$

Differential ST λ C (ST $\partial\lambda$ C) – syntax

 $\mathsf{M} ::= \mathsf{x} \mid \lambda \mathsf{x}.\mathsf{M} \mid \mathsf{M}\mathbb{T} \mid \mathsf{D}[\mathsf{M},\mathsf{M}] \qquad \mathbb{T} ::= \mathsf{O} \mid \mathsf{M} \mid \mathsf{M} + \mathbb{T} \qquad A ::= X \mid A \to A$

	$\Gamma, \mathtt{x} : A \vdash$	M: <i>B</i>	$\Gamma \vdash M : A \rightarrow B$	$\Gamma \vdash \mathbb{N} : A$
$\Gamma, \mathtt{x}: A \vdash \mathtt{x}: A$	$\overline{\Gamma \vdash \lambda \mathbf{x}. \mathbb{M} : \boldsymbol{A} \to \boldsymbol{B}}$		$\Gamma \vdash D[\mathtt{M},\mathtt{N}] : A \to B$	
	$\Gamma \vdash M : A \rightarrow B$	$\Gamma \vdash \mathbb{T} : A$	$\Gamma \vdash M \leftrightarrow \Lambda^{(n \geq 2)}$	Г⊢м · Л

 $\Gamma \vdash 0: A$ $\Gamma \vdash M \mathbb{T}: B$ $\Gamma \vdash M_1 + \cdots + M_n: A$

 $\mathbf{z}: \boldsymbol{X} \vdash \mathsf{D}^{\mathbf{2}}\left[\boldsymbol{\lambda} \mathtt{xy}.\mathsf{D}^{\mathbf{1}}\left[\mathsf{D}^{\mathbf{1}}\left[\boldsymbol{y}, \mathtt{x}^{\mathbf{1}}\right]\mathbf{0}, \mathtt{x}^{\mathbf{1}}\right]\mathbf{0}, \mathtt{z}^{\mathbf{2}}\right]\mathbf{0}: (\boldsymbol{X} \rightarrow \boldsymbol{X} \rightarrow \boldsymbol{X}) \rightarrow \boldsymbol{X}$

Tropical Math and λ -Calculus

(Denotational) Semantics

$bST\lambda C$

Can be interpreted in any SMCC + $\mathbb N\text{-}\mathsf{graded}$ linear exponential comonad

Ex: pseudo-Metric spaces & Lipschitz functions

 $\llbracket x :_n A \vdash_{b \in T\lambda C} M : B \rrbracket \text{ is non-expansive from } !_n \llbracket A \rrbracket := (\llbracket A \rrbracket, n \cdot d_{\llbracket A \rrbracket}) \text{ to } \llbracket B \rrbracket.$

(Denotational) Semantics

$bST\lambda C$

Can be interpreted in any SMCC + $\mathbb N\text{-}\mathsf{graded}$ linear exponential comonad

Ex: pseudo-Metric spaces & Lipschitz functions

 $\llbracket x :_n A \vdash_{b \in T\lambda C} M : B \rrbracket \text{ is non-expansive from } !_n \llbracket A \rrbracket := (\llbracket A \rrbracket, n \cdot d_{\llbracket A \rrbracket}) \text{ to } \llbracket B \rrbracket.$

$ST\partial\lambda C$

Can be interpreted in any CC $\partial\lambda$ C (homsets are commutative monoids endowed with a differential operator)

Ex: Weighted relational semantics, a.k.a. *linear algebra* + *power series* For Q a (continuous) semiring, QRel is the opposite category of sets and set-indexed matrices with matrix composition and matrix identity.

The ! is finite multisets, the differential operator $D: QRel_!(X, Y) \rightarrow QRel_!(X \times X, Y)$.

Tropical Math and λ -Calculus

Metric vs Differential meet at the tropics

Ugo dal Lago to Paolo & me:

"Is it possible to take a metric perspective on λ -calculus' Taylor expansion?"

Logarithmic gap Lipschitz $n\alpha$ vs Polynomial α^n

Can they coexist ?

Metric vs Differential meet at the tropics

Ugo dal Lago to Paolo & me:

"Is it possible to take a metric perspective on λ -calculus' Taylor expansion?"

Logarithmic gap Lipschitz $n\alpha$ vs Polynomial α^n

Can they coexist ?

A model of linear- λ -calculus, of bST λ C, of ST λ C and of ST $\partial\lambda$ C: LRel, i.e. QRel for Q := the *tropical semiring* L, i.e. $[0, \infty]$ with addition the inf (neutral el. ∞) and multiplication the + (neutral el. 0).

In \mathbb{L} we have $n\alpha = \alpha^n$

Metric vs Differential meet at the tropics

Ugo dal Lago to Paolo & me:

"Is it possible to take a metric perspective on λ -calculus' Taylor expansion?"

Logarithmic gap Lipschitz $n\alpha$ vs Polynomial α^n

Can they coexist ?

