
Resource approximation for the _`-calculus
Davide Barbarossa

Laboratoire d’Informatique Paris-Nord, Université Sorbonne Paris-Nord
Villetaneuse, France

Dipartimento di Informatica - Scienza ed Ingegneria, Università di Bologna
Bologna, Italy

davide.barbarossa@unibo.it

Abstract
The _`-calculus plays a central role in the theory of pro-
gramming languages as it extends the Curry-Howard cor-
respondence to classical logic. A major drawback is that
it does not satisfy Böhm’s Theorem and it lacks the corre-
sponding notion of approximation. On the contrary, we show
that Ehrhard and Regnier’s Taylor expansion can be easily
adapted, thus providing a resource conscious approximation
theory. This produces a sensible _`-theory with which we
prove some advanced properties of the _`-calculus, such as
Stability and Perpendicular Lines Property, from which the
impossibility of parallel computations follows.

CCS Concepts: • Theory of computation→ Lambda cal-
culus; Linear logic; Rewrite systems.

Keywords: _`-calculus, Taylor expansion, resource approxi-
mation, linear logic, _-calculus
ACM Reference Format:
Davide Barbarossa. 2022. Resource approximation for the _`-calculus.
In 37th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS) (LICS ’22), August 2–5, 2022, Haifa, Israel. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3531130.3532469

1 Introduction
1.1 Motivation
1.1.1 Curry-Howard correspondence for classical logic.
The celebrated Curry-Howard correspondence states that a
class of programs, written in a suitable programming lan-
guage, and intuitionistic logic proofs, written in an suitable
formal system, are the same mathematical objects. The typ-
ical suitable programming language is _-calculus, and the
typical suitable formal system is intuitionistic natural de-
duction NJ; under this correspondence, the simply typed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9351-5/22/08. . . $15.00
https://doi.org/10.1145/3531130.3532469

_-calculus is identified with NJ. A natural question is what
happens for classical logic proofs and whether it is possible
to find such a correspondence at all. In the 90’s, several ways
for generalising such a correspondence to this framework
appeared, starting from [13] where Griffin suggests to type
control operators (such as Scheme’s callcc or Felleisen’s C
operator) with Peirce’s law. One of the most notable ones is
the _`-calculus, introduced by Parigot in [24], which has the
advantage of allowing the correspondence to take the exact
same form as in the intuitionistic case: just like _-calculus
is the Turing-complete programming language in which
intuitionistic logic expresses its computational content, _`-
calculus is the one expressing the computational content of
classical logic. From the programming viewpoint, the big
difference between _-calculus and _`-calculus is that the for-
mer is a purely functional language, while the latter is impure,
due to the possibility of encoding control operators in it —
like the already mentioned callcc or C. From the point of
view of, e.g., Classical realizability [19], this corresponds to
the backtracking mechanism related to classical reasoning.

1.1.2 Taylor expanding programs. Just before the 90’s
another major discovery in logic and computer science ap-
peared: Girard’s linear logic [12]. This opened a whole new
field of research, in which the common line is the deep role
reserved to resources in a computation/proof. Linear logic
allowed Ehrhard and Regnier to discover an astonishing
correspondence between linearity in analysis and linearity
in computer science, that is formalized in the differential
_-calculus [9] (and differential interaction nets [10]). It is
possible to Taylor expand programs/proofs by – as in anal-
ysis – an infinite series of approximants weighted via the
usual factorial coefficients. This is usually called the “full”
or “quantitative” Taylor expansion. However, it turns out
that even if we do not consider the coefficients, we still ob-
tain a meaningful theory of program approximation: it is
usually called the “qualitative” Taylor expansion, and will
play a central role in the present article. Under the assump-
tion of having an idempotent sum, the Taylor expansion
is no longer a series but becomes a set, and the approxi-
mants can be written in a simple “target language”, called
resource calculus (very similar to Boudol’s calculus with mul-
tiplicities [4]). In [1], it is shown that all the fundamental
results in the so called approximation theory of _-calculus

https://doi.org/10.1145/3531130.3532469
https://doi.org/10.1145/3531130.3532469

LICS ’22, August 2–5, 2022, Haifa, Israel Davide Barbarossa

(Monotonicity, Genericity, Continuity, Stability, Perpendicu-
lar Lines Property), usually achieved via labelled reductions
and Böhm trees [2, Chapter 14], can be actually proven – in
an arguably more satisfactory way – via (qualitative) Taylor
expansion; in other words, in _-calculus, resource approxi-
mation (which is at the basis of Taylor expansion) “subsumes”
Böhm trees approximation, and answers positively to a pro-
posal expressed in [9] where Ehrhard and Regnier mention
that: “Understanding the relation between the term and its
full Taylor expansion might be the starting point of a renewing
of the theory of approximation.”

1.1.3 The content of this paper. The aforementioned
“approximation results” are in fact at the basis of a mathe-
matical study of _-calculus, deep from the conceptual, math-
ematical and computational viewpoint. A natural question is
then: what about for other programming languages? There
are many works which extend the notion of (qualitative as
well as quantitative) Taylor expansion to other programming
languages ([5, 6, 17, 21, 30]), usually concentrating on its rela-
tions with normalisation. Not always easy is, then, applying
it to actually study the properties of the source language.
This is maybe due to the fact that, unlike in the long time
studied _-calculus, for other languages one does not really
know what a “mathematical theory of it” should look like.
In the present work, we tackle the case of _`-calculus for
which, to the best of our knowledge, the problem of directly
defining a Taylor expansion has never been priorly consid-
ered. In this sense, our work can be seen as a continuation
of the above mentioned series of papers, and may be related
to [18] where the authors study non-idempotent intersection
and union types for _`-calculus.

We propose here to reverse the above proposal of Ehrhard
and Regnier and start by defining a resource sensitive version
and a Taylor expansion for _`-calculus, trying then to use
this approximation machinery to prove – following [1] –
mathematical properties of the language.

A notable work has to be mentioned: in [29], Vaux-Auclair
defines a full differential _`-calculus following the steps
of [9]. Its version takes coefficients into account, and as
always this raises a series of non-trivial problems to handle.
However, he does not define a Taylor expansion nor does
he apply those tools to find properties of the language. The
present work can thus be seen also as a continuation of
Vaux-Auclair’s one.

There are, from our point of view, several reasons for con-
sidering the _`-calculus: first of all, from the Curry-Howard
point of view, it is the natural “successor” of _-calculus. More-
over, it is a standard reference for the study of control opera-
tors in functional languages. Yet, there are just few attempts
to really study its mathematical theory, and the state of the
art is not comparable with the well-established one for _-
calculus. For example, Laurent in [23] makes the following
observation: “Models of the simply typed _-calculus, of the

untyped _-calculus and of the simply typed _`-calculus are
well understood, but what about models of the untyped _`-
calculus? As far as we know, this question has been almost
ignored.” With the same motivation, we look at the other
major part which constitutes a mathematical theory of a
programming language, namely the theory of approximation.
In this sense, the present work can be seen as a continuation
of [23].

Other points in relation with Krivine’s classical realizabil-
ity, proof-nets, CPS-translations and Saurin’s Λ`-calculus
will be mentioned in the conclusions.

The article is organised as follows: in Section 2 we define
the resource _`-calculus and prove that it is strongly nor-
malising and confluent (Corollaries 2.13 and 2.30). In Section
3 we define the qualitative Taylor expansion and prove its
main properties, which give rise to a non-trivial sensible
“_`-theory” (Corollary 3.15). In Section 4 we apply these ap-
proximation tools to prove two important results: Stability
(Theorem 4.1) and Perpendicular Lines Property (Theorem
4.4). As a consequence, we obtain the non-representability
of parallel-or in _`-calculus (Corollaries 4.2 and 4.5).

1.2 Quick overview of _`-calculus
We briefly recall the definition of the _`-calculus, and intro-
duce some basic notions and notation.

Definition 1.1. Fix a countable set whose elements are called
variables and a disjoint countable set whose elements are called
names. The set _` of _`-terms is generated by the following
grammar:

𝑀 ::= 𝑥 | _𝑥 .𝑀 | 𝑀𝑀 | `𝛼.𝛽 |𝑀 |

(for 𝑥 a variable and 𝛼, 𝛽 names) in which, as usual, _ binds 𝑥
in𝑀 as well as ` binds 𝛼 in 𝛽 |𝑀 |. Terms are considered up to
renaming of bound variables and names.

Despite not being actual subterms, words of shape 𝛼 |𝑀 |
are called named terms1.𝑀 is said to be named under 𝛼 .
The 𝑘-contexts (also called multihole-contexts when 𝑘 is

generic) 𝐶 = 𝐶{b1, . . . , b𝑘 } are defined as expected by:

𝐶 ::= 𝑥 | b𝑖 | _𝑥 .𝐶 | 𝐶𝐶 | `𝛼.𝛽 |𝐶 |

where {b1, . . . , b𝑘 } is a new set whose elements are called
holes. 1-contexts are simply called contexts. A context with
exactly one occurrence of the hole is called single-hole, and
as usual satisfy: 𝐶 ::= b𝑖 | _𝑥.𝐶 | 𝐶𝑀 | 𝑀𝐶 | `𝛼.𝛽 |𝐶 |.

1Historically named terms are written as [𝛼]𝑀 , as in [24]. But this notation
has to be given up since the use of square brackets is already imperatively
taken by the finite multisets, which we will encounter constantly in the
following. Another notation, used in [27], is to write 𝑀𝛼 . However in
our framework we find this notation not clear. The notation 𝛼 |𝑀 | should,
instead, clearly show what is inside a “naming” and what is not.

Resource approximation for the _`-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

Definition 1.2. The reduction relation→ of _`-calculus is
the contextual closure2 of the union→base of:

(_𝑥.𝑀)𝑁 →_ 𝑀{𝑁 /𝑥}

(`𝛼.𝛽 |𝑀 |)𝑁 →` `𝛼.(𝛽 |𝑀 |)𝛼𝑁

`𝛾 .𝛼 |`𝛽.[|𝑀 | | →𝜌 `𝛾 .([|𝑀 |{𝛼/𝛽})
where𝑀{𝑁 /𝑥} is the usual capture-free substitution of 𝑁 for
all free occurrences of 𝑥 in𝑀 , [|𝑀 |{𝛼/𝛽} replaces 𝛼 for all the
free occurrences of 𝛽 in [|𝑀 |, and (𝑀)𝛼𝑁 is given by:

(𝑥)𝛼𝑁 := 𝑥

(_𝑥 .𝑀)𝛼𝑁 := _𝑥.(𝑀)𝛼𝑁
(𝑀𝑃)𝛼𝑁 := ((𝑀)𝛼𝑁) ((𝑃)𝛼𝑁)
(`𝛽.𝛾 |𝑀 |)𝛼𝑁 := `𝛽.𝛾 | (𝑀)𝛼𝑁 | (if 𝛾 ≠ 𝛼)
(`𝛽.𝛼 |𝑀 |)𝛼𝑁 := `𝛽.𝛼 | ((𝑀)𝛼𝑁)𝑁 |.

We denote by =_`𝜌 the equivalence induced by→ on _`.

The operation (𝑀)𝛼𝑁 coincides with the substitution
𝑀 {𝛼 | (·)𝑁 |/𝛼 |·|}: every named subterm 𝛼 |·| of𝑀 gets substi-
tuted with the named term 𝛼 | (·)𝑁 |. Nevertheless, “morally”,
it is an application: each subterm of 𝑀 named under 𝛼 re-
ceives a copy of 𝑁 to be applied to. This is why we chose the
notation “(𝑀)𝛼𝑁 ", which is reminiscent of the application of
𝑀 to 𝑁 , and the term (𝑀)𝛼𝑁 is called the named application
of𝑀 to 𝑁 through 𝛼 . Such notation is due to [29].
The reduction _ is the usual 𝛽-reduction (which we call

“_” in order to avoid confusion with names). The reduction 𝜌

is just a renaming of names. The novelty is the `-reduction
which, in the following section, we are going to “linearise”.
There are many reductions that one can consider on the _`-
calculus; we chose to stick to those three because they are
the ones considered in the original paper [24].

Theorem 1.3. The _`-calculus (_`,→) is confluent.

Proof. See proof of Theorem 4.1 of [25]. □

Lemma 1.4. Every _`-term𝑀 has the following shape:

𝑀 = _®𝑥1 .`𝛼1.𝛽1 |. . . _®𝑥𝑘 .`𝛼𝑘 .𝛽𝑘 |𝑅 ®𝑄 | |

where 𝑅 is either a variable, or a _-redex or a `-redex; further-
more, 𝑅, ®𝑄 , 𝑘 , ®𝑥𝑖 and 𝛼𝑖 are unique. 𝑅 is called the head redex
of𝑀 if it is a _`-redex, and it is called the head variable of𝑀
otherwise. The sequence _®𝑥1 .`𝛼1.𝛽1 |. . . _®𝑥𝑘 .`𝛼𝑘 .𝛽𝑘 |∗| | is called
the head of 𝑀 . Therefore, every _`𝜌-normal _`-term 𝑀 has
a head variable, has no 𝜌-redexes in its head and (with the
previous notations) ®𝑄 are _`𝜌-normal _`-terms.

Other than what we already said in the introduction, we
will not add more explanations of the logical and program-
ming meaning of this calculus. Let us just add here the encod-
ing of callcc in _`-calculus: callcc := _𝑦.`𝛼.𝛼 |𝑦 (_𝑥 .`𝛿 .𝛼 |𝑥 |) |.

2The contextual closure of a binary relation R is the binary relation given
by the set: { (𝐶L𝑀 M,𝐶L𝑁 M) | 𝑀R𝑁 and𝐶L . M single hole context}.

