
λ-calculus is not an exotic mathematical subject

Davide Barbarossa*

November 4, 2022

Abstract

If your background is from general mathematical studies, I believe it is
possible that your first impressions reading about λ-calculus are somehow
confusing1. At least, such was my experience. Some concepts seem new;
for example, it could seem that λ-calculus has an weird construction as
a formal2 object; or that the notion of denotational semantics is proper
to this discipline and there is no relation with other familiar concepts in
more mainstream parts of mathematics. In my opinion, this is due to
historical reasons: λ-calculus started as a branch of mathematical logic
– a field with its own lexicon and problems – and it was then developed
at the periphery of mainstream mathematics3. In this discursive note I
will try to show how the main areas of λ-calculus, starting from its very
definition as a formal object, to denotational semantics and λ-theories,
are actually nothing exotic and a parallel can be made with one of the
most pervasive notions in mathematics, that of polynomials. My point is
that if things were presented in the same manner one does for polynomials
in usual mathematics courses, and not in a manner coming from the tra-
dition of mathematical logic, many more mathematicians (including the
theoretical computer scientists) would feel it as a familiar subject.

This note is organised as follows: I first consider the definition of
λ-calculus by making a parallel with the definition of polynomials; I also
mention the main reason why it is an interesting mathematical subject;
then I consider the notions of denotational semantics and λ-theories, again
in parallel with what one does with polynomials even if employing a dif-
ferent lexicon.

1 The definition...

1.1 ...of polynomials

Consider the construction of the polynomial algebra over a ring (or a field) K.
There are many equivalent ways to construct it, a possible one is the following:

*Thanks to Tito for some suggestions on the presentation!
1I guess this is also the case for most of other subject in related areas, such as mathematical

logic and particularly proof-theory.
2In the sense usually employed by mathematicians. Logicians and computer scientists

would say “syntactical”.
3For instance, nowadays it is mainly done in computer science departments.

1

- First, you fix a finite set of distinct formal symbols x1, . . . , xn, called
indeterminates (or variables) and define by induction a set K̂[x1, . . . , xn]
of words4 (on a non specified yet clear from what follows alphabet), called
polynomial expressions, by saying that:

– the word xi belongs to K̂[x1, . . . , xn] for all i = 1, . . . , n;

– if p, q ∈ K̂[x1, . . . , xn] and a ∈ K, then the words ap, p + q and pq

belong to K̂[x1, . . . , xn].
Remark that the symbol +, and the fact of making the “product” of an
element of K and of K̂[x1, . . . , xn], or of two elements of K̂[x1, . . . , xn], do
not have any meaning, they are just formal symbols making a word.

- Then you define the quotient set K[x1, . . . , xn] := K̂[x1, . . . , xn]/∼, for a

certain equivalence ∼ on K̂[x1, . . . , xn] (whose definition I do not write
here) consisting in the natural equations making it an algebra over K,
called the polynomial algebra over K on x1, . . . , xn. Its elements are called
polynomials.

This is a somehow unusual construction. A common one is simply to say
that the polynomial algebra K[x1, . . . , xn] is the free K-algebra on {x1, . . . , xn}.
There are several other equivalent possible definitions. I chose to take the un-
usual one just in order to push even further the analogy with the inductive
definition of λ-calculus, but my point remains valid with whatever definition
you prefer.

Choosing n = 1 just for simplicity, you can easily see that any polynomial

p ∈ K[x] can be written in the canonical shape p =
n∑
i=1

aix
i , for some unique

a1, . . . , an ∈ K (meaning that, as an equivalence class, p admits a polynomial
expression of that shape).

1.2 ...of λ-calculus

In perfect analogy with the construction of polynomials, λ-calculus is defined
as follows5:

- First, you fix a countably infinite set of distinct formal symbols x1, x2, x3, . . . ,
called variables and define by induction a set Λ̂ of words6 (on a non speci-
fied yet clear from what follows alphabet), called λ-expressions, by saying
that:

– the word xi belongs to Λ̂ for all i ∈ N;
– if p, q ∈ Λ̂ and x is a variable, then the words λx.p and pq belong

to Λ̂.
Analogously to the case of K̂[x1, . . . , xn], remark that the symbols λ and
. in λx.f , as well as making the “product” of two elements of Λ̂, do not
have any meaning, they are just formal symbols making a word.

