Tropical Mathematics and the λ-Calculus

Davide Barbarossa and Paolo Pistone

davide.barbarossa@unibo.it
https://lipn.univ-paris13.fr/~barbarossa/
Dipartimento di Informatica

This work has been supported by the ERC CoG DIAPASoN, GA 818616.
24th Italian Conference on Theoretical Computer Science (ICTCS) 2023

Motivating question (Ugo da Lago to Pistone \& myself)

Logarithmic gap
Lipschitz n α vs Polynomial α^{n}
Can they coexist ?
...Yes, in a tropical world !

Linearity

How many duplications/erasures during execution ?

Linearity

How many duplications/erasures during execution ?

Two orthogonal approaches:

- Metric approach: "Duplication as program sensitivity" easy terms, difficult typing - types handle duplication through abstraction
- Differential approach: "Duplication as linear application" difficult terms, easy typing - terms handle duplication through application

Metric approach: bST $\lambda \mathrm{C}$

Syntax

$\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MM} \quad A::=X \mid{ }_{n} A \multimap A$

Metric approach: bSTAC

Syntax
$\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MM} \quad A::=X \mid{ }_{n} A \multimap A$

Feature (sensitive abstraction)
If $\mathrm{M}:!_{n} A \multimap B$ and $\mathrm{N}: A$, then MN : B runs with M calling N at most n times.

Metric approach: bST $\lambda \mathrm{C}$

Syntax
$\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MM} \quad A::=X \mid{ }_{n} A \multimap A$

Feature (sensitive abstraction)
If $\mathrm{M}:!{ }_{n} A \multimap B$ and $\mathrm{N}: A$, then $\mathrm{MN}: B$ runs with M calling N at most n times.

Intuition
Programs $\mathrm{M}:!_{n} A \multimap B$ can be seen as n-Lipschitz functions from a space A to a space B.

Differential approach: ST $\partial \lambda \mathrm{C}$

Syntax

$\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MT} \mid \mathrm{D}[\mathrm{M}, \mathrm{M}]$
$\mathbb{T}::=0|\mathrm{M}| \mathrm{M}+\mathbb{T}$
$A::=X \mid A \rightarrow A$

Differential approach: STD入C

Syntax
$\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MT}|\mathrm{D}[\mathrm{M}, \mathrm{M}] \quad \mathbb{T}::=0| \mathrm{M}|\mathrm{M}+\mathbb{T} \quad A::=X| A \rightarrow A$

Feature (linear application)
If $\mathrm{M}: A \rightarrow B$ and $\mathrm{N}: A$, then $\mathrm{D}^{\mathrm{n}}\left[\mathrm{M}, \mathrm{N}^{\mathrm{n}}\right] 0: B$ runs with M calling N exactly n times.

Differential approach: ST $\partial \lambda \mathrm{C}$

Syntax
$\mathrm{M}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{M}| \mathrm{MT}|\mathrm{D}[\mathrm{M}, \mathrm{M}] \quad \mathbb{T}::=0| \mathrm{M}|\mathrm{M}+\mathbb{T} \quad A::=X| A \rightarrow A$

Feature (linear application)
If $\mathrm{M}: A \rightarrow B$ and $\mathrm{N}: A$, then $\mathrm{D}^{\mathrm{n}}\left[\mathrm{M}, \mathrm{N}^{\mathrm{n}}\right] 0: B$ runs with M calling N exactly n times.

Intuition
Programs $\mathrm{D}^{\mathrm{n}}\left[\mathrm{M}, \mathrm{N}^{\mathrm{n}}\right] 0$ can be seen as polynomials and MN can be Taylor expanded as the series $\mathcal{T}(\mathrm{MN}):=\sum_{n \in \mathbb{N}} \frac{1}{n!} D^{\mathrm{n}}\left[\mathrm{M}, \mathrm{N}^{\mathrm{n}}\right] 0$.

Categorical Semantics

Fix a (multi)category \mathcal{C} and give a (multi)functor:

$$
\begin{array}{cccl}
A & \mapsto & \llbracket A \rrbracket & \in O b j(\mathcal{C}) \\
\Gamma \vdash \mathrm{M}: A & \mapsto & \llbracket \Gamma \vdash \mathrm{M}: A \rrbracket & \in \mathcal{C}(\llbracket \Gamma \rrbracket, \llbracket A \rrbracket) .
\end{array}
$$

Typically, \mathcal{C} has to be at least Cartesian closed.