A model of linear- λ -calculus, of $bST\lambda C$, of $ST\lambda C$ and of $ST\partial \lambda C$: \mathbb{L} Rel, i.e. QRel for Q := the *tropical semiring* \mathbb{L} , i.e. $[0, \infty]$ with addition the inf (neutral el. ∞) and multiplication the + (neutral el. 0).

In \mathbb{L} we have $n\alpha = \alpha^n$

 \Rightarrow Let's study what happens inside $\mathbb{L}\mathsf{Rel}_!$

Linear/non-linear functions from linear algebra

A matrix $t \in \mathbb{L}^{X \times Y} = \mathbb{L}(X, Y)$ can be identified as always with a *linear* function $t : \mathbb{L}^X \to \mathbb{L}^Y$.

It is the function associated with the *formal* product (transpose)matrix-variables vector $x = \{x_a\}_{a \in X}$. In the tropical world it is:

$$t(x)_b = \inf_{a \in X} \{x_a + t_{a,b}\}$$

Linear/non-linear functions from linear algebra

A matrix $t \in \mathbb{L}^{X \times Y} = \mathbb{L}(X, Y)$ can be identified as always with a *linear* function $t : \mathbb{L}^X \to \mathbb{L}^Y$.

It is the function associated with the *formal* product (transpose)matrix-variables vector $x = \{x_a\}_{a \in X}$. In the tropical world it is:

$$t(x)_b = \inf_{a \in X} \{x_a + t_{a,b}\}$$

So a matrix $t \in \mathbb{L}^{!X \times Y} = \mathbb{L}_!(X, Y)$ is a *linear* function $t : \mathbb{L}^{!X} \to \mathbb{L}^Y$. One can express t in base X and see it as a *non-linear* function $t^! : \mathbb{L}^X \to \mathbb{L}^Y$.

It is the function associated with the *formal* power series $t^!(x) \in \mathbb{L}[[\{x_a\}_{a \in X}]]^Y$ in #X formal variables $x = \{x_a\}_{a \in X}$ generated by t. In the tropical world it is a *tropical (formal) Laurent series* (tLs):

$$t^{!}(x)_{b} = \inf_{\mu \in !X} \{\mu x + t_{\mu,b}\}$$

Tropics make the metric and differential approach coexist

Endow \mathbb{L}^X with the usual $\|_\|_{\infty}$ -norm

Theorem (Metric perspective on $ST\partial\lambda C$ and Taylor expansion)

- $\bullet \ [\![\mathbf{x}:_n A \vdash_{\mathbf{b} \mathrm{ST} \lambda \mathrm{C}} \mathbb{M} : B]\!]^! : \mathbb{L}_{>0}^{[\![A]\!]} \to \mathbb{L}^{[\![B]\!]} \text{ is Lipschitz.}$
- Some The Taylor expansion T(M) decomposes [[x : A ⊢_{STλC} M : B]]! into an inf of Lipschitz maps of higher and higher Lipschitz constant.

Tropics make the metric and differential approach coexist

Endow \mathbb{L}^X with the usual $\|_\|_{\infty}$ -norm

Theorem (Metric perspective on $ST\partial\lambda C$ and Taylor expansion)

- $\bullet \ [\![\mathbf{x}:_n A \vdash_{\mathbf{b} \mathrm{ST} \lambda \mathrm{C}} \mathbb{M}: B]\!]^! : \mathbb{L}_{>0}^{[\![A]\!]} \to \mathbb{L}^{[\![B]\!]} \text{ is Lipschitz.}$
- Some The Taylor expansion T(M) decomposes [[x : A ⊢_{STλC} M : B]][!] into an inf of Lipschitz maps of higher and higher Lipschitz constant.

$$[\![z:_2 X \vdash_{bST\lambda C} (\lambda xy.yxx) z:!_1(!_1 X \multimap !_1 X \multimap X) \multimap X]\!]^! \text{ is the function:}$$

 $f: \mathbb{L} \to \mathbb{L}^{!_1(\{0,1\} \times \{0,1\})}$ given by $f(z)_{[(1,1)]} = 2z$, $f(z)_{[(1,0)]} = f(z)_{[(0,1)]} = 1z$, $f(z)_{\mu} = \infty$ othw

$$\begin{split} \llbracket z : X \vdash_{\mathrm{ST}\partial\lambda\mathrm{C}} \mathsf{D}^2 \left[\lambda \mathrm{xy}.\mathsf{D}^1 \left[\mathsf{D}^1 \left[\mathrm{y}, \mathrm{x}^1 \right] 0, \mathrm{x}^1 \right] 0, \mathrm{z}^2 \right] 0 : (X \to X \to X) \to X \rrbracket^! \text{ is the function:} \\ f : \mathbb{L} \to \mathbb{L}^{!(\mathbb{N} \times \mathbb{N})} \text{ given by } f(z)_{[(1,1)]} = 2z, \ f(z)_\mu = \infty \text{ otherwise} \end{split}$$