- Then you define the quotient set Λ := Λ̂/∼, for a certain equivalence ∼
4In order for the definition to be rigorously correct you should handle parentheses. I will

not do it because it is clear what one means. Actually, it would be more elegant to define
them as trees, which would also need no parentheses. I do not define them in that way just
for the sake of brevity.

5Unlike for polynomials, for λ-calculus this is the construction given the vast majority of
the time. Another definition would be as the internal language of particular kinds of Cartesian
closed categories.

6See footnote 4.

2

on Λ̂ called α-equivalence (whose definition I do not write here7). Its
elements are called λ-terms.

From the definition of the α-equivalence, it is easily seen that any λ-term
p ∈ Λ can be written in a way s.t. all the λ-abstracted variables (i.e. the variables
which immediately follow a λ) are pairwise different (in the sense that, as an
equivalence class, p admits a λ-expression with that property). Furthermore, it
can be written in the canonical shape p = λxi1 . . . λxim .(((hq1) . . .)qn) (meaning
that, as an equivalence class, p admits a λ-expression of that shape), for some
unique m,n ∈ N, xi1 , . . . , xim variables and h, q1, . . . , qn ∈ Λ, where h is either
a variable (equal or not to one of the xij ’s) or it is of shape h = (λy.h1)h2, for
some h1, h2 ∈ Λ and y a variable different from all the xij ’s.

Notation 1.1. In computer science and logic, one likes to write inductive def-
initions in a compact way. For instance, the of sets of words K̂[x1, . . . , xn] and
Λ̂ would be respectively written as follows:

p ::= x | ap | p+ p | pp for x ∈ {x1, . . . , xn}

p ::= x | λx.p | pp for x ∈ {x1, x2, x3, . . . }.

2 Why one is interested...

2.1 ...in polynomials

Of course polynomials are interesting for a thousand reasons. Let us say that
the main feature is that, under the operations (a, p) 7→ ap, (p, q) 7→ pq and
(p, q) 7→ p+ q, the set K[x1, . . . , xn] is a commutative algebra over K.

2.2 ...in λ-calculus

For λ-calculus, the main feature that usually motivates its study is that, under
a certain relation →β ⊆ Λ × Λ (called the β-reduction and whose definition I
do not write here), the rewriting system (Λ,→β) is a confluent and Turing-
complete programming language. Furthermore, and this is the crucial point, it
can be treated as a mathematical object with a rich and non-trivial mathemati-
cal theory (this is not quite the case for the other programming languages, even

7Let me still explain it without giving the rigorous definition. Actually, you already know
it from high-school, when you learnt the “equalities”

∑
i ai =

∑
j aj , or

∫
f(x)dx =

∫
f(t)dt.

They say that the name of the index variable of a summation, or the name of the integration
variable, do not matter and you can use the name that you prefer (by paying attention to
not use a name that for some reason is already used in the the terms of the summation or
in the function integrated): all it matters is which index inside the terms of the summation,
or variable inside the function integrated, they refer to. In computer science we say which
index/variable they “capture”, or also that the sum symbol

∑
i and integral symbol

∫
dx

bind the index i/variable x. In the same way, α-equivalence says that λx.p{x} = λy.p{y},
where by p{x} I mean that the λ-expression p depends on a variable x (the precise notion is
called the fact that x is “free in p”). Again, it says that the λx. symbol binds the variable
x, i.e. you can change its name as you like (by paying attention to not use one that for some
reason is already used in p). In the case of sums and integrals those are not real equalities
because it is just a matter of notation. Since λ-calculus is a syntactical object, α-equivalence
has to be defined as a real equivalence on the set of λ-expressions.

3

the theoretical ones8). It is also a privileged setting9, or it extensible to such
setting, where one can study some programming and other computer science
notions in a theoretical way. This is why it is considered as the “core” of all
functional programming languages (real life ones included).

