Tropical Mathematics and Linearity in the λ-Calculus

Davide Barbarossa and Paolo Pistone

davide.barbarossa@unibo.it
https://lipn.univ-paris13.fr/~barbarossa/
Dipartimento di Informatica

erc

This work has been supported by the ERC CoG DIAPASoN, GA 818616.
Trends in Linear Logic and Applications (TLLA) 2023

Linearity

How many duplications/erasures to normal form ?

Linearity

How many duplications/erasures to normal form ?

Two orthogonal approaches:

- Metric approach: "Duplication as sensitivity" - easy terms, difficult types - types handle duplication
- Differential approach: "Duplication as linear substitution" - difficult terms, easy types - terms handle duplication

Bounded duplication ST λ C (bST $\lambda \mathrm{C})$ - syntax

$$
\begin{array}{cc}
\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MM} & A::=X \mid!{ }_{n} A \multimap A \\
\frac{\mathrm{x}:{ }_{1} A \vdash \mathrm{x}: A}{} & \frac{\Gamma \vdash \mathrm{M}: A}{\Gamma, \mathrm{x}: 0} \mathrm{~B} \vdash \mathrm{M}: A \\
\frac{\Gamma, \mathrm{x}:{ }_{n} A \vdash \mathrm{M}: B}{\Gamma \vdash \lambda \mathrm{x} \cdot \mathrm{M}:!_{n} A \multimap B} & \frac{\Gamma, \mathrm{x}:{ }_{n} B, \mathrm{y}:{ }_{m} B \vdash \mathrm{M}: A}{\Gamma, \mathrm{x}:{ }_{n+m} B \vdash \mathrm{M}\{\mathrm{x} / \mathrm{y}\}: A} \\
& \frac{\Gamma \vdash \mathrm{M}:!_{n} A \multimap B}{\Gamma+n \Delta \vdash \mathrm{MN}: B}
\end{array}
$$

Bounded duplication ST λ C (bST $\lambda \mathrm{C})$ - syntax

$$
\begin{array}{cc}
\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MM} \quad A::=X \mid!_{n} A \multimap A \\
\frac{\mathrm{x}:{ }_{1} A \vdash \mathrm{x}: A}{} & \frac{\Gamma \vdash \mathrm{M}: A}{\Gamma, \mathrm{x}: 0} \mathrm{~B} \vdash \mathrm{M}: A \\
\frac{\Gamma, \mathrm{x}:{ }_{n} A \vdash \mathrm{M}: B}{\Gamma \vdash \lambda \mathrm{x} \cdot \mathrm{M}:!_{n} A \multimap B} & \frac{\Gamma, \mathrm{x}:_{n} B, \mathrm{y}:{ }_{m} B \vdash \mathrm{M}: A}{\Gamma, \mathrm{x}:_{n+m} B \vdash \mathrm{M}\{\mathrm{x} / \mathrm{y}\}: A} \\
& \frac{\Gamma \vdash \mathrm{M}:!_{n} A \multimap B}{\Gamma+n \Delta \vdash \mathrm{MN}: B} \quad \Delta \vdash \mathrm{~N}: A \\
\mathrm{z}::_{2} X \vdash(\lambda \mathrm{xy} \cdot \mathrm{yxx}) \mathrm{z}:!_{1}\left(!_{1} X \multimap!_{1} X \multimap X\right) \multimap X
\end{array}
$$

Differential ST $\lambda \mathrm{C}(\mathrm{ST} \partial \lambda \mathrm{C})$ - syntax

$$
\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MT}|\mathrm{D}[\mathrm{M}, \mathrm{M}] \quad \mathbb{T}::=0| \mathrm{M}|\mathrm{M}+\mathbb{T} \quad A::=X| A \rightarrow A
$$