2 Resource _`-calculus
Recall that a multiset 𝐴 on a set 𝑋 is a map from 𝑋 to N. We
use a multiplicative notation: the empty multiset is denoted
with 1 and the union of two multisets 𝐴, 𝐵 is denoted with
𝐴 ∗ 𝐵. The set of multisets on a set 𝑋 is a monoid w.r.t. ∗,
with neutral element 1. We denote with !𝑋 the set of finite
multisets on 𝑋 , that is, multisets 𝐴 with 𝑋 − 𝐴−1 (0) finite.
Such an 𝐴 will be as usual written as 𝐴 = [𝑎1, . . . , 𝑎𝑘], with
𝐴(𝑎𝑖) repetitions for each 𝑎𝑖 . We will sometimes write𝑚±𝐴
for [𝑚 ± 𝑎1, . . . ,𝑚 ± 𝑎𝑘] if𝑚 ± 𝑎𝑖 happens to be defined.

Definition 2.1. The set _`r of resource _`-terms is given
by:

𝑡 ::= 𝑥 | _𝑥 .𝑡 | 𝑡0 [𝑡1, . . . , 𝑡𝑛] | `𝛼.𝛽 |𝑡 |
where [𝑡1, . . . , 𝑡𝑛] ∈ !_`r (𝑛 ≥ 0), and it is called a bag. Re-
source terms are considered up to renaming of bound variables
and names. Resource-contexts are defined as expected. For
a a variable or a name, the degree dega (𝑡) ∈ N of a in 𝑡 , is
defined as the number of free occurrences of a in 𝑡 .

The meaning of a resource sensitive application (_𝑥 .𝑡) [®𝑢]
is to non-deterministically choose a way to associate each
resource in the bag with exactly one occurrence of the ar-
gument 𝑥 in 𝑡 . It is thus natural to consider (formal) sums.
If this association cannot be done without erasing or du-
plicating resources, then it annihilates to the empty sum 0.
The operational semantics of a resource sensitive application
(`𝛼.𝛽 |𝑡 |) [®𝑢] will be discussed in Definition 2.5.

Definition 2.2. Call 2⟨_`r⟩ the free module generated by
_`r over the boolean semiring, which simply means the set
of the formal sums of finitely many _`r-terms, quotiented by
commutativity, idempotency and associativity of +. An element
of 2⟨_`r⟩ will be called a sum (in fact, it is just a finite subset of
_`r). We extend the constructors of _`r to 2⟨_`r⟩ by linearity,
setting:(∑︁

𝑖0

𝑡𝑖0

) [∑︁
𝑖1

𝑡𝑖1 , . . . ,
∑︁
𝑖𝑛

𝑡𝑖𝑛

]
:=

∑︁
𝑖0,...,𝑖𝑛

𝑡𝑖0 [𝑡𝑖1 , . . . , 𝑡𝑖𝑛]

and analogous for _𝑥.
∑

𝑖 𝑡𝑖 and `𝛼.𝛽
��� ∑𝑖 𝑡𝑖

���. We denote with 0
the empty sum. It is the neutral element for + and the annihi-
lating element for the above constructors (i.e. when it appears
as any subterm, the whole term becomes 0).

Let us define now a reduction in _`r (or, better said, in
2⟨_`r⟩). For this, we will need to divide a multiset into a
certain number of “blocks”. This notion already exists in the
literature of combinatorics (see for example [3]).

Definition 2.3. A partition (resp. weak partition) of a multi-
set [®𝑢] is a multiset [[®𝑣1], (𝑘≥1). . . , [®𝑣𝑘]] of non empty (resp. pos-
sibly empty) multisets such that [®𝑢] = [®𝑣1] ∗ · · · ∗ [®𝑣𝑘]. A com-
position (resp.weak composition -w.c. for short) of a multiset
[®𝑢] is a tuple ([®𝑣1], . . . , [®𝑣𝑘]) of multisets s.t. [[®𝑣1], . . . , [®𝑣𝑘]]
is a partition (resp. weak partition) of [®𝑢].

LICS ’22, August 2–5, 2022, Haifa, Israel Davide Barbarossa

Observe that the empty bag 1 admits no partitions but
admits infinite weak partitions: they are the multisets of
shape [1, . . . , 1] (ℎ ≥ 1 times 1). Here are some other ex-
amples: the set of all the weak partitions of the bag [𝑥]
is {[[𝑥]], [[𝑥], 1], [[𝑥], 1, 1], . . . }. The set of all weak parti-
tions of [𝑥, 𝑥] is {[[𝑥, 𝑥]], [[𝑥], [𝑥]], [[𝑥, 𝑥], 1], [[𝑥], [𝑥], 1],
[[𝑥, 𝑥], 1, 1], [[𝑥], [𝑥], 1, 1], ...}.

Definition 2.4. Let 𝑡 ∈ _`r and [®𝑢] ∈ ! _`r. The linear sub-
stitution 𝑡 ⟨[𝑢1, . . . , 𝑢𝑘]/𝑥⟩ ∈ 2⟨_`r⟩ is defined, as usual, in
Figure 1. In order to linearise the `-reduction we introduce
the linear named application ⟨𝑡⟩𝛼 [®𝑢] ∈ 2⟨_`r⟩, defined in
Figure 2 3.

Remark that, thus, if deg𝛼 (𝑡) = 0 then ⟨𝑡⟩𝛼1 := 𝑡 and
⟨𝑡⟩𝛼 [𝑣, ®𝑢] := 0; if deg𝛼 (𝑡) =: 𝑑 ≠ 0 then: ⟨𝑡⟩𝛼 [®𝑢] is the
sum

∑
𝑡
{
𝛼 | (·) [®𝑠 1] |/𝛼 | · | (1) , . . . , 𝛼 | (·) [®𝑠

𝑑] |/
𝛼 | · | (𝑑)

}
, where the

sum is taken over all ([®𝑠 1], . . . , [®𝑠 𝑑]) w.c. of [®𝑢] of length 𝑑
and 𝛼 |·| (1) , . . . , 𝛼 |·| (𝑑) is any fixed enumeration of the occur-
rences of 𝛼 in 𝑡 .

Definition 2.5. Define a reduction→r ⊆ _`r × 2⟨_`r⟩ as the
resource-context closure of the union→baser of:

(_𝑥.𝑡) [®𝑢] →_r 𝑡 ⟨[®𝑢]/𝑥⟩ `𝛾 .𝛼 |`𝛽.[|𝑡 | | →𝜌r `𝛾 .([|𝑡 |{𝛼/𝛽})
(`𝛼.𝛽 |𝑡 |) [®𝑢] →`r `𝛼.⟨𝛽 |𝑡 |⟩𝛼 [®𝑢] .

We extend it to all 2⟨_`r⟩ × 2⟨_`r⟩ setting:
→r := {(𝑡 + S,T + S) | 𝑡 →r T and 𝑡 ∉ S}.

Observe that the analogue of Lemma 1.4 holds for _`r-
terms (in particular we will use the notion of head vari-
able/redex).
The work [1] is an example of how a resource calculus

can be useful, as it enjoys strong properties such as linear-
ity, strong normalisation and confluence. In the resource
_-calculus the last two properties are easy; as we are going
to see, in our case they are more involved.

2.1 Strong normalisation
With→_r we erase exactly one _, with→𝜌r we erase exactly
one `. With→`r however, the situation is more subtle: we are
not creating nor erasing _’s or `’s (which remain thus in con-
stant number), but we are eventually making the reduct grow
by creating an arbitrarily large number of new applications.
However, in order to pass from the `-redex (`𝛼.𝛽 |𝑡 |) [®𝑢] to
a reduct 𝑡 ′ ∈ `𝛼.⟨𝛽 |𝑡 |⟩𝛼 [®𝑢], we: first, decompose [®𝑢] in sev-
eral blocks; then, erase [®𝑢]; finally, put each block inside a
certain named subterm of 𝛽 |𝑡 |. We replaced thus a bag with
many new bags which are at a “deeper depth”. As we will
see in Remark 2.7, it will be immediate to recognize that
actually this depth is necessary bounded by the number of
`-occurrences in the term, which is invariant under→`r , so
the former subtracted to the latter should decrease. Remark
3The induction takes into account also the case of named terms [|𝑡 | ; this is
done for technical reasons.

that in the case [®𝑢] = 1, deg` (𝛽 |𝑡 |) = 0 we do not create new
applications but we simply erase one already existing one,
so we have to make sure our measure decreases in this case
as well.

Definition 2.6. Let 𝑡 be a _`-term and let 𝑏 be an occurrence
of a bag or of a subterm of 𝑡 . The depth 𝑑𝑡 (𝑏) ∈ N of 𝑏 in 𝑡 is
the number of named subterms of 𝑡 containing 𝑏.

Remark 2.7. By definition of the grammar of the _`-calculus
there are as many named subterms of 𝑡 as `-abstractions in 𝑡 ,
i.e. deg` (𝑡). So we must have: 𝑑𝑡 (𝑏) ≤ deg` (𝑡).
Definition 2.8. Define the multiset measure m(𝑡) ∈ !N of a
_`r-term 𝑡 as:

m(𝑡) := deg` (𝑡) − [𝑑𝑡 (𝑏) | 𝑏 occurrence of bag in 𝑡] .
Remark 2.7 assures that m(𝑡) ∈ !N (and not in !Z). This

is crucial because it allows us to reason by induction w.r.t.
the multiset order on it. The measure m(·) is “almost” the
good one for strong normalization:

Proposition 2.9. If 𝑡 →`r 𝑡
′ + T then m(𝑡) > m(𝑡 ′).

Proof. If 𝑡 →`r 𝑡
′ + T then 𝑡 = 𝑐L (`𝛼.𝛽 |𝑠 |)𝑏0 M and 𝑡 ′ = 𝑐Lℎ M

with ℎ ∈ `𝛼.⟨𝛽 |𝑠 |⟩𝛼𝑏0 and 𝑐 a single-hole resource context.
Call 𝑘 := deg` (𝑡) = deg` (𝑡 ′) and consider deg𝛼 (𝛽 |𝑠 |) ∈ N.
The are two cases:

- Case deg𝛼 (𝛽 |𝑠 |) = 0. By definition of→`r this is possible
only if 𝑏0 = 1 (otherwise 𝑡 →`r 0) and ℎ = `𝛼.𝛽 |𝑠 |. So in
𝑡 there are the exact same occurrences of bags as in 𝑡 ′ and
they are at the same depth, except for 𝑏0 which is in 𝑡 but not
in 𝑡 ′. This means that m(𝑡) = m(𝑡 ′) ∗ [𝑘 − 𝑑𝑡 (𝑏0)] > m(𝑡 ′).

- Case deg𝛼 (𝛽 |𝑠 |) =: 𝑛 ≥ 1. Then:

ℎ = `𝛼.𝛽 |𝑠 |
{
𝛼 | (·)𝑏1 |/

𝛼 | · | (1) , . . . , 𝛼 | (·)𝑏𝑛 |/𝛼 | · | (𝑛)
}

for aw.c. (𝑏1, . . . , 𝑏𝑛) of𝑏0. Som(𝑡 ′) = 𝑘−𝐴′ andm(𝑡) = 𝑘−𝐴,
with 𝐴′ and 𝐴 respectively the multisets:
𝐵𝑐
𝑡 ′ ∗ 𝐵

𝑠
𝑡 ′ ∗ [𝑑𝑡 ′ (𝑏) | 𝑏 in a 𝑣 ∈ 𝑏𝑖 for an 𝑖] ∗ [𝑑𝑡 ′ (𝑏1), . . . , 𝑑𝑡 ′ (𝑏𝑛)]

𝐵𝑐𝑡 ∗ 𝐵𝑠𝑡 ∗ [𝑑𝑡 (𝑏) | 𝑏 in a 𝑣 ∈ 𝑏0]] ∗ [𝑑𝑡 (𝑏0)],
where we put 𝐵𝑐𝑡 := [𝑑𝑡 (𝑏) | 𝑏 in 𝑐] (and analogously for
𝑠, 𝑡 ′). Now for 𝑖 = 1, . . . , 𝑛we have:𝑑𝑡 ′ (𝑏𝑖) = 𝑑𝑡 ′ (ℎ)+𝑑ℎ (𝑏𝑖) >
𝑑𝑡 (𝑏0) since as one sees from the expression of ℎ, we have
𝑑𝑡 ′ (ℎ) = 𝑑𝑡 (𝑏0) and 𝑑ℎ (𝑏𝑖) > 0. Also, it is easily under-
stood that for all 𝑏 occurring in 𝑐 , or occurring in 𝑠 , we
have: 𝑑𝑡 ′ (𝑏) = 𝑑𝑡 (𝑏). Finally, observe that since (𝑏1, . . . , 𝑏𝑛)
is a w.c. of 𝑏0, then: 𝑏 occurs in some 𝑣 ∈ 𝑏0 iff 𝑏 occurs
in some 𝑣 ∈ 𝑏𝑖 for some 𝑖 . And for all such 𝑏 we have:
𝑑𝑡 ′ (𝑏) = 𝑑𝑡 ′ (𝑣) +𝑑𝑣 (𝑏) > 𝑑𝑡 (𝑣) +𝑑𝑣 (𝑏) = 𝑑𝑡 (𝑏) since 𝑑𝑡 ′ (𝑣) =
𝑑𝑡 ′ (𝑏𝑖) > 𝑑𝑡 (𝑏0) = 𝑑𝑡 (𝑣). All these considerations precisely
mean m(𝑡) > m(𝑡 ′). □

Analogously we find:

Proposition 2.10. If 𝑡 →_r 𝑡
′ + T then m(𝑡) > m(𝑡 ′).