3 Denotational semantics...

3.1 ...for polynomials

3.1.1 As interpretation maps

Polynomials are formal expressions. However, one may want to see them as
functions. This is easily done, since every polynomial p ∈ K[x1, . . . , xn] defines
a function JpK : Kn → K in the natural way (first make a formal substitution,
then evaluate the formal expression in K), called the polynomial function asso-
ciated with p (in logic or computer science we would say the interpretation of p).
Of course there are many other ways to associate a function with a polynomial.
For instance the trivial one associating the 0 constant function to every poly-
nomial, or dumb ones, like the one that associate the 0 constant function with
every polynomial of K[x] except for x ∈ K[x], which is associated with the 42
constant function. The trivial one is really not interesting, and the reason why
the dumb one is a dumb one, is because J.K is not an algebra-homomorphism
between K[x] and KK. On the contrary, of course, interpreting polynomials as
polynomial functions is indeed an algebra-homomorphism, and this is the nat-
ural requirement to ask to our interpretation map. In this way we answer to
the question: Can we see a polynomial as a function, in an interesting way? In
λ-calculus, we will see that there is instead an additional natural requirement
to ask.

3.1.2 As quotient rings by ideals

Given the polynomial function interpretation map J.K, this induces as usual an
equivalence =J.K on K[x1, . . . , xn] by taking the fibres of J.K. For K a field, it is

well known that J.K is an isomorphism between K[x1, . . . , xn] and KKn iff K is
infinite. For example, by Fermat’s little theorem we have xk = x for all x ∈ Fk
(the field with a prime number k of elements), while xk 6= x in Fk[x]. However,
there is another way of making interesting quotient polynomial rings, namely
by quotienting w.r.t. polynomial ideals. For example, even if R is infinite, in
the quotient ring R[x]/(x2 − 1) we have x3 = x. The canonical map to the
quotient is thus an interesting interpretation map. Note that this interpretation
does not directly answer to the question of seeing a polynomial as a function (for
example, interpreting x3 ∈ R[x] as the identity function on R would not give rise
to an homomorphism). As you will see, also this way of identifying polynomials
by quotienting w.r.t. “compatible” equivalences (here the one induced by the

8For the theoretical ones, this not exactly true. For instance, Martin-Löf Type-Theories
are a class of programming languages with a rich mathematical theory, particularly regarding
their relations with groupoids, Homotopy Type Theory and in general higher-category theory.
However they are typically not Turing-complete, and by the way contain λ-calculus as a core
computational fragment.

9This is particularly true for the functional paradigm. A similar role for the imperative
one is played by Turing-machines.

4

polynomial ideal), has an analogue in λ-calculus. Compatible means that the
quotient by such equivalence maintains the same algebraic structure; in the
case of the K-algebra K[x1, . . . , xn], its quotients w.r.t. polynomial ideals are
still K-algebras.

3.2 ...for λ-terms

3.2.1 As interpretation maps

In λ-calculus, there is a priori no immediate candidate codomain for an interpre-
tation map10. On Λ we have two operations, called respectively “application”
and “λ-abstraction”: (p, q) ∈ Λ×Λ→ pq ∈ Λ and (x, p) ∈ {x1, x2, x3, . . . }×Λ ⊆
Λ × Λ → λx.p ∈ Λ. Following the case of polynomials, we would like to define
an interpretation J.K which is a homomorphism w.r.t. to those two operations.
Since those two operations do not fall under some usual algebraic terminology,
instead of saying that we want J.K to be a homomorphism, one says that we
want it to be compositional. The intuition behind this terminology is that one
is able to compute JpK by computing it on the “subterms” of p (roughly its
sub-routines, if you think of p as a program). As for polynomials, we want to
answer (if possible) the question: Can we see a λ-term as a function, in an
interesting way? Here interesting means, as for polynomials, compositional. In
λ-calculus the situation is more complex than for polynomials. It turns out that
in order to answer the question one cannot use the usual set-theoretic notion
of function; we must move to the abstract notion of function as morphism in a
category.