$\overline{\Gamma, \mathrm{x}: A \vdash \mathrm{x}: A}$	$\frac{\Gamma, \mathrm{x}: A \vdash \mathrm{M}: B}{\Gamma \vdash \lambda \mathrm{x} \cdot \mathrm{M}: A \rightarrow B}$	$\frac{\Gamma \vdash \mathrm{M}: A \rightarrow B}{\Gamma \vdash \mathrm{D}[\mathrm{M}, \mathrm{N}]: A \rightarrow B}$
$\frac{\Gamma \vdash \mathrm{~N}: A}{}$		
$\frac{\Gamma \vdash 0: A}{}$	$\frac{\Gamma \vdash \mathrm{M}: A \rightarrow B}{\Gamma \vdash \mathrm{M} \mathbb{T}: B}$	$\frac{\Gamma \vdash \mathbb{T}: A}{\Gamma \vdash \mathrm{M}_{1}+\cdots+\mathrm{M}_{\mathrm{n}}: A}$

Differential ST $\lambda \mathrm{C}(\mathrm{ST} \partial \lambda \mathrm{C})$ - syntax

$$
\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MT}|\mathrm{D}[\mathrm{M}, \mathrm{M}] \quad \mathbb{T}::=0| \mathrm{M}|\mathrm{M}+\mathbb{T} \quad A::=X| A \rightarrow A
$$

	$\Gamma, \mathrm{x}: A$		$\Gamma \vdash \mathrm{M}: A \rightarrow B \quad$ Г卜N:A
$\Gamma, \mathrm{x}: A \vdash \mathrm{x}: A$	$\overline{\Gamma \vdash \lambda x . M: A \rightarrow B}$		$\Gamma \vdash \mathrm{D}[\mathrm{M}, \mathrm{N}]: A \rightarrow B$
	$\Gamma \vdash \mathrm{M}: A \rightarrow B$	$\ulcorner\vdash T: A$	$\Gamma \vdash M_{1}: A \stackrel{(n \geq 2)}{\cdots} \Gamma \vdash M_{n}: A$
$\Gamma \vdash 0: A$	$\Gamma \vdash \mathrm{MT}: B$		$\Gamma \vdash M_{1}+\cdots+M_{n}: A$

(Denotational) Semantics

bSTAC
Can be interpreted in any SMCC $+\mathbb{N}$-graded linear exponential comonad

Ex: pseudo-Metric spaces \& Lipschitz functions
$\llbracket \mathrm{x}:_{n} A \vdash_{\mathrm{bST} \mathrm{\lambda C}} \mathrm{M}: B \rrbracket$ is non-expansive from $!_{n} \llbracket A \rrbracket:=\left(\llbracket A \rrbracket, n \cdot d_{\llbracket A \rrbracket}\right)$ to $\llbracket B \rrbracket$.

(Denotational) Semantics

bSTAC

Can be interpreted in any SMCC $+\mathbb{N}$-graded linear exponential comonad
Ex: pseudo-Metric spaces \& Lipschitz functions
$\llbracket \mathrm{x}:{ }_{n} A \vdash_{\mathrm{bST} \mathrm{\lambda C}} \mathrm{M}: B \rrbracket$ is non-expansive from $!_{n} \llbracket A \rrbracket:=\left(\llbracket A \rrbracket, n \cdot d_{\llbracket A \rrbracket}\right)$ to $\llbracket B \rrbracket$.

ST $\partial \lambda \mathrm{C}$

Can be interpreted in any CC $\partial \lambda \mathrm{C}$ (homsets are commutative monoids endowed with a differential operator)

Ex: Weighted relational semantics, a.k.a. linear algebra + power series For Q a (continuous) semiring, Q Rel is the opposite category of sets and set-indexed matrices with matrix composition and matrix identity.

The! is finite multisets, the differential operator $D: Q \operatorname{Rel}_{!}(X, Y) \rightarrow Q \operatorname{Rel}_{!}(X \times X, Y)$.

Metric vs Differential meet at the tropics

Ugo dal Lago to Paolo \& me:
"Is it possible to take a metric perspective on λ-calculus' Taylor expansion?"

Logarithmic gap
Lipschitz $n \alpha$ vs Polynomial α^{n}

Can they coexist ?

Metric vs Differential meet at the tropics

Ugo dal Lago to Paolo \& me:
"Is it possible to take a metric perspective on λ-calculus' Taylor expansion?"