However, only m(𝑡) is not enough to prove strong nor-
malization. In fact (reasoning similarly as before):

Resource approximation for the _`-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

𝑥 ⟨[𝑣]/𝑥⟩ = 𝑣 𝑦⟨1/𝑥⟩ = 𝑦 (𝑦 ≠ 𝑥) (_𝑦.𝑡)⟨[®𝑢]/𝑥⟩ = _𝑦.𝑡 ⟨[®𝑢]/𝑥⟩
𝑥 ⟨1/𝑥⟩ = 𝑥 ⟨[𝑣,𝑤, ®𝑢]/𝑥⟩ = 0 𝑦⟨[𝑣, ®𝑢]/𝑥⟩ = 0 (𝑦 ≠ 𝑥) (`𝛼.𝛽 |𝑡 |)⟨[®𝑢]/𝑥⟩ = `𝛼.𝛽 |𝑡 ⟨[®𝑢]/𝑥⟩|

(𝑡 [𝑣1, . . . , 𝑣𝑛])⟨[®𝑢]/𝑥⟩ =
∑

([®𝑠 0],...,[®𝑠 𝑛]) w.c. of [®𝑢]
!𝑡 ⟨[®𝑠 0]/𝑥⟩

[
𝑣1⟨[®𝑠 1]]/𝑥⟩, . . . , 𝑣𝑛 ⟨[®𝑠 𝑛]/𝑥⟩

]
.

Figure 1. Definition of linear substitution

⟨𝑥⟩𝛼 [𝑣, ®𝑢] = 0 ⟨𝑥⟩𝛼1 = 𝑥 ⟨[|𝑡 |⟩𝛼 [®𝑢] = [|⟨𝑡⟩𝛼 [®𝑢] | (if [≠ 𝛼)

⟨`𝛾 .[|𝑡 |⟩𝛼 [®𝑢] = `𝛾 .⟨[|𝑡 |⟩𝛼 [®𝑢] ⟨_𝑦.𝑡⟩𝛼 [®𝑢] = _𝑦.⟨𝑡⟩𝛼 [®𝑢] ⟨𝛼 |𝑡 |⟩𝛼 [®𝑢] =
∑

([®𝑤 1],[®𝑤 2]) w.c. of [®𝑢]
𝛼 |

(
⟨𝑡⟩𝛼 [®𝑤 1]

)
[®𝑤 2] |

⟨𝑡 [𝑣1, . . . , 𝑣𝑛]⟩𝛼 [®𝑢] =
∑

([®𝑤 0],...,[®𝑤𝑛]) w.c. of [®𝑢]

(
⟨𝑡⟩𝛼 [®𝑤 0]

) [
⟨𝑣1⟩𝛼 [®𝑤 1], . . . , ⟨𝑣𝑛⟩𝛼 [®𝑤 𝑛]

]
.

Figure 2. Definition of linear named application

Proposition 2.11. If 𝑡 →𝜌r 𝑡 ′ + T then m(𝑡) ≥ m(𝑡 ′), and
there are cases in which the equality holds, such as (for 𝛽 ≠ [):
m(`𝛾 .𝛼 |`𝛽.[|𝑥 | |) = 1 = m(`𝛾 .[|𝑥 |) with `𝛾 .𝛼 |`𝛽.[|𝑥 | | →𝜌r

`𝛾 .[|𝑥 |.

That is why, in order to get a strongly normalising mea-
sure, we add another component:

Definition 2.12. We define the measure:

m̃(𝑡) := (m(𝑡), deg` (𝑡)) ∈ !N × N
ordered by the (well-founded) lexicographic order.

Corollary 2.13 (SN). If 𝑡 →r 𝑡 ′ + T then m̃(𝑡) > m̃(𝑡 ′).
Therefore, the resource reduction→r on sums is strongly nor-
malising.

Proof. The only case in which m(·) may remain constant
is along a 𝜌r-reduction, but in this case deg` (𝑡) strictly de-
creases. □

Before turning to the confluence, let us see some properties
of the measure m(·) that we will use in the following.

Lemma 2.14. Let 𝑐 = 𝑐Lb M be a single-hole context and 𝑡 a
_`-term. Then: m(𝑐L𝑡 M) ≥ m(𝑡).

Proof. We have m(𝑐L𝑡 M) = 𝐴 ∗ [deg` (𝑐L𝑡 M) − 𝑑𝑐L𝑡 M (𝑏) |
𝑏 in 𝑡] where 𝐴 := [deg` (𝑐L𝑡 M) − 𝑑𝑐L𝑡 M (𝑏) | 𝑏 in 𝑐]. But
deg` (𝑐L𝑡 M) = deg` (𝑐) +deg` (𝑡) and, for all occurrence 𝑏 in 𝑡 ,
we have:𝑑𝑐L𝑡 M (𝑏) = 𝑑𝑡 (𝑏)+𝑑𝑐 (b) ≤ 𝑑𝑡 (𝑏)+deg` (𝑐). Thus, for
all occurrence 𝑏 of bag in 𝑡 , we have: deg` (𝑐L𝑡 M)−𝑑𝑐L𝑡 M (𝑏) ≥
deg` (𝑡) − 𝑑𝑡 (𝑏) and this last integer is exactly a generic
element of m(𝑡) (if it is non-empty). Hence m(𝑐L𝑡 M) ≥ 𝐴 ∗
m(𝑡) ≥ m(𝑡). □

However, there are cases in which m(𝑐L𝑡 M) = m(𝑡) even
if 𝑐 ≠ b . For example, taking 𝑐 = _𝑥 .b one has m(𝑐L𝑡 M) = 1 =
m(𝑡) for all 𝑡 ∈ _`r not containing any bags. This is exactly

why, in the following, we will consider a slightly different
size, called ms (defined in Corollary 2.16).

Lemma 2.15. Let 𝑐 = 𝑐Lb M be a single-hole resource context
and 𝑡, 𝑠 ∈ _`. Then:

1. m(𝑐L𝑡 M) = (deg` (𝑡)+m(𝑐))∗ ((deg` (𝑐)−𝑑𝑐 (b)+m(𝑡)).
2. If deg` (𝑠) ≤ deg` (𝑡) andm(𝑠) < m(𝑡), thenm(𝑐L𝑠 M) <

m(𝑐L𝑡 M).

Proof sketch. Easily checked, thanks to the clear fact that if
𝑏 is the occurrence of a bag in 𝑐 , then 𝑑𝑐L𝑡 M (𝑏) = 𝑑𝑐 (𝑏). □

In the following, we will need a strong normalising mea-
sure which, in addition, satisfies the properties of the follow-
ing Corollary 2.16. However, we have seen with some lines
above that m̃(·) is not adapted for that. This is why we oper-
ate a last slight modification. First, let us consider the size
sz(𝑡) ∈ N≥1 of resource _`-terms: sz(𝑥) := 1, sz(_𝑥.𝑡) :=

1 + sz(𝑡) =: sz(`𝛼.𝛽 |𝑠 |), sz(𝑡0 [𝑡1, . . . , 𝑡𝑘]) := 1 + 𝑘 +
𝑘∑
𝑖=0

sz(𝑡𝑖).
Of course sz(𝑡) = 1 iff 𝑡 is a variable, and for all 𝑐 single-hole
context, sz(𝑐L𝑡 M) ≥ sz(𝑡) where the equality holds iff 𝑐 = b .

Corollary 2.16. Define a measure ms(·) of _`-terms as:

ms(𝑡) := (m̃(𝑡), sz(𝑡)) ∈ !N × N × N
ordered lexicographically (and thus well-founded). Then:

1. 𝑡 is a variable iffms(𝑡) takes its minimal value (1, 0, 1).
2. For all single-hole context 𝑐 = 𝑐Lb M, we havems(𝑐L𝑡 M) ≥

ms(𝑡), and the equality holds iff 𝑐 = b .
3. If 𝑡 →r 𝑡

′ + T thenms(𝑡) > ms(𝑡 ′).

2.2 Confluence
Due to the presence of three different reductions, the con-
fluence or our resource _`-calculus is not easy. Another
difficulty is raised from the fact that we placed ourselves in a
qualitative setting, that is, with idempotent sums, so that we

LICS ’22, August 2–5, 2022, Haifa, Israel Davide Barbarossa

cannot always reduce a sum component-wise. This is why
we split the problem of the confluence in two steps: first,
we show that the quantitative resource _`-calculus (that is,
where sum is not idempotent, and thus coefficients matter) is
confluent (Section 2.2.1); second, we show that its confluence
implies the confluence of the calculus with no coefficients
(Section 2.2.2). Before all that, let us precisely explain the
notion of quantitative resource calculus:

Definition 2.17. The quantitative resource _`-calculusN⟨_`r⟩
is built as the qualitative one (2⟨_`r⟩, Definition 2.2) except
for taking now “+” non-idempotent. We define the three base-
case reductions→+

_r
,→+`r ,→+𝜌r in _`r ×N⟨_`r⟩: the reduction

→+𝜌r is defined as usual, while→+_r and→
+
`r are defined as in

Definition 2.5, except for the fact that the linear substitution
and linear named application are replaced with a modified
version of them, denoted respectively 𝑡 ⟨[®𝑢]/𝑥⟩+ and ⟨𝑡⟩+𝛼 [®𝑢],
and defined in the next Definition 2.19. The contextual union
of the base-reductions→+

_r
,→+`r ,→+𝜌r forms a reduction→+r

on _`r ×N⟨_`r⟩ which is extended to all N⟨_`r⟩ ×N⟨_`r⟩ by
taking {(𝑡 + S,T + S) | 𝑡 →+r T} (remark that we dropped the
annoying condition “𝑡 ∉ S”, since now coefficients matter; it is
the main reason why we turn to this calculus).

Notation 2.18. If [𝑢1, . . . , 𝑢𝑘] is a bag – with the written enu-
meration of (possibly multiple) elements – and𝑊 is a function
𝑊 : {1, . . . , 𝑘} −→ 𝐼 =: {𝑖0 < · · · < 𝑖𝑛}, we will sometimes
denote it by𝑊 : (𝑢1, . . . , 𝑢𝑘) −→ 𝐼 , or by𝑊 : (®𝑢) −→ 𝐼 .
When we use such notation we mean that𝑊 generates the w.c.
([𝑢 𝑗 | 𝑗 ∈𝑊 −1 (𝑖0)], . . . , [𝑢 𝑗 | 𝑗 ∈𝑊 −1 (𝑖𝑛)]) of [𝑢1, . . . , 𝑢𝑘],
and denoted by ([®𝑤 𝑖0], . . . , [®𝑤 𝑖𝑛]). In the case [®𝑢] = 1, we
write𝑊 : () −→ 𝐼 and we say that there is exactly one w.c.
generated by𝑊 , namely (1, (𝑛+1 times). . . , 1).

Definition 2.19. The quantitative version 𝑡 ⟨[®𝑢]/𝑥⟩+ of the
linear substitution is defined exactly as in Figure 1 but by
replacing the sum on all the ([®𝑤 0], . . . , [®𝑤 𝑛]) w.c. of [®𝑢] with
the sum on all𝑊 : (®𝑢) −→ {0, . . . , 𝑛}, and by taking the above
w.c.’s as the ones generated by𝑊 . The quantitative version
⟨𝑡⟩+𝛼 [®𝑢] of the linear named application is defined exactly as
in Figure 2 but by replacing, in the case of an application, the
sum on all the ([®𝑤 0], . . . , [®𝑤 𝑛]) w.c. of [®𝑢] with the sum on
all𝑊 : (®𝑢) −→ {0, . . . , 𝑛}, and by taking the above w.c.’s as
the ones generated by𝑊 . Analogously for the case of a named
term, where we use𝑊 : (®𝑢) −→ {1, 2}.

For instance: (`𝛼.𝛼 |`[.𝛼 |𝑥 | |) [𝑦,𝑦] →+r `𝛼.𝛼 | (`[.𝛼 |𝑥1|) [𝑦,𝑦] |
+2 `𝛼.𝛼 | (`[.𝛼 |𝑥 [𝑦] |) [𝑦] | + `𝛼.𝛼 | (`[.𝛼 |𝑥 [𝑦,𝑦] |)1|.

In the following, supp(T) ∈ 2⟨_`r⟩ is the support of a T ∈
N⟨_`r⟩, that is, the set of its addends (with no coefficients:
supp(T) is T when considered with an idempotent “+”).

Remark 2.20. It is clear by the definitions that if, for 𝑡 ∈
`r, one has 𝑡 →r T (in 2⟨`r⟩) and 𝑡 →+r S (in N⟨_`r⟩)
by reducing the same redex, then supp(S) = T. That is, the
two reductions only differ for the coefficients. Said differently,

the qualitative substitutions 𝑡 ⟨[®𝑢]/𝑥⟩ and ⟨𝑡⟩𝛼 [®𝑢] are just the
quantitative substitutions 𝑡 ⟨[®𝑢]/𝑥⟩+ and ⟨𝑡⟩+𝛼 [®𝑢] taken with
boolean coefficients.

Remark 2.21. Using the fact that the reduction→r is strongly
normalising in _`r (Corollary 2.13), we can prove that the re-
duction →+r is strongly normaling in N⟨_`r⟩. It suffices to
extend the strongly normalising measure m̃(·) of _`r (Corol-
lary 2.12) to N⟨_`r⟩ by setting m̃(T) := [m̃(𝑡) | 𝑡 ∈ T] ∈
!(!N × N), and use the multiset order.