As we already mentioned, there is another natural requirement to ask: in
λ-calculus, we do not only have the above mentioned two operations; we also
have the fundamental rewriting relation →β . It is therefore natural to ask
whether we can define an interpretation map J.K from Λ to some set in such a
way that it passes to the quotient Λ/=β , where =β is the equivalence generated
by →β . This question is interesting because it can be read from the following
two points of view:

1. The rewriting relation →β endows Λ with a dynamics11. Physics teaches
us that in a dynamical system it is always important to study the in-
variants of the dynamic. The idea is then to associate a λ-term with a
morphism between two objects (thought of as “spaces”) of a suitable cat-
egory, in an invariant way w.r.t. →β , i.e. in such a way that if p →β q
then JpK = JqK. In that setting one can positively answer to the question:
Can I see a λ-term as a function, in a compositional and →β-invariant
way? The short answer is that in the untyped case, a λ-term can be
seen as a morphism in any Cartesian closed category C with a reflex-
ive object U (note that the category Set of sets and functions is Carte-

10This may not be completely true, depending on your familiarity with the subject. For
instance, looking at the simply-typed λ-calculus one is immediately tempted to interpret
simply-typed λ-terms as functions between sets in a natural way. In that case, it works. Also
in the case of untyped λ-calculus – the one presented here – one could be tempted to do the
same. But it is well known that in this case it does not work.

11(Λ,→β) is a non-deterministic discrete dynamical system. In can be turned into a deter-
ministic one by restricting →β to a function Λ→ Λ. Such functions are known as “reduction
strategies”, and can be seen as functions S : Λ→ Λ s.t. p→β S(p). Given such S, the function
(n, p) ∈ N× Λ→ Sn(p) ∈ Λ is by construction a deterministic discrete dynamical system.

5

sian closed but it does not admit non-trivial reflexive objects), via an
interpretation map J.K : Λ → HomC(U,U). In the simply-typed case a
simply-typed λ-term can be seen as a morphism in any Cartesian closed
category, via an interpretation map J.K : STΛ →

⋃
X,Y HomC(X,Y) s.t.

JΓ ` p : AK ∈ HomC(JΓK, JAK).
2. In the context of rewriting systems it is often interesting to consider the

elements (p, q) of the equivalence induced by a rewriting rule as axiomatic
equations p = q. One then wants to find the structures that satisfy this
axioms, which logicians call the models of the axioms. For instance, if
you suppose to have symbols 1, 1−1, g1, g

−1
1 , g2, g

−1
2 , . . . , and you take the

rewriting rules gg−1 → 1, g−1g → 1, g1 → g, 1g → g (for g any of
your symbols), then the induced equivalence is of course describing the
notion of group, in the sense that the axiomatic equations are those of the
definition of groups. So their models are precisely the groups. In the case
of λ-calculus, thus, we can see the image of the interpretation map J.K as a
structure that validates all axioms of shape p =β q. It turns out that one
can give an exact algebraic characterisation of those structures, in terms
of what are known as combinatorial algebras.

3.2.2 As quotient combinatory-algebras by λ-theories

Given an interpretation map J.K (with whatever codomain may it be), this in-
duces as usual an equivalence =J.K on Λ by taking the fibers of J.K. Since J.K
is compositional, then =J.K is closed w.r.t. λ-abstraction and application. Since
J.K is invariant for =β , then =J.K⊇=β . When an equivalence relation on Λ sat-
isfies this two conditions (closure and contains =β), it is called a λ-theory. So
an interpretation map induces a λ-theory. The converse is also true: given a
λ-theory ∼, the canonical map to the quotient12 Λ/∼ is a compositional and
=β-invariant interpretation map. Note that this interpretation does not directly
answer to the question of seeing a λ-term as a function, not even in the gen-
eralised sense of morphism. Actually, these two constructions are immediately
seen inverse of each other (when we restrict the codomain of the interpretation
map to its image). So to give a λ-theory exactly means to give a compositional,
=β-invariant and surjective interpretation map.

Typically, a λ-theory is given in a “syntactical” way (meaning by using
properties of →β), while an interpretation map is given in a “semantical” way
(meaning by interpreting λ-terms in an abstract structure). Remark that here
again there is a clear analogy with what one does in polynomial algebra (but
also group/ring/... theory).

In fact λ-theories play the same role of polynomial ideals (or normal sub-
groups, or ring ideals etc): they provide the notion of compatible equivalence,
with respect to which the quotient maintains the same algebraic structure; in
the case of the combinatory algebra Λ/=β , its quotients w.r.t. λ-theories are still
combinatory algebras.

12The quotient of Λ by a λ-theory is called its term-algebra. Logicians and computer
scientists also say “term-model”, because historically it was thought of as syntactical à la
Tarski model. I personally find it clearer in the way I presented it here.

6