Logarithmic gap
Lipschitz n α vs Polynomial α^{n}

Can they coexist ?
A model of linear- λ-calculus, of bST $\lambda \mathrm{C}$, of $\mathrm{ST} \lambda \mathrm{C}$ and of $\mathrm{ST} \partial \lambda \mathrm{C}$:
\mathbb{L} Rel, i.e. $Q \operatorname{Rel}$ for $Q:=$ the tropical semiring \mathbb{L}, i.e. $[0, \infty]$ with addition the inf (neutral el. ∞) and multiplication the + (neutral el. 0).

In \mathbb{L} we have $n \alpha=\alpha^{n}$

Metric vs Differential meet at the tropics

Ugo dal Lago to Paolo \& me:
"Is it possible to take a metric perspective on λ-calculus' Taylor expansion?"

Logarithmic gap
Lipschitz n α vs Polynomial α^{n}

Can they coexist ?
A model of linear- λ-calculus, of bST $\lambda \mathrm{C}$, of ST $\lambda \mathrm{C}$ and of ST $\partial \lambda \mathrm{C}$:
\mathbb{L} Rel, i.e. $Q \operatorname{Rel}$ for $Q:=$ the tropical semiring \mathbb{L}, i.e. $[0, \infty]$ with addition the inf (neutral el. ∞) and multiplication the + (neutral el. 0).

In \mathbb{L} we have $n \alpha=\alpha^{n}$
\Rightarrow Let's study what happens inside \mathbb{L} Rel!

Linear/non-linear functions from linear algebra

A matrix $t \in \mathbb{L}^{X \times Y}=\mathbb{L}(X, Y)$ can be identified as always with a linear function $t: \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y}$.

It is the function associated with the formal product (transpose)matrix-variables vector $x=\left\{x_{a}\right\}_{a \in X}$. In the tropical world it is:

$$
t(x)_{b}=\inf _{a \in X}\left\{x_{a}+t_{a, b}\right\}
$$

Linear/non-linear functions from linear algebra

A matrix $t \in \mathbb{L}^{X \times Y}=\mathbb{L}(X, Y)$ can be identified as always with a linear function $t: \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y}$.

It is the function associated with the formal product (transpose)matrix-variables vector $x=\left\{x_{a}\right\}_{a \in X}$. In the tropical world it is:

$$
t(x)_{b}=\inf _{a \in X}\left\{x_{a}+t_{a, b}\right\}
$$

So a matrix $t \in \mathbb{L}^{!X \times Y}=\mathbb{L}_{!}(X, Y)$ is a linear function $t: \mathbb{L}^{!X} \rightarrow \mathbb{L}^{Y}$. One can express t in base X and see it as a non-linear function $t^{!}: \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y}$.

It is the function associated with the formal power series $t^{!}(x) \in \mathbb{L}\left[\left[\left\{x_{a}\right\}_{a \in X}\right]\right]^{Y}$ in $\# X$ formal variables $x=\left\{x_{a}\right\}_{a \in X}$ generated by t. In the tropical world it is a tropical (formal) Laurent series (tLs):

$$
t^{!}(x)_{b}=\inf _{\mu \in!X}\left\{\mu x+t_{\mu, b}\right\}
$$

Tropics make the metric and differential approach coexist

Endow \mathbb{L}^{X} with the usual $\left\|_{-}\right\|_{\infty}$-norm
Theorem (Metric perspective on $\mathrm{ST} \partial \lambda \mathrm{C}$ and Taylor expansion)
(1) $\llbracket \mathrm{x}:{ }_{n} A \vdash_{\mathrm{bST} \lambda \mathrm{C}} \mathrm{M}: B \rrbracket!: \mathbb{L}_{>0}^{\llbracket A \rrbracket} \rightarrow \mathbb{L}^{\llbracket B \rrbracket}$ is Lipschitz.
(2) $\llbracket \mathrm{x}: A \vdash_{\text {ST入C }} \mathrm{M}: B \rrbracket^{!}: \mathbb{L}_{>0}^{\llbracket A \rrbracket} \rightarrow \mathbb{L}^{\llbracket B \rrbracket}$ is locally Lipschitz $(\llbracket A \rrbracket, \llbracket B \rrbracket$ finite $)$
(3) The Taylor expansion $\mathcal{T}(\mathrm{M})$ decomposes $\llbracket \mathrm{x}: A \vdash_{\mathrm{ST} \lambda \mathrm{C}} \mathrm{M}: B \rrbracket$ into an inf of Lipschitz maps of higher and higher Lipschitz constant.