Remark 2.22 (Embedding inside the differential _`-calculus).
In [28], Vaux defines a differential _`-calculus, let us call it
(_`𝜕,→𝜕) in this remark, and proves its confluence. Our re-
source _`-calcului 2⟨_`r⟩ and N⟨_`r⟩ are strictly related to
it, as they translate into _`𝜕 via4 (·)𝜕 : _`r −→ _`𝜕 defined as:
𝑥𝜕 := 𝑥, (_𝑥.𝑡)𝜕 := _𝑥 .𝑡𝜕, (`𝛼.𝛽 |𝑡 |)𝜕 := `𝛼.𝛽 |𝑡𝜕 |, (𝑡 [𝑢1, . . . , 𝑢𝑘])𝜕

:=
(
D𝑘 𝑡𝜕 • (𝑢𝜕

1 , . . . , 𝑢
𝜕
𝑘
)
)
0. We can extend it to sums, both in

2⟨_`r⟩ and in N⟨_`r⟩, by linearity. In the qualitative case
(that is, if we consider (·)𝜕 : 2⟨_`r⟩ −→ _`𝜕), it is not a well-
behaved embedding, because it does not preserve reductions. On
the contrary, it does in the quantitative case (that is, if we con-
sider (·)𝜕 : N⟨_`r⟩ −→ _`𝜕), in the sense that: if 𝑡 →+

_`r
T in

N⟨_`r⟩, then 𝑡𝜕 ↠𝜕 T
𝜕 in _`𝜕 (“↠” is the reflexive transitive

closure of→).
One may wonder if it is possible to use the confluence of
(_`𝜕,→𝜕) to infer the confluence of our calculi. In fact, it is
possible to show that the local confluence of→+

_`r
follows from

the confluence of →𝜕 . However, as the reader has probably
noticed, we only talked about→+

_`r
, and not about the whole

→+r = →+
_`r
∪ →+𝜌r . This is simply because in [28] the 𝜌-

reduction is not considered. Remark that, even if it is possible
to prove the confluence of→𝜌r by itself, we cannot use it in or-
der to entail the confluence of→+r = →+

_`r
∪ →+𝜌r by invoking

the well-knownHindley-Rosen lemma. This is because→+𝜌r and
→+

_`r
do not commute, as the following example shows (where

𝛾 ≠ [≠ 𝛼): `𝛼.𝛼 | (`𝛾 .[|𝑥 |)1| `r ←+ (`𝛼.𝛼 |`𝛾 .[|𝑥 | |)1 →+𝜌r

(`𝛼.[|𝑥 |)1 →+𝜌r `𝛼.[|𝑥 |, but `𝛼.𝛼 | (`𝛾 .[|𝑥 |)1| ̸→+𝜌r `𝛼.[|𝑥 |.
In the previous “non-reduction”, the blocked 𝜌-redex can be un-
blocked by performing a `-reduction (and the diagram closes).
O. Laurent suggests (private communication) that we could
still use the confluence of (_`𝜕,→𝜕) in order to obtain the con-
fluence of→+r = →+

_`r
∪ →+𝜌r passing through a factorization

lemma: if 𝑡 ↠+r T then 𝑡 ↠
+
_`r
T′ ↠+𝜌r T, for some T′.

2.2.1 Confluence of (N⟨_`r⟩,→+r). We present here a
proof which essentially consists in closing the diagrams of
all the possible critical pairs.

4Here we are considering that the reader knowns the syntax of _`𝜕 .

Resource approximation for the _`-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

Remark 2.23. We can extend the definition of linear substitu-
tion and linear named application to sums by linearity. Analo-
gously, the renaming of a sum T{𝛼/𝛽} is defined component-
wise. With these definitions in place one checks that base-step-
reduction lifts to sums, i.e.

(
`𝛼.𝛽 |T|

)
[®U] ↠+`r `𝛼. ⟨T⟩+𝛼 [®U]

and analogously for (_𝑥 .T) [®U] and `𝛼.𝛽 |`𝛾 .[|T| |. One can
also check that→+r on N⟨_`r⟩ is contextual.
Notation 2.24. In this section we will sometimes use the fol-
lowing notation: for 𝛼, 𝛽, [names, we set 𝛿𝛼[(𝛽) to be 𝛼 if 𝛽 = [,
or [otherwise.

The following is the crucial technical lemma.

Lemma 2.25. Let 𝑡, 𝑠 ∈ _`r, 𝑥 a variable, 𝛼, 𝛽 names and [®𝑢]
a bag. If 𝑠 →+r S then:

1. 𝑠{𝛼/𝛽} ↠+r S{𝛼/𝛽}
2. 𝑡 ⟨[𝑠, ®𝑢]/𝑥⟩+ ↠+r 𝑡 ⟨[S, ®𝑢]/𝑥⟩+
3. 𝑠 ⟨[®𝑢]/𝑥⟩+ ↠+r S⟨[®𝑢]/𝑥⟩+
4. ⟨𝑡⟩+𝛼 [𝑠, ®𝑢] ↠+r ⟨𝑡⟩+𝛼 [S, ®𝑢]
5. `𝛼.⟨𝛽 |𝑡 |⟩+𝛼 [𝑠, ®𝑢] ↠+r `𝛼.⟨𝛽 |𝑡 |⟩+𝛼 [S, ®𝑢]
6. ⟨𝑠⟩+𝛼 [®𝑢] ↠+r ⟨S⟩+𝛼 [®𝑢].
7. `𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢] ↠+r `𝛼.⟨𝛽 |S|⟩+𝛼 [®𝑢].
Before proving it, let us remark that, in the qualitative set-

ting, it is false. For instance, if 𝑠 →r 𝑠
′, then (𝑥 [𝑥])⟨[𝑠, 𝑠]/𝑥⟩ =

𝑠 [𝑠] ↠̸r 𝑠 [𝑠′] + 𝑠′ [𝑠] = (𝑥 [𝑥])⟨[𝑠, 𝑠′]/𝑥⟩. In the quantitative
case, instead, (𝑥 [𝑥])⟨[𝑠, 𝑠]/𝑥⟩+ = 2 𝑠 [𝑠] ↠+r 𝑠 [𝑠′] + 𝑠′ [𝑠] =
(𝑥 [𝑥])⟨[𝑠, 𝑠′]/𝑥⟩+.

Proof sketch of Lemma 2.25. 1). Induction on 𝑠 . The only in-
teresting cases are:

- Case 𝑠 = `𝛾 .[|𝑠′ |: we have two subcases: Subcase 𝑠 →+r S
is performed by reducing 𝑠′: easy by inductive hypothesis.
Subcase 𝑠′ = `𝛾 ′ .[′ |𝑠′′ | and 𝑠 →+r S is performed by re-
ducing its leftmost 𝜌-redex: then 𝑠 = `𝛾 .[|`𝛾 ′ .[′ |𝑠′′ | |, S =

`𝛾 .[′ |𝑠′′ |{[/𝛾 ′} and we have the four sub-subcases [= 𝛽

and [′ = 𝛽 , or [= 𝛽 and [′ ≠ 𝛽 , or [≠ 𝛽 and [′ = 𝛽 , or
[≠ 𝛽 and [′ ≠ 𝛽 . They are all similar, let us only show the
second one, for which we have:
S{𝛼/𝛽} = `𝛾 .[′ |𝑠′′ |{𝛼/𝛽, 𝛼/𝛾 ′} = `𝛾 .𝛿𝛼

[′ (𝛾
′) |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}|

𝑠{𝛼/𝛽} = `𝛾 .𝛼 |`𝛾 ′ .[′ |𝑠′′{𝛼/𝛽}| | →+𝜌 `𝛾 .[′ |𝑠′′{𝛼/𝛽}|{𝛼/𝛾 ′}
= `𝛾 .𝛿𝛼

[′ (𝛾
′) |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}| = S{𝛼/𝛽}.

- Case 𝑠 = 𝑠′ [®𝑣]: we have four subcases depending on how
the reduction 𝑠 →+r S is performed. The only interesting one
is the subcase 𝑠′ = `𝛾 .[|𝑠′′ | and 𝑠 →+r S is performed by re-
ducing the `-redex 𝑠 , for which we have: S = `𝛾 .⟨[|𝑠′′ |⟩+𝛾 [®𝑣]
and 𝑠{𝛼/𝛽} = (`𝛾 .𝛿𝛼[(𝛽) |𝑠′′{𝛼/𝛽}|) [®𝑣{𝛼/𝛽}] →`r -reduces to
`𝛾 .⟨𝛿𝛼[(𝛽) |𝑠′′{𝛼/𝛽}|⟩+𝛾 [®𝑣{𝛼/𝛽}] which in turn coincides with
the sum `𝛾 .⟨[|𝑠′′ |{𝛼/𝛽}⟩+𝛾 [®𝑣{𝛼/𝛽}] = S{𝛼/𝛽}.
(2). Induction on 𝑡 . The only non-trivial case is when 𝑡 is

𝑣0 [𝑣1, . . . , 𝑣𝑛]. In this case we can write 𝑡 ⟨[𝑠, ®𝑢]/𝑥⟩+ as:∑︁
𝑊

𝑛∑︁
𝑗=0
(𝑣0⟨[®𝑤 0] ∗ [𝑠] 𝑗0/𝑥⟩) [. . . , 𝑣𝑖 ⟨[®𝑤

𝑖] ∗ [𝑠] 𝑗
𝑖
/𝑥⟩, . . .]

where 𝑊 : (®𝑢) −→ {1, . . . , 𝑛} and we put [𝑠] 𝑗
𝑖
to be the

singleton multiset [𝑠] if 𝑖 = 𝑗 , and the empty mulitset 1 if
𝑖 ≠ 𝑗 .. Fix now a𝑊 : (®𝑢) −→ {1, . . . , 𝑛} (together with its
generated w.c.) and consider each of the 𝑛 + 1 elements of
the sum on 𝑗 . We write the case for 𝑗 = 0, but the other cases
are exactly the same. Since 𝑗 = 0, the element is (𝑣0⟨[®𝑤 0] ∗
[𝑠]/𝑥⟩) [. . . , 𝑣𝑖 ⟨[®𝑤 𝑖]/𝑥⟩, . . .] and by inductive hypothesis
it↠+r -reduces to (𝑣0⟨[®𝑤 0] ∗ [S]/𝑥⟩) [. . . , 𝑣𝑖 ⟨[®𝑤 𝑖]/𝑥⟩, . . .] .
Now summing up all the elements for 𝑗 = 0, . . . , 𝑛 and𝑊 :
(®𝑢) −→ {1, . . . , 𝑛} we obtain the following sum:

∑︁
𝑊

𝑛∑︁
𝑗=0
(𝑣0⟨[®𝑤 0] ∗ [S] 𝑗0/𝑥⟩) [. . . , 𝑣𝑖 ⟨[®𝑤

𝑖] ∗ [S] 𝑗
𝑖
/𝑥⟩, . . .] .

which can be shown to be the desired (𝑣0 [𝑣1, . . . , 𝑣𝑛]) ⟨[S, ®𝑢]/𝑥⟩+.
(3). Induction on 𝑠 . We only show the case 𝑠 = `𝛼.𝛽 |𝑠′ |,

which splits in two subcases: the subcase where 𝑠 →+r S is
performed by reducing 𝑠′ is immediate. The subcase where
𝑠′ = `𝛾 .[|𝑠′′ | and 𝑠 →+r S is performed by reducing its left-
most 𝜌-redex goes as follows: we have S = `𝛼.[|𝑠′′ |{𝛽/𝛾}
and
𝑠 ⟨[®𝑢]/𝑥⟩+ = `𝛼.𝛽 |`𝛾 .[|𝑠′′⟨[®𝑢]/𝑥⟩+ | |
→𝜌r `𝛼.[|𝑠′′⟨[®𝑢]/𝑥⟩+ |{𝛽/𝛾} = `𝛼.[|𝑠′′ |⟨[®𝑢]/𝑥⟩+{𝛽/𝛾}
= `𝛼.[|𝑠′′ |{𝛽/𝛾}⟨[®𝑢]/𝑥⟩+ = S⟨[®𝑢]/𝑥⟩+.

(4). Induction on 𝑡 . Similar to point (2).
(5). It is easy discriminating the cases 𝛼 = 𝛽 and 𝛼 ≠ 𝛽

and concluding by point (4).
(6). Induction on 𝑠 ∈ _`. The only interesting cases are:
- Case 𝑠 = `𝛽.𝛾 |𝑠′ |. We have two subcases: the subcase

where 𝑠 →+r S is performed by reducing 𝑠′, so S = `𝛽.𝛾 |S′ |
with 𝑠′ →r S

′, is easy by inductive hypothesis (however
remark that we cannot immediately apply the inductive hy-
pothesis on 𝛾 |𝑠′ |, simply because the named term 𝛾 |𝑠′ | ∉ _`r).
The subcase where 𝑠′ = `𝛾 ′ .[|𝑠′′ | (with 𝛾 ≠ 𝛾 ′) and 𝑠 →+r S is
performed by reducing its leftmost 𝜌-redex goes as follows:
we have S = `𝛽.[|𝑠′′ |{𝛾/𝛾 ′} and we split in two sub-subcases
depending whether 𝛼 ≠ 𝛾 or 𝛼 = 𝛾 . Let us only show this
last sub-subcase: We have (putting𝑊 : (®𝑢) −→ {1, 2}):

⟨𝑠⟩+𝛼 [®𝑢] =
∑
𝑊

`𝛽.𝛼 | (`𝛾 ′ .⟨[|𝑠′′ |⟩+𝛼 [®𝑤 1]) [®𝑤 2] |

↠+`r
∑
𝑊

`𝛽.𝛼 |`𝛾 ′ .⟨⟨[|𝑠′′ |⟩+𝛼 [®𝑤 1]⟩+
𝛾 ′ [®𝑤 2] |

↠+𝜌r
∑
𝑊

`𝛽.⟨⟨[|𝑠′′ |⟩+𝛼 [®𝑤 1]⟩+
𝛾 ′ [®𝑤 2] {𝛼/𝛾 ′}

=
∑
𝑊

⟨⟨`𝛽.[|𝑠′′ |⟩+𝛼 [®𝑤 1]⟩+
𝛾 ′ [®𝑤 2] {𝛼/𝛾 ′}

= ⟨`𝛽.[|𝑠′′ | {𝛼/𝛾 ′}⟩+𝛼 [®𝑢]
= ⟨S⟩+𝛼 [®𝑢] .