Categorical Semantics

Fix a (multi)category \mathcal{C} and give a (multi)functor:

$$
\begin{array}{cccl}
A & \mapsto & \llbracket A \rrbracket & \in \operatorname{Obj}(\mathcal{C}) \\
\Gamma \vdash \mathrm{M}: A & \mapsto & \llbracket \vdash \vdash \mathrm{M}: A \rrbracket & \in \mathcal{C}(\llbracket \Gamma \rrbracket, \llbracket A \rrbracket) .
\end{array}
$$

Typically, \mathcal{C} has to be at least Cartesian closed.
Q-Weighted Relational Semantics
Fix a semiring Q. Define the category Q Rel as: objects are sets; morphisms from X to Y are matrices with coefficients in Q whose rows are indexed by Y and columns are indexed by X, i.e. $Q \operatorname{Rel}(X, Y):=Q^{X \times Y}$.

Motivating question (Ugo da Lago to Pistone \& myself)

Logarithmic gap
Lipschitz $n \alpha$ vs Polynomial α^{n}
Can they coexist ?
...Yes, in a tropical world !

Tropical Math

Tropical semiring $=$ Lawver quantale

- $\mathbb{L}:=[0, \infty]$ with addition the inf (neutral element ∞) and multiplication the $+($ neutral element 0$)$.
- In \mathbb{L} we have $n \alpha=\alpha^{n}$.

	usual	tropical
polynomial	$\sum_{n} a_{n} x^{n}$	$\min _{n}\left\{a_{n}+n x\right\}$
roots	polynomial problem	optimisation problem

Tropical Math

Tropical semiring $=$ Lawver quantale

- $\mathbb{L}:=[0, \infty]$ with addition the inf (neutral element ∞) and multiplication the $+($ neutral element 0$)$.
- In \mathbb{L} we have $n \alpha=\alpha^{n}$.

	usual	tropical
polynomial	$\sum_{n} a_{n} x^{n}$	$\min _{n}\left\{a_{n}+n x\right\}$
roots	polynomial problem	optimisation problem

Theorem (Not surprising!)
\mathbb{L} Rel, i.e. $Q R e l$ for $Q:=\mathbb{L}$, is a model of the linear- λ-calculus, of $\operatorname{bST} \lambda \mathrm{C}$, of $\mathrm{ST} \lambda \mathrm{C}$ and of $\mathrm{ST} \partial \lambda \mathrm{C}$.

Metric vs Differential meet at the tropics

Endow \mathbb{L}^{X} with the usual $\left\|_{-}\right\|_{\infty}$-norm
Theorem
(1) $\vdash_{\text {bSTAC }} \lambda \mathrm{x} . \mathrm{M}: A \rightarrow B$ gives a tropical polynomial (hence, Lipschitz) $\mathbb{L} \llbracket A \rrbracket \rightarrow \mathbb{L}^{\llbracket B \rrbracket}$.
(2) $\vdash_{\mathrm{ST} \mathrm{\lambda C}} \lambda \mathrm{x} . \mathrm{M}: A \rightarrow B$ gives a locally Lipschitz map $\mathbb{L}^{\llbracket A \rrbracket} \rightarrow \mathbb{L}^{\llbracket B \rrbracket}$
(3) The Taylor expansion $\mathcal{T}(\mathrm{M})$ of M decomposes $\vdash_{\text {STגC }} \lambda \mathrm{x} . \mathrm{M}: A \rightarrow B$ into an inf of Lipschitz maps of higher and higher Lipschitz constant.

Final considerations

No effects \Rightarrow all matrices are Boolean
Not good, the weighted relational semantics trivialises!

Final considerations

No effects \Rightarrow all matrices are Boolean
Not good, the weighted relational semantics trivialises!
...But the point of such semantics is to deal with quantitative effects.

Final considerations

No effects \Rightarrow all matrices are Boolean
Not good, the weighted relational semantics trivialises!
...But the point of such semantics is to deal with quantitative effects.
With a probabilistic coin toss instruction \oplus_{p} of bias p, we have results like:

$$
\llbracket \Gamma \vdash \mathrm{M}: \operatorname{Bool} \rrbracket_{1}(-\log p,-\log (1-p))
$$

gives the negative log-probability of any of the most likely reduction paths from M to True.
... more to come on that, and much more!

Grazie!