Tropics make the metric and differential approach coexist

Endow \mathbb{L}^{X} with the usual $\left\|_{-}\right\|_{\infty}$-norm
Theorem (Metric perspective on $\mathrm{ST} \partial \lambda \mathrm{C}$ and Taylor expansion)
(1) $\llbracket \mathrm{x}:{ }_{n} A \vdash_{\mathrm{bST} \mathrm{\lambda C}} \mathrm{M}: B \rrbracket^{!}: \mathbb{L}_{>0}^{\llbracket A \rrbracket} \rightarrow \mathbb{L}^{\llbracket B \rrbracket}$ is Lipschitz.
(2) $\llbracket \mathrm{x}: A \vdash_{\mathrm{ST} \mathrm{\lambda C}} \mathrm{M}: B \rrbracket!: \mathbb{L}_{>0}^{\llbracket A \rrbracket} \rightarrow \mathbb{L}^{\llbracket B \rrbracket}$ is locally Lipschitz $(\llbracket A \rrbracket, \llbracket B \rrbracket$ finite)
(3) The Taylor expansion $\mathcal{T}(\mathrm{M})$ decomposes $\llbracket \mathrm{x}: A \vdash_{\mathrm{ST} \mathrm{\lambda C}} \mathrm{M}: B \rrbracket$! into an inf of Lipschitz maps of higher and higher Lipschitz constant.
$\llbracket \mathrm{z}:_{2} X \vdash_{\mathrm{bST} \mathrm{\lambda C}}(\lambda \mathrm{xy} . \mathrm{yxx}) \mathrm{z}:!_{1}\left(!_{1} X \multimap!_{1} X \multimap X\right) \multimap X \rrbracket$! is the function:

$$
f: \mathbb{L} \rightarrow \mathbb{L}^{!_{1}(\{0,1\} \times\{0,1\})} \text { given by } f(z)_{[(1,1)]}=2 z, f(z)_{[(1,0)]}=f(z)_{[(0,1)]}=1 z, f(z)_{\mu}=\infty \text { othw }
$$

$$
\llbracket \mathrm{z}: X \vdash_{\mathrm{ST} \partial \lambda \mathrm{C}} \mathrm{D}^{2}\left[\lambda \mathrm{xy} \cdot \mathrm{D}^{1}\left[\mathrm{D}^{1}\left[\mathrm{y}, \mathrm{x}^{1}\right] 0, \mathrm{x}^{1}\right] 0, \mathrm{z}^{2}\right] 0:(X \rightarrow X \rightarrow X) \rightarrow X \rrbracket \text { is the function: }
$$

$$
f: \mathbb{L} \rightarrow \mathbb{L}^{!(\mathbb{N} \times \mathbb{N})} \text { given by } f(z)_{[(1,1)]}=2 z, f(z)_{\mu}=\infty \text { otherwise }
$$

(Taking $\llbracket X \rrbracket:=\{*\}$ in both)

Lots of Taylors!

Given $\Gamma \vdash_{\text {STגC }} \mathrm{M}: A$, we may consider:
(1) Its λ-calculus Taylor expansion $\mathcal{T}\left(\Gamma \vdash_{\text {STגC }} \mathrm{M}: A\right)$
(2) The CC $\partial \mathrm{C}$ Taylor expansion of its interpretation $\llbracket \Gamma \vdash_{\text {STגC }} \mathrm{M}: A \rrbracket$
(3) The tropical Taylor expansion of the formal $t L S \llbracket \Gamma \vdash_{\text {SThC }} \mathrm{M}: A \rrbracket$!
(9) The math. analysis Taylor expansion of the function $\llbracket \Gamma \vdash_{\mathrm{ST} \mathrm{\lambda C}} \mathrm{M}: A \rrbracket$!

[^0]
Lots of Taylors!