- Case 𝑠 = 𝑠′ [𝑣1, . . . , 𝑣𝑛]: we have four subcases depending
on how the reduction 𝑠 →+r S is performed. We only show
the one in which 𝑠′ = `𝛾 .[|𝑠′′ | (with 𝛾 ≠ 𝛼) and 𝑠 →+r S is
performed by reducing the `-redex 𝑠 . In this subcase we have

LICS ’22, August 2–5, 2022, Haifa, Israel Davide Barbarossa

S = `𝛾 .⟨[|𝑠′′ |⟩+𝛾 [®𝑣] and (putting𝑊 : (®𝑢) −→ {0, . . . , 𝑛}):
⟨𝑠⟩+𝛼 [®𝑢] =

∑
𝑊

(⟨`𝛾 .[|𝑠′′ |⟩+𝛼 [®𝑤 0]) [. . . , ⟨𝑣𝑖 ⟩+𝛼 [®𝑤 𝑖], . . .]

↠+
`r `𝛾 .

∑
𝑊

⟨⟨[|𝑠′′ |⟩+𝛼 [®𝑤 0]⟩+𝛾 [. . . , ⟨𝑣𝑖 ⟩+𝛼 [®𝑤 𝑖], . . .]

= `𝛾 .⟨⟨[|𝑠′′ |⟩+𝛾 [®𝑣]⟩+𝛼 [®𝑢]
= ⟨S⟩+𝛼 [®𝑢] .

(7). It is immediate by discriminating the cases 𝛼 = 𝛽 and
𝛼 ≠ 𝛽 and then concluding by point (6). □

Proposition 2.26. The reduction→+r is locally confluent in
N⟨_`r⟩.

Proof sketch. We show, by induction on a single-hole re-
source context 𝑐 , that if 𝑡 →+baser T and 𝑐L𝑡 M →+r T2, then
there is T′ ∈ N⟨_`r⟩ s.t. 𝑐LTM ↠+r T′ +r↞ T2. The proof cru-
cially uses Lemma 2.25 and Remark 2.23. All the cases of the
induction are either easy by induction, or they reduce to the
case 𝑐 = b , so this is the only one we sketch below.
We have 𝑐L𝑡 M = 𝑡 →+baser T and we only have the three

base-cases of Definition 2.17.
Case 𝑡 = (_𝑥 .𝑠) [®𝑢] and T = 𝑠 ⟨[®𝑢]/𝑥⟩+. Then 𝑐L𝑡 M = 𝑡 →+r

T2 (on a different redex than 𝑡) can only be performed either
by reducing 𝑠 , or by reducing an element𝑤 of [®𝑢]. We have
thus the two easy respective diagrams.

Case 𝑡 = (`𝛼.𝛽 |𝑠 |) [®𝑢] and T = `𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢]. Then 𝑐L𝑡 M =
𝑡 →+r T2 (on a different redex than 𝑡) can only be performed
either by reducing 𝑠 , giving rise to an easy diagram, or by
reducing an element𝑤 of [®𝑢], giving rise to an easy diagram,
or if 𝑠 = `𝛾 .[|𝑠′ | and we reduce the 𝜌-redex ...𝛽 |`𝛾|. In
the latter case we split into the case 𝛼 ≠ 𝛽 , the case 𝛼 =

𝛽,𝛾 ≠ [, [= 𝛼 , the case 𝛼 = 𝛽,𝛾 ≠ [, [≠ 𝛼 , and the case 𝛼 =

𝛽, [= 𝛾 (with necessarily 𝛾 ≠ 𝛼). These four cases respec-
tively correspond to four non-trivial (but similar) diagrams,
of which we only show the one corresponding to the case
𝛼 = 𝛽,𝛾 ≠ [, [= 𝛼 : (`𝛼.𝛼 |`𝛾 .𝛼 |𝑠′ | |) [®𝑢] reduces both to U :=
`𝛼.⟨𝛼 |`𝛾 .𝛼 |𝑠′ | |⟩+𝛼 [®𝑢] and to 𝑣 := (`𝛼.𝛼 |𝑠′{𝛼/𝛾}|) [®𝑢]. Now,
𝑣 →+r `𝛼.⟨𝛼 |𝑠′{𝛼/𝛾}|⟩+𝛼 [®𝑢] =

∑
𝑊

`𝛼.𝛼 | (⟨𝑠′{𝛼/𝛾}⟩+𝛼 [®𝑤 0]) [®𝑤 1] |

=: V (with𝑊 : (®𝑢) → {1, 2}), while it is easy to see that
(with𝑊 : (®𝑢) → {1, 2}, 𝐷 : (®𝑤 0) → {1, 2})U↠+r -reduces to∑
𝑊

∑
𝐷

`𝛼.𝛼 |`𝛾 .𝛼 |⟨(⟨𝑠′⟩+𝛼 [®𝑑 0]) [®𝑑 1]⟩+𝛾 [®𝑤 1] | | which in turn↠+r -

reduces to
∑
𝑊

∑
𝐷

`𝛼.𝛼 |⟨(⟨𝑠′⟩+𝛼 [®𝑑 0]) [®𝑑 1]⟩+𝛾 [®𝑤 1] |{𝛼/𝛾} =: U′.
We can show that V = U′, so the diagram is closed.

Case 𝑡 = `𝛾 .𝛼 |`𝛽.[|𝑠 | | and T = `𝛾 .[|𝑠 |{𝛼/𝛽}. Then 𝑐L𝑡 M =
𝑡 →+r T2 (on a different redex than 𝑡) can be only performed
either by reducing 𝑠 , which gives an easy diagram, or if
𝑠 = `𝛾 ′ .[′ |𝑠′ | and we reduce the 𝜌-redex ...[|`𝛾 ′|. Putting
𝛿0 := 𝛿𝛼[(𝛽), 𝛿 ′1 := 𝛿𝛼

[′ (𝛽), 𝛿1 := 𝛿
𝛿0
𝛿 ′1
(𝛾 ′), 𝛿 ′2 := 𝛿

[

[′ (𝛾 ′) and
𝛿2 := 𝛿𝛼

𝛿 ′2
(𝛽), the latter case gives the following diagram:

`𝛾 .𝛼 |`𝛽.[|`𝛾 ′ .[′ |𝑠′ | | | reduces both toU := `𝛾 .𝛿0 |`𝛾 ′ .𝛿 ′1 |𝑠
′{𝛼/𝛽}| |

and to V := `𝛾 .𝛼 |`𝛽.𝛿 ′2 |𝑠
′{[/𝛾 ′}| |, while U ↠+r -reduces to

`𝛾 .𝛿1 |𝑠′{𝛼/𝛽}{𝛿0/𝛾 ′}| andV↠+r -reduces to `𝛾 .𝛿2 |𝑠′{[/𝛾 ′}{𝛼/𝛽}|.
We can show those sums equal, so the diagram is closed. □

Corollary 2.27. The reduction→+r is confluent in N⟨_`r⟩.
Proof. By the well-known Newman Lemma, thanks to Re-
mark 2.21 and Proposition 2.26. □

2.2.2 From the confluence of (N⟨_`r⟩,→+r) to the con-
fluence of (2⟨_`r⟩,→r).
Definition 2.28. The reduction⇒⊆ N⟨_`r⟩ × N⟨_`r⟩ is de-
fined as the contextual closure of the relation:

{(𝑚 𝑡 + S,𝑚 T + S) | 𝑚 ∈ N, 𝑡 →+r T, 𝑡 ∉ supp(S)}.
We have⇒⊆↠+r . It is also easily seen that if T→r S in

2⟨_`r⟩, then for all𝑚𝑡 ∈ N (with 𝑡 ∈ T), we have ∑
𝑡 ∈T

𝑚𝑡𝑡 ⇒
S′ (in N⟨_`r⟩), with supp(S′) = S.
Corollary 2.29. The reduction→r in 2⟨_`r⟩ is locally con-
fluent.

Proof. Let T1 r← 𝑡 →r T2 in 2⟨_`r⟩. Since we know that→r
is strongly normalising (Corollary 2.13), there are (in 2⟨_`r⟩)
reductions T1 ↠r S1 and T2 ↠r S2, with S1, S2 r-normal.
Therefore we have (in N⟨_`r⟩) reductions 𝑡 ⇒ · · · ⇒ S′1 and
𝑡 ⇒ · · · ⇒ S′2, for some S′1, S

′
2 ∈ N⟨_`r⟩ s.t. supp(S′𝑖) = S𝑖 .

But then, since S𝑖 is r-normal, S′𝑖 must be→+r -normal. Now
because of Corollary 2.27, it must be S′1 = S

′
2, and therefore

S1 = supp(S′1) = supp(S′2) = S2. Hence, we found a common
reduct of T1,T2. □

Corollary 2.30 (Confluence). The reduction→r is confluent
on 2⟨_`r⟩.
Proof. By Newman Lemma, thanks to Corollary 2.13 and
Corollary 2.29. □

3 Qualitative Taylor expansion
3.1 Crucial properties
The calculus and its resource sensitive version are almost
the same; the Taylor expansion map makes us pass from one
to the other.

Definition 3.1. The (qualitative) Taylor expansion is the map
T : _` → P(_`r) defined as:

T (𝑥) := {𝑥} T (_𝑥 .𝑀) := {_𝑥 .𝑡 | 𝑡 ∈ T (𝑀)}
T (`𝛼.𝛽 |𝑀 |) := {`𝛼.𝛽 |𝑡 | | 𝑡 ∈ T (𝑀)}
T (𝑀𝑁) := {𝑡 [®𝑢] | 𝑡 ∈ T (𝑀), [®𝑢] ∈ !T (𝑁)}.

Since →r is confluent and strongly normalising, all re-
source terms 𝑡 have a unique 𝑟 -normal form nf r (𝑡) ∈ 2⟨_`r⟩
(it can be 0). Therefore, for all 𝑀 ∈ _` there always exists
NFT (𝑀) := ⋃

𝑡 ∈T (𝑀)
nf r (𝑡) ⊆ _`r (in general infinite, thus

not a sum). This allows to endow _` with a preorder:
𝑀 ≤ 𝑁 iff NFT (𝑀) ⊆ NFT (𝑁).

Theorem 3.2 (Monotonicity). For𝐶 a context, the map𝐶L ·M :
_` → _` is monotone w.r.t. ≤.
Proof. Induction on 𝐶 , as in [1]. □

Resource approximation for the _`-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

The following technical lemma says that Taylor expansion
behaves well w.r.t. substitutions.

Lemma 3.3. One has:

1. T (𝑀{𝛼/𝛽}) = T (𝑀){𝛼/𝛽}
2. T (𝑀{𝑁 /𝑥}) = ⋃

𝑡 ∈T (𝑀)

⋃
®𝑢∈ ! T(𝑁)

𝑡 ⟨[®𝑢]/𝑥⟩

3. T ((𝑀)𝛼𝑁) =
⋃

𝑡 ∈T (𝑀)

⋃
®𝑢∈ ! T(𝑁)

⟨𝑡⟩𝛼 [®𝑢] .

Proof sketch. (1). Straightforward induction on𝑀 .
(2). Induction on𝑀 as one does for _-calculus. The only new
case is𝑀 = `𝛽.𝛼 |𝑃 | but it is done straightforwardly exactly
as the case𝑀 = _𝑥.𝑃 .
(3). Induction on𝑀 . Not more difficult than (2). □

The following important “simulation property” says in
which sense the elements of T (𝑀) approximate𝑀 .

Proposition 3.4. If𝑀 →base 𝑁 , then:

1. for all 𝑠 ∈ T (𝑀) there exist T ⊆ T (𝑁) s.t. 𝑠 ↠r T
2. for all 𝑠′ ∈ T (𝑁) there is 𝑠 ∈ T (𝑀) s.t. 𝑠 ↠r 𝑠

′ + T for
some sum T ⊆ T (𝑁).

Furthermore, the same property lifts to all→, that is, if𝑀 → 𝑁

then point (1) and (2) hold.

Proof sketch. Points 1) and 2) are easy using Lemma 3.3. The
“furthermore” part is by induction on the single-hole context
𝐶 s.t.𝑀 = 𝐶L𝑀 ′ M, 𝑁 = 𝐶L𝑁 ′ M and𝑀 ′ →base 𝑁

′. □

The following technical lemma is an adaptation of [11,
Theorem 20].

Lemma3.5. Let 𝑃,𝑄 be _`-terms, 𝑝, 𝑝′ ∈ T (𝑃) and [®𝑑], [®𝑑 ′] ∈
!T (𝑄). Then 𝑝 = 𝑝′ and [®𝑑] = [®𝑑 ′] are entailed by any of
the following three5 conditions:

1. if 𝑝 ⟨[®𝑑]/𝑥⟩ ∩ 𝑝′⟨[®𝑑 ′]/𝑥⟩ ≠ ∅
2. if ⟨𝑝⟩𝛾 [®𝑑] ∩ ⟨𝑝′⟩𝛾 [®𝑑 ′] ≠ ∅
3. if ⟨[|𝑝 |⟩𝛾 [®𝑑] ∩ ⟨[|𝑝′ |⟩𝛾 [®𝑑 ′] ≠ ∅.

The following “non-interference property” (Theorem 3.6)
was first proved by Ehrhard and Regnier in [11, Theorem 22]
for the _-calculus. It is known that it fails in MELL. A natural
question, to which we do not have an answer yet, is what
is the threshold, between _-calculus and MELL, where this
property starts failing. It is important also because somehow
it is linked to the possibility of defining a coherence on re-
source terms for which Taylor expansion is a maximal clique.
We show below that the result holds in _`-calculus.

Theorem 3.6. If 𝑡, 𝑠 ∈ T (𝑀), 𝑡 ≠ 𝑠 , then nf r (𝑡) ∩nf r (𝑠) = ∅.

5Remark that point 3. (used in the proof of Theorem 3.6) is not an inductive
step of point 2., simply because [|𝑝 | ∉ _`r. Therefore we treat is separately.
This is due to the fact that we are in _`-calculus and not in Saurin’s Λ`-
calculus.

Proof. By induction on ms(𝑡) we prove that for all 𝑠 ∈ _`r,
if 𝑡, 𝑠 ∈ T (𝑀) for some𝑀 ∈ _`, and if there is ℎ ∈ nf r (𝑡) ∩
nf r (𝑠), then 𝑡 = 𝑠 .