(Taking $\llbracket X \rrbracket := \{*\}$ in both)

Given $\Gamma \vdash_{\operatorname{ST}\lambda \operatorname{C}} M : A$, we may consider:

- **1** Its λ -calculus Taylor expansion $\mathcal{T}(\Gamma \vdash_{\mathrm{ST}\lambda\mathrm{C}} M : A)$
- ② The CC ∂ C Taylor expansion of its interpretation $\llbracket \Gamma \vdash_{\mathrm{ST}\lambda\mathrm{C}} M : A
 rbracket$
- 3 The tropical Taylor expansion of the formal $tLS \ [\Gamma \vdash_{ST\lambda C} M : A]^!$
- **③** The math. analysis Taylor expansion of the function $[\Gamma \vdash_{ST\lambda C} M : A]^!$

¹Note: in other models, the λ -calc. Taylor exp. precisely gives the math. analysis one.

Given $\Gamma \vdash_{\operatorname{ST}\lambda \operatorname{C}} M : A$, we may consider:

- Its λ -calculus Taylor expansion $\mathcal{T}(\Gamma \vdash_{\mathrm{ST}\lambda\mathrm{C}} \mathbb{M} : A)$
- **2** The CC ∂ C Taylor expansion of its interpretation $\llbracket \Gamma \vdash_{\mathrm{ST}\lambda \mathrm{C}} M : A \rrbracket$
- **③** The tropical Taylor expansion of the *formal tLS* $\llbracket \Gamma \vdash_{ST\lambda C} M : A \rrbracket^!$
- **③** The math. analysis Taylor expansion of the function $[\Gamma \vdash_{ST\lambda C} M : A]^!$

1 coincides with 2 in the $\mathbb{L}Rel_{!}$, and are related to 3. All three talk about the program.

4 is *a priori* unrelated with the program¹ (it is there because we can see a formal series as a function).

¹Note: in other models, the λ -calc. Taylor exp. precisely gives the math. analysis one.

So what?

Math:

- Study tLs' in general (e.g. get rid of the "[[A]], [[B]] finite" condition)
- The \mathbb{L} Rel differential $D : \mathbb{L}^{!X \times Y} \to \mathbb{L}^{!(X+X) \times Y}$ translates into $D_! :$ $\{f : \mathbb{L}^X \to \mathbb{L}^Y \mid f \ tLs\} \to \{f : \mathbb{L}^X \times \mathbb{L}^X \to \mathbb{L}^Y \mid f \ linear \ in \ its \ 1st \ var\}.$ Relations with the usual tropical derivative of tropical polynomials
- Differentials of maps between modules/generalised metric spaces

So what?

Math:

- Study tLs' in general (e.g. get rid of the "[[A]], [[B]] finite" condition)
- The \mathbb{L} Rel differential $D : \mathbb{L}^{!X \times Y} \to \mathbb{L}^{!(X+X) \times Y}$ translates into $D_! : \{f : \mathbb{L}^X \to \mathbb{L}^Y \mid f \ tLs\} \to \{f : \mathbb{L}^X \times \mathbb{L}^X \to \mathbb{L}^Y \mid f \ linear \ in \ its \ 1st \ var\}.$ Relations with the usual tropical derivative of tropical polynomials
- Differentials of maps between modules/generalised metric spaces CS:
 - Probabilistic lang.: [[Γ ⊢_{pℙPCF} M : A]]^{LRel} vs [[Γ ⊢_{pℙPCF} M : A]]^{PCoh}.
 []_]^{LRel} gives the *tropicalisation of the probability* of any of the *most likely* reduction paths to normal form of the stochastic process
 - Differential privacy
 - bST λ C-terms as "partial sums" for the λ -calculus' Taylor expansion

So what?

Math:

- Study tLs' in general (e.g. get rid of the "[[A]], [[B]] finite" condition)
- The \mathbb{L} Rel differential $D : \mathbb{L}^{!X \times Y} \to \mathbb{L}^{!(X+X) \times Y}$ translates into $D_! : \{f : \mathbb{L}^X \to \mathbb{L}^Y \mid f \ tLs\} \to \{f : \mathbb{L}^X \times \mathbb{L}^X \to \mathbb{L}^Y \mid f \ linear \ in \ its \ 1st \ var\}.$ Relations with the usual tropical derivative of tropical polynomials
- Differentials of maps between modules/generalised metric spaces CS:
 - Probabilistic lang.: [[Γ ⊢_{pℙPCF} M : A]]^{LRel} vs [[Γ ⊢_{pℙPCF} M : A]]^{PCoh}.
 []_]^{LRel} gives the *tropicalisation of the probability* of any of the *most likely* reduction paths to normal form of the stochastic process
 - Differential privacy
 - bST λ C-terms as "partial sums" for the λ -calculus' Taylor expansion
- ... more to come on that !