Given $\Gamma \vdash_{\text {SThC }} \mathrm{M}: A$, we may consider:
(1) Its λ-calculus Taylor expansion $\mathcal{T}\left(\Gamma \vdash_{\text {STגC }} \mathrm{M}: A\right)$
(2) The CC $\partial \mathrm{C}$ Taylor expansion of its interpretation $\llbracket \Gamma \vdash_{\text {STAC }} \mathrm{M}: A \rrbracket$
(3) The tropical Taylor expansion of the formal $t L S \llbracket \Gamma \vdash_{\text {SThC }} \mathrm{M}: A \rrbracket$!
(1) The math. analysis Taylor expansion of the function $\llbracket \Gamma \vdash_{S T \lambda C} M: A \rrbracket$!

1 coincides with 2 in the $\mathbb{L} R e l_{!}$, and are related to 3 .
All three talk about the program.
4 is a priori unrelated with the program ${ }^{1}$ (it is there because we can see a formal series as a function).
${ }^{1}$ Note: in other models, the λ-calc. Taylor exp. precisely gives the math. analysis one.

So what?

Math:

- Study tLs' in general (e.g. get rid of the " $\llbracket A \rrbracket, \llbracket B \rrbracket$ finite" condition)
- The \mathbb{L} Rel differential $D: \mathbb{L}^{!X \times Y} \rightarrow \mathbb{L}^{!(X+X) \times Y}$ translates into $D_{!}$: $\left\{f: \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y} \mid f t L s\right\} \rightarrow\left\{f: \mathbb{L}^{X} \times \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y} \mid f\right.$ linear in its 1 st var $\}$. Relations with the usual tropical derivative of tropical polynomials
- Differentials of maps between modules/generalised metric spaces

So what?

Math:

- Study tLs' in general (e.g. get rid of the " $\llbracket A \rrbracket, \llbracket B \rrbracket$ finite" condition)
- The \mathbb{L} Rel differential $D: \mathbb{L}^{!X \times Y} \rightarrow \mathbb{L}^{!(X+X) \times Y}$ translates into $D_{!}$: $\left\{f: \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y} \mid f t L s\right\} \rightarrow\left\{f: \mathbb{L}^{X} \times \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y} \mid f\right.$ linear in its 1 st var $\}$. Relations with the usual tropical derivative of tropical polynomials
- Differentials of maps between modules/generalised metric spaces CS:
- Probabilistic lang.: $\llbracket \Gamma \vdash_{p \mathbb{P} P C F} \mathrm{M}: A \rrbracket^{\mathbb{L R e l}}$ vs $\llbracket \Gamma \vdash_{p \mathbb{P} P C F} \mathrm{M}: A \rrbracket^{P C o h}$. $\llbracket _\rrbracket^{\mathbb{L} R e l}$ gives the tropicalisation of the probability of any of the most likely reduction paths to normal form of the stochastic process
- Differential privacy
- bST λ C-terms as "partial sums" for the λ-calculus' Taylor expansion

So what?

Math:

- Study tLs' in general (e.g. get rid of the " $\llbracket A \rrbracket, \llbracket B \rrbracket$ finite" condition)
- The \mathbb{L} Rel differential $D: \mathbb{L}^{!X \times Y} \rightarrow \mathbb{L}^{!(X+X) \times Y}$ translates into $D_{!}$: $\left\{f: \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y} \mid f t L s\right\} \rightarrow\left\{f: \mathbb{L}^{X} \times \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y} \mid f\right.$ linear in its 1 st var $\}$. Relations with the usual tropical derivative of tropical polynomials
- Differentials of maps between modules/generalised metric spaces CS:
- Probabilistic lang.: $\llbracket \Gamma \vdash_{p \mathbb{P} P C F} \mathrm{M}: A \rrbracket^{\mathbb{L R e l}}$ vs $\llbracket \Gamma \vdash_{p \mathbb{P} P C F} \mathrm{M}: A \rrbracket^{P C o h}$. $\llbracket _\rrbracket^{\mathbb{L} R e l}$ gives the tropicalisation of the probability of any of the most likely reduction paths to normal form of the stochastic process
- Differential privacy
- bST λ C-terms as "partial sums" for the λ-calculus' Taylor expansion ... more to come on that!

[^0]: ${ }^{1}$ Note: in other models, the λ-calc. Taylor exp. precisely gives the math. analysis one.