Casems(𝑡) = (1, 0, 1). Then (Corollary 2.16) 𝑡 is a variable,
thus𝑀 is the same variable and therefore 𝑠 = 𝑡 .

Casems(𝑡) > (1, 0, 1). By Lemma 1.4,𝑀 has shape:

𝑀 = _®𝑥1`𝛼1 .𝛽1 |. . . _®𝑥𝑘`𝛼𝑘 .𝛽𝑘 |𝑅𝑄1 . . . 𝑄𝑛 | |

for 𝑅 either a variable, or a _-redex or a `-redex. Since
the series of _ and ` abstractions (with their respective
namings) will play no role in the following, in this proof
we shorten _®𝑥1`𝛼1.𝛽1 |. . . _®𝑥𝑘`𝛼𝑘 .𝛽𝑘 |. . .| | to just ®_` |. . .|. So:
𝑡 = ®_` |𝑡 ′ [®𝑢 1] . . . [®𝑢 𝑛] | and 𝑠 = ®_` |𝑠′ [®𝑣 1] . . . [®𝑣 𝑛] | for 𝑡 ′, 𝑠′ ∈
T (𝑅) and [®𝑢 𝑖], [®𝑣 𝑖] ∈ !T (𝑄𝑖). We have now three subcases
depending on the shape of 𝑅.
Subcase 𝑅 variable, say 𝑅 = 𝑥 . Then 𝑡 ′ = 𝑠′ = 𝑥 . W.l.o.g.

𝑛 ≥ 1, otherwise it is trivial that 𝑡 = 𝑠 . Now say [®𝑢 𝑖] =:
[𝑢 𝑖

1 , . . . , 𝑢
𝑖
𝑚𝑖
] and [®𝑣 𝑖] =: [𝑣 𝑖1 , . . . , 𝑣 𝑖𝑚′

𝑖

] for 𝑖 = 1, . . . , 𝑛. By

confluence we have ℎ ∈ nf r (®_` |𝑥 nf r ([®𝑢 1]) . . . nf r ([®𝑢 𝑛]) |),
so ℎ ∈ nf r (®_` |𝑥 [®𝑑 1] . . . [®𝑑 𝑛] |) for some 𝑑 𝑖

𝑗 ∈ nf r (𝑢 𝑖
𝑗). Sim-

ilarly, we get: ℎ ∈ nf r (®_` |𝑥 [®𝑑
′ 1] . . . [®𝑑 ′ 𝑛] |) for some 𝑑 ′ 𝑖𝑗 ∈

nf r (𝑣 𝑖𝑗). So it must be𝑚𝑖 =𝑚′𝑖 (𝑖 = 1, . . . , 𝑛) and:

ℎ = ®_`
′
|𝑥 [𝑑11, . . . , 𝑑1𝑚1] · · · [𝑑

𝑛
1 , . . . , 𝑑

𝑛
𝑚𝑛
] |

for some head ®_`
′
, some 𝑑𝑖𝑗 ∈ nf r (𝑢𝑖𝑗) ∩ nf r (𝑣𝑖𝜎𝑖 (𝑗)) and

permutations 𝜎𝑖 on 𝑚𝑖 elements. But 𝑢𝑖𝑗 , 𝑣
𝑖
𝑗 ∈ T (𝑄𝑖) and

ms(𝑢𝑖𝑗) < ms(𝑡) since 𝑢𝑖𝑗 is a strict subterm of 𝑡 . So we
can apply the inductive hypothesis to each 𝑢𝑖𝑗 and obtain
𝑢𝑖𝑗 = 𝑣𝑖

𝜎𝑖 (𝑗) . Hence, 𝑡 = 𝑠 .
Subcase 𝑅 = (_𝑦.𝑃)𝑁 . It is the same argument as the

following subcase, so we skip it.
Subcase 𝑅 = (`𝛾 .[|𝑃 |)𝑁 . Then 𝑡 ′ = (`𝛾 .[|𝑝 |) [®𝑑] and 𝑠′ =
(`𝛾 .[|𝑝′ |) [®𝑑 ′] for 𝑝, 𝑝′ ∈ T (𝑃) and [®𝑑], [®𝑑 ′] ∈ !T (𝑁). By
confluence on _`r we have:

nf r (𝑡) = nf r (®_` | (`𝛾 .⟨[|𝑝 |⟩𝛾 [®𝑑]) [®𝑢 1] . . . [®𝑢 𝑛] |) .

So there is ℎ1 ∈ `𝛾 .⟨[|𝑝 |⟩𝛾 [®𝑑] s.t. ℎ ∈ nf r (ℎ̃1) where: ℎ̃1 :=
®_` |ℎ1 [®𝑢 1] . . . [®𝑢 𝑛] |.Analogouslywe find aℎ2 ∈ `𝛾 .⟨[|𝑝′ |⟩𝛾 [®𝑑 ′]
s.t. ℎ ∈ nf r (ℎ̃2), where: ℎ̃2 := ®_` |ℎ2 [®𝑣 1] . . . [®𝑣 𝑛] |. By Lemma
3.3 we have ℎ1, ℎ2 ∈ T (`𝛾 .([|𝑃 |)𝛾𝑁) and so ℎ̃1, ℎ̃2 belong
to T (®_` | (`𝛾 .([|𝑃 |)𝛾𝑁)𝑄1 · · ·𝑄𝑛 |). This and the fact that
ℎ ∈ nf r (ℎ̃1)∩nf r (ℎ̃2) mean that ℎ̃1 satisfies both the hypothe-
ses of the inductive hypothesis. Moreover, since 𝑡 ′ →`r ℎ1+T
for some sum T, then m(ℎ1) < m(𝑡 ′). And since the number
of `’s is constant under `-reduction, deg` (𝑡 ′) = deg` (ℎ1).
Therefore we can apply Lemma 2.15(2) and obtain: m(ℎ̃1) =
m(®_` |ℎ1 [®𝑢 1] . . . [®𝑢 𝑛] |) < m(®_` |𝑡 ′ [®𝑢 1] . . . [®𝑢 𝑛] |) = m(𝑡).
So ms(ℎ̃1) < ms(𝑡) and we can safely apply the inductive
hypothesis obtaining ℎ̃1 = ℎ̃2. Looking at the definition of

LICS ’22, August 2–5, 2022, Haifa, Israel Davide Barbarossa

ℎ̃1, ℎ̃2, we get ℎ1 = ℎ2 as well as [®𝑢 𝑖] = [®𝑣 𝑖] (𝑖 = 1, . . . , 𝑛).
But now we have:

`𝛾 .⟨[|𝑝 |⟩𝛾 [®𝑑] ∋ ℎ1 = ℎ2 ∈ `𝛾 .⟨[|𝑝 |⟩𝛾 [®𝑑 ′]

so Lemma 3.5 gives 𝑝 = 𝑝′ and [®𝑑] = [®𝑑 ′], i.e. 𝑡 ′ = 𝑠′. If we
look at the shape of 𝑡, 𝑠 , this last information together with
[®𝑢 1] = [®𝑣 1], . . . , [®𝑢 𝑛] = [®𝑣 𝑛], precisely means 𝑡 = 𝑠 . □

We conclude with a useful property (Corollary 3.8). It
follows from the following proposition, which in turn easily
follows by Lemma 3.3.

Proposition 3.7. If T (𝑀) ∋ 𝑡 →base T
′ then there is 𝑁 ∈ _`

s.t. T′ ⊆ T (𝑁) and𝑀 → 𝑁 .

Corollary 3.8. For all T ⊆ T (𝑀), there exist 𝑁 ∈ _` s.t.
𝑀 ↠ 𝑁 and nf r (T) ⊆ T (𝑁).

Proof sketch. One first generalises Proposition 3.7 to sums
(instead of a term 𝑡 in the statement); then, we prove the
desired result by induction on the length of a maximal re-
duction T↠r nf r (T). □

3.2 The _`-theory =𝜏

Mimicking the definitions for _-calculus we say that:

Definition 3.9. 1. An equivalence R on _` is a congru-
ence iff R is contextual.

2. A congruence R is a _`-theory iff R ⊇ =_`𝜌 .
3. The term algebra of a _`-theory R is the quotient _`/R .

A _`-theory R is non-trivial iff _`/R≠ {∗}.

It is clear that =_`𝜌 is a _`-theory. Now fix the equivalence
𝑀 =𝜏 𝑁 iffNFT (𝑀) = NFT (𝑁). Actually, =𝜏 is a non-trivial
_`-theory. In fact, the contextuality follows immediately
from the Theorem 3.2; the fact that it contains =_`𝜌 easily
follows from confluence and Proposition 3.4; and it is clearly
non-trivial: _𝑥.𝑥 ̸=𝜏 ∅ =𝜏 (_𝑥 .𝑥𝑥) (_𝑥 .𝑥𝑥) =: Ω.
In _-calculus, =𝜏 is the _-theory equating Böhm trees. In

particular, it is sensible (i.e. it equates all unsolvables). We
will see (Corollary 3.15) that in our case it is still sensible.

Definition 3.10. A _`-term𝑀 is a head normal form (hnf
for short) iff there are no 𝜌-redexes in its head (remember
Lemma 1.4) and it has a head variable. We define the exact
same notion for _`r.

Definition 3.11. The head reduction is the partial function
H : _` → _` obtained defining H(𝑀) via the following algo-
rithm:

1. 𝜌-reduce the leftmost 𝜌-redex in the head of𝑀 , if any
2. otherwise, _`-reduce the head redex of𝑀 , if any
3. otherwise, H(𝑀) is not defined.

H(𝑀) is not defined iff𝑀 is a hnf. We say that head reduction
starting on𝑀 terminates iff there is a (necessarily unique) 𝑛 ≥
0 s.t.H𝑛 (𝑀) is a hnf. Here we mean as usual thatH0 (𝑀) := 𝑀 .

We extend the same definitions to resource terms, and set
H(𝑡) := ∅ whenever 𝑡 is a hnf. Moreover, we set H0 (𝑡) := 𝑡 ∈
2⟨Λr⟩ and, for 𝑛 ≥ 0:

H𝑛+1 (𝑡) :=
∑︁

𝑡1∈H(𝑡)

∑︁
𝑡2∈H(𝑡1)

· · ·
∑︁

𝑡𝑛+1∈H(𝑡𝑛)
𝑡𝑛+1 ∈ 2⟨Λr⟩.

We have H1 (𝑡) = H(𝑡) and H𝑛+1 (𝑡) = ∑
𝑡 ′∈H(𝑡)

H𝑛 (𝑡 ′).

Lemma 3.12. If 𝑠 only contains empty bags (if any) and
𝑠 ∈ nf r (𝑡), then 𝑠 ∈ 𝐻𝑛 (𝑡) for some 𝑛 ≥ 0.

Proof sketch. If 𝑡 is a hnf, 𝑠 ∈ nf r (𝑡) entails that 𝑡 already
contains only empty bags, as any eventual bag of 𝑠 is empty
and reductions cannot erase non-empty bags; but in a hnf
the reduction can only take place inside some bag, so it must
be 𝑠 = 𝑡 and we are done. If 𝑡 is not hnf, by confluence 𝑡 →r
H(𝑡) ↠r nf r (𝑡) ∋ 𝑠 . So there is a 𝑡1 ∈ H(𝑡) s.t. 𝑠 ∈ nf r (𝑡1).
Now we reason as in the beginning: if 𝑡1 is hnf we are done;
if 𝑡1 is not, we repeat the argument finding some 𝑡2. By the
well-foundedness of m̃(.), we cannot repeat the argument
forever and we must end on a hnf, so we conclude. □

SetH(T (𝑀)) := ⋃
𝑡 ∈T (𝑀)

H(𝑡) ⊆ _`r. The following lemma

is easy using Definition 3.10 and Lemma 3.3.

Lemma 3.13. If𝑀 ∈ _` with H(𝑀) defined, we have:

T (H(𝑀)) = H(T (𝑀)).

The following proposition shows that _`-calculus enjoys
a notion of solvability analogue to the one of _-calculus.

Proposition 3.14. For𝑀 ∈ _`, the following are equivalent:
1. 𝑀 =_`𝜌 𝐻 with 𝐻 hnf
2. Head reduction starting on𝑀 terminates
3. NFT (𝑀) ≠ ∅.

We call 𝑀 ∈ _` solvable iff it satisfies any of the previous
equivalent conditions. Otherwise,𝑀 is called unsolvable.

Proof. (1⇒2). By confluence𝑀 and 𝐻 have a common _`𝜌-
redex 𝑀0. Since 𝐻 is a hnf, 𝑀0 is too. Let 𝑠0 be the unique
resource _`-term in T (𝑀0) s.t. all its bags (if any) are empty.
This term clearly exists. Note that, by construction, 𝑠0 is
r-normal. By repeatedly applying Proposition 3.4 one can
check that we obtain an 𝑠 ∈ T (𝑀) s.t. 𝑠0 ∈ nf r (𝑠). Now, by
Lemma 3.12, 𝑠0 ∈ H𝑛 (𝑠) for some 𝑛 ≥ 0. By repeatedly apply-
ing Lemma 3.13, we find that 𝑠0 ∈ H𝑛 (T (𝑀)) = T (H𝑛 (𝑀)).
Finally, since 𝑠0 is a hnf, so it must be H𝑛 (𝑀).
(2⇒3). Easy.
(3⇒1). If NFT (𝑀) ≠ 0 there is 𝑡 ∈ T (𝑀) s.t. nf r (𝑡) ≠ 0.

By Corollary 3.8, 𝑀 ↠ 𝑁 for some 𝑁 ∈ _` s.t. nf r (𝑡) ⊆
T (𝑁). So T (𝑁) contains at least a hnf, and thus 𝑁 must be
a hnf too. □

Corollary 3.15. The _`-theory =𝜏 is sensible (that is, it
equates all unsolvable terms).

Resource approximation for the _`-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

4 Applying the approximation theory
4.1 Stability
The Stability Property gives sufficient conditions for a con-
text to commute with intersections in _`/=𝜏 , i.e. (the inter-
sections are defined below):

𝐶L
⋂
𝑖1

𝑁𝑖1 , . . . ,
⋂
𝑖𝑛

𝑁𝑖𝑛 M =𝜏
⋂

𝑖1 ...,𝑖𝑛

𝐶L𝑁𝑖1 , . . . , 𝑁𝑖𝑛 M.

Given a non-empty subset X ⊆ _`, call its T -infimum the
set

⋂X :=
⋂

𝑀∈X
NFT (𝑀) ⊆ _`r. We say that X is bounded

iff there exists an 𝐿 ∈ _` such that 𝑀 ≤ 𝐿 for all 𝑀 ∈ X.
Write 𝑀 =𝜏

⋂X instead of NFT (𝑀) = ⋂X. Observe that
(in case it exists) an𝑀 s.t.𝑀 =𝜏

⋂X need not to be unique,
so

⋂X does not identify a unique _-term.

Theorem 4.1 (Stability). Let𝐶 be an𝑛-ary _`-context and fix
non empty boundedX1, . . . ,X𝑛 ⊆ _`r. For all𝑀1, . . . , 𝑀𝑛 ∈ _`
s.t.𝑀𝑖 =𝜏

⋂X𝑖 (𝑖 = 1, . . . , 𝑛) we have:

𝐶L𝑀1, . . . , 𝑀𝑛 M =𝜏
⋂

𝑁1∈X1
...

𝑁𝑛 ∈X𝑛

𝐶L𝑁1, . . . , 𝑁𝑛 M.

Proof. Non-trivial, but exactly as done in [1] for _-calculus
(using Theorem 3.6). □

Using the usual encoding of booleans and pairs (True :=
_𝑥𝑦.𝑥 , False := _𝑥𝑦.𝑦, ⟨𝑀, 𝑁 ⟩ := _𝑧.𝑧𝑀𝑁) we have the non-
implementability of the following parallel-or.

Corollary 4.2. There is no Por ∈ _` s.t. for all𝑀, 𝑁 ∈ _`,{
Por⟨𝑀, 𝑁 ⟩ =𝜏 True if 𝑀 ̸=𝜏 Ω or 𝑁 ̸=𝜏 Ω
Por⟨𝑀, 𝑁 ⟩ =𝜏 Ω if 𝑀 =𝜏 𝑁 =𝜏 Ω.

Proof. Otherwise, for the context 𝐶 := Por b , by Theorem 4.1
we would have the contradiction: True =𝜏 𝐶L ⟨True,Ω⟩ M ∩
𝐶L ⟨Ω, True⟩ M =𝜏 𝐶L ⟨True,Ω⟩ ∩ ⟨Ω, True⟩ M =𝜏 𝐶L ⟨Ω,Ω⟩ M =𝜏
Ω. □

4.2 The perpendicular Lines Property
The perpendicular lines Property (PLP for short) states that,
fixed a term _𝑧1 . . . 𝑧𝑛 .𝐹 ∈ _`, if the function ®𝑀 ∈ _`𝑛/=𝜏→
(_®𝑧.𝐹) ®𝑀 ∈ _`/=𝜏 is constant on 𝑛 “perpendicular lines” (in
the sense of the statement, Theorem 4.4), then it is constant
everywhere. Lemma 4.3 below is the crucial ingredient for
the proof of PLP, and we use in it all the strong properties
of resource approximation (linearity, SN and confluence).

Lemma 4.3. Fix ®𝑧 := 𝑧1, . . . 𝑧𝑛 distinct variables and let 𝑡 ∈
_`r. Suppose that:

i. nf r (𝑡) ≠ 0
ii. there is 𝐹 ∈ _` s.t. 𝑡 ∈ T (𝐹)
iii. there are {𝑀𝑖 𝑗 }1≤𝑖≠𝑗≤𝑛 ⊆ _` s.t. the function mapping
®𝑀 ∈ _`𝑛/=𝜏 to (_®𝑧.𝐹) ®𝑀 ∈ _`/=𝜏 is constant on the

following “perpendicular lines” of _`𝑛/=𝜏 :
l1 = {(𝑍, 𝑀12, , 𝑀1𝑛) | 𝑍 ∈ _`}
l2 = {(𝑀21, 𝑍, , 𝑀2𝑛) | 𝑍 ∈ _`}

. . .

l𝑛 = {(𝑀𝑛1, . . . , 𝑀𝑛 (𝑛−1) , 𝑍) | 𝑍 ∈ _`}.

(1)

Then deg𝑧1 (𝑡) = · · · = deg𝑧𝑛 (𝑡) = 0.

Proof. Induction on the sizems(𝑡) of 𝑡 ∈ _`r.
- Case ms(𝑡) = (1, 0, 1). Then 𝑡 is a variable (Corollary

2.16). If 𝑡 = 𝑧𝑖 for some 𝑖 then the 𝑖-th line of (1) gives the
contradiction:

𝑁𝑖 =𝜏 (_®𝑧.𝑧𝑖)𝑀𝑖1 · · ·𝑀𝑖 (𝑖−1)𝑍𝑀𝑖 (𝑖+1) · · ·𝑀𝑖𝑛 =𝜏 𝑍

for all𝑍 ∈ _`. Hence, it must be deg𝑧1 (𝑡) = · · · = deg𝑧𝑛 (𝑡) = 0.
- Case ms(𝑡) > (1, 0, 1). By (𝑖) there is 𝑢 ∈ nf r (𝑡). As 𝑢 is

normal, it has shape:𝑢 = ®_` |𝑦 [®𝑢 1] . . . [®𝑢𝑚] | for some𝑚 ≥ 0,
some variable 𝑦, some normal bags [®𝑢 𝑗], and where we have
shorten, as before, a series _®𝑥1`𝛼1.𝛽1 |. . . _®𝑥𝑘`𝛼𝑘 .𝛽𝑘 |. . .| | of _
and ` abstraction by just ®_` |. . .|. By (𝑖𝑖) 𝑡 ∈ T (𝐹), so that
by Corollary 3.8 there is 𝑄 ∈ _` s.t. 𝐹 ↠ 𝑄 and 𝑢 ∈ T (𝑄).
So 𝑄 must have shape: 𝑄 = ®_` |𝑦𝑄1 · · ·𝑄𝑚 | for some 𝑄 𝑗 ’s in
_` s.t. [®𝑢 𝑗] ∈ !T (𝑄 𝑗) for all 𝑗 = 1, . . . ,𝑚. Now there are two
possibilities: either 𝑦 = 𝑧𝑖 for some 𝑖 = 1, . . . , 𝑛, either 𝑦 ≠ 𝑧𝑖
for all 𝑖 .
Suppose 𝑦 = 𝑧𝑖 . Then, for ®𝑞 := 𝑞1, . . . , 𝑞𝑚 fresh variables,

we can chose 𝑍 := _®𝑞.True ∈ _` (or 𝑍 := True if𝑚 = 0) in
the 𝑖-th line l𝑖 of (1), and since by (𝑖𝑖𝑖) _®𝑧.𝐹 is constant (mod
=𝜏) on l𝑖 , we can compute its value as:

(_®𝑧.𝐹)𝑀𝑖1 · · ·𝑀𝑖 (𝑖−1) (_®𝑞.True)𝑀𝑖 (𝑖+1) · · ·𝑀𝑖𝑛

=𝜏 𝑄{𝑀𝑖1/𝑧1, . . . , (_®𝑞.True)/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}
=𝜏 ®_` | (_®𝑞.True)𝑄𝑖1 · · ·𝑄𝑖𝑚 |
=𝜏 ®_` |True|

wherewe set𝑄𝑖 𝑗 := 𝑄 𝑗 {𝑀𝑖1/𝑧1, . . . , (_®𝑞.True)/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}.
The first equality holds because 𝐹 ↠ 𝑄 and =𝜏 is finer than
=_`𝜌 , and the second equality holds because 𝑦 = 𝑧𝑖 . In the
same way, choosing 𝑍 := _®𝑞.False ∈ _` in l𝑖 we find that
the value (mod =𝜏) of _®𝑧.𝐹 on l𝑖 is ®_` |False|. But this is
impossible because True ̸=𝜏 False.
Therefore, it must be 𝑦 ≠ 𝑧𝑖 for all 𝑖 . Note that w.l.o.g.

𝑚 ≥ 1 (indeed if𝑚 = 0, from the fact that 𝑦 ≠ 𝑧𝑖 for all 𝑖
we already get deg𝑧𝑖 (𝑢) = 0 and, as 𝑢 ∈ nf r (𝑡) and in _`r

one cannot erase non-empty bags, we are done). Now fix
𝑖 ∈ {1, . . . , 𝑛} and 𝑍 ′, 𝑍 ′′ ∈ _`. Similarly as before, choos-
ing 𝑍 := 𝑍 ′ in l𝑖 and using what we found so far, putting
𝑄 ′𝑖 𝑗 := 𝑄 𝑗 {𝑀𝑖1/𝑧1, . . . , 𝑍 ′/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}, since _®𝑧.𝐹 is con-
stant (mod =𝜏) on l𝑖 , we can compute its value as:

(_®𝑧.𝐹)𝑀𝑖1 . . . 𝑀𝑖 (𝑖−1)𝑍
′𝑀𝑖 (𝑖+1) . . . 𝑀𝑖𝑛

=𝜏 𝑄{𝑀𝑖1/𝑧1, . . . , 𝑍 ′/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}
=𝜏 ®_` |𝑦𝑄 ′𝑖1 . . . 𝑄 ′𝑖𝑚 |

where the last equality holds since 𝑦 is not one of the 𝑧𝑖 ’s.
Choosing 𝑍 ′′ instead of 𝑍 ′ and putting 𝑄 ′′𝑖 𝑗 the same as 𝑄 ′𝑖 𝑗

LICS ’22, August 2–5, 2022, Haifa, Israel Davide Barbarossa

but with 𝑍 ′′ instead of 𝑍 ′, one has that the value (mod =𝜏) of
®𝑧.𝐹 on l𝑖 is ®` |𝑦𝑄 ′′𝑖1 . . . 𝑄 ′′𝑖𝑚 |. So we have ®_` |𝑦𝑄 ′𝑖1 . . . 𝑄 ′𝑖𝑚 | =
®_` |𝑦𝑄 ′′𝑖1 . . . 𝑄 ′′𝑖𝑚 |, which easily entails:𝑄 ′𝑖1 =𝜏 𝑄 ′′𝑖1, . . . , 𝑄 ′𝑖𝑚 =𝜏
𝑄 ′′𝑖𝑚 . But by construction we have:

𝑄 ′𝑖 𝑗 =𝜏 (_®𝑧.𝑄 𝑗)𝑀𝑖1 . . . 𝑀𝑖 (𝑖−1)𝑍
′𝑀𝑖 (𝑖+1) . . . 𝑀𝑖𝑛

𝑄 ′′𝑖 𝑗 =𝜏 (_®𝑧.𝑄 𝑗)𝑀𝑖1 . . . 𝑀𝑖 (𝑖−1)𝑍
′′𝑀𝑖 (𝑖+1) . . . 𝑀𝑖𝑛 .

So if we remember that 𝑍 ′, 𝑍 ′′ were generic in _`, the previ-
ous equalities 𝑄 ′𝑖 𝑗 = 𝑄 ′′𝑖 𝑗 precisely say that _®𝑧.𝑄 𝑗 is constant
on the line l𝑖 . And since this holds for all 𝑖 = 1, . . . , 𝑛, we
have just found that _®𝑧.𝑄 𝑗 satisfies (𝑖𝑖𝑖). And since we have
equalities 𝑄 ′𝑖 𝑗 = 𝑄 ′′𝑖 𝑗 for all 𝑗 = 1, . . . ,𝑚, we have that each
_®𝑧.𝑄1, . . . , _®𝑧.𝑄𝑘 satisfies (𝑖𝑖𝑖). We can now comfortably ap-
ply the induction hypothesis on any 𝑠 ∈ [®𝑢 𝑗]. In fact, as
[®𝑢 𝑗] is normal, nf r (𝑠) ≠ 0, i.e. (𝑖); as [®𝑢 𝑗] ∈ !T (𝑄 𝑗), we
have 𝑠 ∈ T (𝑄 𝑗), i.e. (𝑖𝑖); and we just found that _®𝑧.𝑄 𝑗 sat-
isfies (𝑖𝑖𝑖); finally, 𝑠 is a strict subterm of 𝑢 ∈ nf r (𝑡), thus
(Corollary 2.16) ms(𝑠) < ms(𝑢) ≤ ms(𝑡). Therefore, the
inductive hypothesis gives deg𝑧1 (𝑠) = · · · = deg𝑧𝑛 (𝑠) = 0.
Since this is true for all 𝑠 in all [®𝑢 𝑗], 𝑗 = 1, . . . ,𝑚, we get
deg𝑧1 (𝑢) = · · · = deg𝑧𝑛 (𝑢) = 0. And now 𝑢 ∈ nf r (𝑡) entails
deg𝑧1 (𝑡) = · · · = deg𝑧𝑛 (𝑡) = 0. □

Theorem 4.4 (Perpendicular Lines Property). Suppose that
for some fixed {𝑀𝑖 𝑗 }1≤𝑖≠𝑗≤𝑛 , {𝑁𝑖 }1≤𝑖≤𝑛 ⊆ _`, the system of
equations:

(_𝑧1 . . . 𝑧𝑛 .𝐹) 𝑍 𝑀12 𝑀1𝑛 =𝜏 𝑁1
(_𝑧1 . . . 𝑧𝑛 .𝐹) 𝑀21 𝑍 𝑀2𝑛 =𝜏 𝑁2

. . .
...

(_𝑧1 . . . 𝑧𝑛 .𝐹) 𝑀𝑛1 . . . 𝑀𝑛 (𝑛−1) 𝑍 =𝜏 𝑁𝑛

holds for all 𝑍 ∈ _`. Then:
(_𝑧1 . . . 𝑧𝑛 .𝐹)𝑍1 . . . 𝑍𝑛 =𝜏 𝑁1

for all 𝑍1, . . . , 𝑍𝑛 ∈ _`.

Proof. It follows from Lemma 4.3 as done in [1]. □

Corollary 4.5. There is no Por′ ∈ _` s.t. for all 𝑍 ∈ _` one
has at the same time Por′ True𝑍 =𝜏 True, Por′ 𝑍 True =𝜏 True,
Por′ False False =𝜏 False.

The non existence of parallelism in _`-calculus is known
as folklore via arguments involving stable models: here we
proved it solely via Taylor expansion.

5 Conclusions and Future Works
In [23] Laurent studies the mathematics of (untyped) _`-
calculus via its denotational semantics; this paper does it
by developing a theory of program approximation based
on Linear Logic resources. In particular, we proved that the
approximation theory satisfies strong normalisation and con-
fluence (non-trivial results in this setting), the Monotonicity
Property, the Non-Interference Property, that it induces a
sensible _`-theory, and that it can be used as a tool in order

to obtain the Stability Property and the Perpendicular Lines
Property, and thus the impossibility of parallel computations
in the language. A first natural question immediately arises:

1- Does Taylor expansion allow to find interesting proper-
ties not satisfied by _-calculus, but that are enjoyed by the
_`-calculus due to the presence of callcc?
For future investigations, we believe that it would be in-

teresting to integrate this approach with the differential ex-
tension of _`-calculus defined in [29], via the mentioned
translation (·)𝜕 , in order to explore quantitative properties.
The following two questions are maybe the most signifi-

cant ones:
2- Does it makes sense to introduce Böhm trees for the _`-

calculus? For instance, for the call-by-value _-calculus, the
Taylor expansion has provided in [17] invaluable guidance
for finding a meaningful notion of trees satisfying Ehrhard
and Regnier’s commutation formula; the same methodology
could maybe be applied here. However, in [7] it is shown
that _`-calculus does not enjoy Böhm’s separation property.
David and Py’s counterexample could hence be an indication
that, instead, Böhm trees are not a “good” notion for _`-
calculus. The best way of proceeding would be, in that case,
to consider the natural extension of _`-calculus given by
Saurin’s Λ`-calculus [27]. It was introduced precisely to
satisfy Böhm’s property and, as amatter of fact, in [27] Saurin
proposes a definition of Böhm trees for his Λ`-calculus.
3- Does Λ`-calculus enjoys the same approximation the-

ory developed in this paper? On one hand, many construc-
tions we did in this chapter seem possible also in Saurin’s
calculus, on the other hand we used the fact that the number
of `’s in a term is the same as the named subterms, e.g. in Re-
mark 2.7. In general, one could wonder which one, between
_` and Λ`, should be the “canonical lambda-mu-calculus”:
from a proof-theoretical perspective _`-calculus precisely
corresponds to Parigot’s CD-derivations, but Λ`-calculus
satisfies more desirable properties (Böhm separation). More-
over, in [26], Saurin adapts usual techniques of _-calculus
to Λ`-calculus: he studies the notion of solvability, proves
a standardization theorem and studies more in detail the
notion of Böhm trees. A very interesting future direction of
research would be, hence, to develop our theory of resource
approximation for Saurin’s calculus, and study its relation
with his theory of Böhm approximation. In any case, we
look at the fact that the Taylor expansion works so nicely in
_`-calculus – and this regardless of a notion of Böhm trees –
as a a posteriori confirmation of the high power of this form
of approximation.

There are at least three other interesting points in relation
with strictly related areas:

3- The _`-calculus can be translated in the _-calculus via
the CPS-translations (see e.g. de Groote’s one in [8]). What
does our theory of approximation correspond to under this
translation?

Resource approximation for the _`-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

4- In order to perform a deeper logical analysis, one should
consider translations into Linear Logic. It is known from [22]
that _`-calculus translates into polarized proof nets. Taylor
expansion for proof-nets is possible, but the construction can
be complex: in fact one of the interests in directly defining
a Taylor expansion for a certain “_-calculus style” program-
ming language (as we did for _`-calculus, and as one does for
_-calculus) is precisely to avoid that complexity. In our case
we have just shown that, at the end of the day, the theory
of resource approximation for _`-calculus can be developed
with essentially the same methodology as in _-calculus. This
leads to asking what makes a Taylor expansion “easy”, and
should be considered in relation to the already mentioned
possibility of the existence of a coherence relation for which
T (𝑀) is a clique. This motivates an investigation of the
complexity of the definition of a Taylor expansion of a pro-
gramming language/proof system, which may be related
to the notion of connectedness of proof-nets, whose study
starts in [14]. Such question should be considered in relation
with the so-called problem of the “inversion of Taylor expan-
sion” [15, 16] and the problem of “injectivity” of denotational
models (in particular, the relational one) for Linear Logic.
5- The _`-calculus is not the only way of extending the

Curry-Howard correspondence to classical logic. Another
notable one is the already mentioned Krivine’s classical re-
alizability, which is a “machine to extract computational
content from proofs + axioms” (for almost all mathematics,
such as the one formalizable in ZF+AC, see [20]). There are
translations between _`-calculus and Krivine’s calculus, and
vice-versa. What does our work say about Krivine’s realis-
ability?

Acknowledgments
Great help was given by Giulio Manzonetto and Lorenzo Tor-
tora de Falco; crucial remarks were given by the anonymous
reviewers; we had useful discussions with Olivier Laurent,
Lionel Vaux. Thanks to all of them, as well as to Federico
Olimpieri, who first questioned us about Taylor expansion
for _`-calculus. This work has been partially supported by
the ERC CoG 818616 “DIAPASoN”.

References
[1] Davide Barbarossa and Giulio Manzonetto. 2020. Taylor subsumes

Scott, Berry, Kahn and Plotkin. Proc. ACM Program. Lang. 4, POPL
(2020), 1:1–1:23. https://doi.org/10.1145/3371069

[2] Hendrik Pieter Barendregt. 1984. The lambda calculus - its syntax
and semantics. Studies in logic and the foundations of mathematics,
Vol. 103. North-Holland.

[3] Edward A Bender. 1974. Partitions of multisets. Discrete Mathematics
9, 4 (1974), 301–311.

[4] Gérard Boudol. 1993. The Lambda-Calculus with Multiplicities (Ab-
stract). In CONCUR ’93, 4th International Conference on Concurrency
Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings (Lecture
Notes in Computer Science, Vol. 715), Eike Best (Ed.). Springer, 1–6.
https://doi.org/10.1007/3-540-57208-2_1

[5] Jules Chouquet. 2019. Taylor Expansion, Finiteness and Strategies. In
Proceedings of the Thirty-Fifth Conference on the Mathematical Foun-
dations of Programming Semantics, MFPS 2019, London, UK, June 4-7,
2019 (Electronic Notes in Theoretical Computer Science, Vol. 347), Barbara
König (Ed.). Elsevier, 65–85. https://doi.org/10.1016/j.entcs.2019.09.005

[6] Jules Chouquet and Christine Tasson. 2020. Taylor expansion for Call-
By-Push-Value. In 28th EACSL Annual Conference on Computer Science
Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain (LIPIcs, Vol. 152),
Maribel Fernández and Anca Muscholl (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 16:1–16:16. https://doi.org/10.4230/
LIPIcs.CSL.2020.16

[7] René David and Walter Py. 2001. Lambda-mu-Calculus and Böhm’s
Theorem. J. Symb. Log. 66, 1 (2001), 407–413. https://doi.org/10.2307/
2694930

[8] Philippe de Groote. 1994. A CPS-Translation of the Lambda-`-Calculus.
In Trees in Algebra and Programming - CAAP’94, 19th International
Colloquium, Edinburgh, UK, April 11-13, 1994, Proceedings (Lecture
Notes in Computer Science, Vol. 787), Sophie Tison (Ed.). Springer, 85–
99. https://doi.org/10.1007/BFb0017475

[9] Thomas Ehrhard and Laurent Regnier. 2003. The differential lambda-
calculus. Theor. Comput. Sci. 309, 1-3 (2003), 1–41. https://doi.org/10.
1016/S0304-3975(03)00392-X

[10] Thomas Ehrhard and Laurent Regnier. 2006. Differential interaction
nets. Theor. Comput. Sci. 364, 2 (2006), 166–195. https://doi.org/10.
1016/j.tcs.2006.08.003

[11] Thomas Ehrhard and Laurent Regnier. 2008. Uniformity and the
Taylor expansion of ordinary lambda-terms. Theor. Comput. Sci. 403,
2-3 (2008), 347–372. https://doi.org/10.1016/j.tcs.2008.06.001

[12] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50,
1 (1987), 1 – 101. https://doi.org/10.1016/0304-3975(87)90045-4

[13] Timothy Griffin. 1990. A Formulae-as-Types Notion of Control. In
Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, California, USA,
January 1990, Frances E. Allen (Ed.). ACM Press, 47–58. https:
//doi.org/10.1145/96709.96714

[14] Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco. 2016.
Computing Connected Proof(-Structure)s From Their Taylor Expan-
sion. In 1st International Conference on Formal Structures for Computa-
tion and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal (LIPIcs,
Vol. 52), Delia Kesner and Brigitte Pientka (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 20:1–20:18. https://doi.org/10.4230/
LIPIcs.FSCD.2016.20

[15] Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco. 2019.
Proof-Net as Graph, Taylor Expansion as Pullback. In Logic, Language,
Information, and Computation - 26th International Workshop, WoLLIC
2019, Utrecht, The Netherlands, July 2-5, 2019, Proceedings (Lecture Notes
in Computer Science, Vol. 11541), Rosalie Iemhoff, Michael Moortgat,
and Ruy J. G. B. de Queiroz (Eds.). Springer, 282–300. https://doi.org/
10.1007/978-3-662-59533-6_18

[16] Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco. 2020.
Glueability of Resource Proof-Structures: Inverting the Taylor Expan-
sion. In 28th EACSL Annual Conference on Computer Science Logic, CSL
2020, January 13-16, 2020, Barcelona, Spain (LIPIcs, Vol. 152), Maribel Fer-
nández and Anca Muscholl (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 24:1–24:18. https://doi.org/10.4230/LIPIcs.CSL.2020.24

[17] Emma Kerinec, Giulio Manzonetto, and Michele Pagani. 2020. Revisit-
ing Call-by-value Böhm trees in light of their Taylor expansion. Log.
Methods Comput. Sci. 16, 3 (2020). https://lmcs.episciences.org/6638

[18] Delia Kesner and Pierre Vial. 2017. Types as Resources for Clas-
sical Natural Deduction. In 2nd International Conference on Formal
Structures for Computation and Deduction, FSCD 2017, September 3-9,
2017, Oxford, UK (LIPIcs, Vol. 84), Dale Miller (Ed.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 24:1–24:17. https://doi.org/10.4230/
LIPIcs.FSCD.2017.24

https://doi.org/10.1145/3371069
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1016/j.entcs.2019.09.005
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.2307/2694930
https://doi.org/10.2307/2694930
https://doi.org/10.1007/BFb0017475
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.tcs.2006.08.003
https://doi.org/10.1016/j.tcs.2006.08.003
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.4230/LIPIcs.FSCD.2016.20
https://doi.org/10.4230/LIPIcs.FSCD.2016.20
https://doi.org/10.1007/978-3-662-59533-6_18
https://doi.org/10.1007/978-3-662-59533-6_18
https://doi.org/10.4230/LIPIcs.CSL.2020.24
https://lmcs.episciences.org/6638
https://doi.org/10.4230/LIPIcs.FSCD.2017.24
https://doi.org/10.4230/LIPIcs.FSCD.2017.24

LICS ’22, August 2–5, 2022, Haifa, Israel Davide Barbarossa

[19] Jean-Louis Krivine. 2009. Realizability in classical logic. Panoramas
et synthèses 27 (2009), 197–229. https://hal.archives-ouvertes.fr/hal-
00154500

[20] Jean-Louis Krivine. 2020. A program for the full axiom of choice.
arXiv:2006.05433 [cs.LO] https://arxiv.org/abs/2006.05433

[21] Ugo Dal Lago and Thomas Leventis. 2019. On the Taylor Expansion of
Probabilistic lambda-terms. In 4th International Conference on Formal
Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019,
Dortmund, Germany (LIPIcs, Vol. 131), Herman Geuvers (Ed.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:16. https://doi.
org/10.4230/LIPIcs.FSCD.2019.13

[22] Olivier Laurent. 2003. Polarized proof-nets and _`-calculus. Theor.
Comput. Sci. 290, 1 (2003), 161–188. https://doi.org/10.1016/S0304-
3975(01)00297-3

[23] Olivier Laurent. 2004. On the denotational semantics of the un-
typed lambda-mu calculus. (Jan. 2004). http://perso.ens-lyon.fr/olivier.
laurent/lmmodels.pdf Unpublished note.

[24] Michel Parigot. 1992. Lambda-Mu-Calculus: An Algorithmic In-
terpretation of Classical Natural Deduction. In Logic Programming
and Automated Reasoning,International Conference LPAR’92, St. Pe-
tersburg, Russia, July 15-20, 1992, Proceedings (Lecture Notes in Com-
puter Science, Vol. 624), Andrei Voronkov (Ed.). Springer, 190–201.
https://doi.org/10.1007/BFb0013061

[25] Walter Py. 1998. Confluence en lambda-mu-calcul. Ph.D.Thesis, Univer-
sité de Savoie (1998). http://www.lama.univ-savoie.fr/pagesmembres/
david/ftp/py.pdf

[26] Alexis Saurin. 2010. Standardization and Böhm Trees for Λ`-Calculus.
In Functional and Logic Programming, 10th International Symposium,
FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6009), Matthias Blume, Naoki Kobayashi, and
Germán Vidal (Eds.). Springer, 134–149. https://doi.org/10.1007/978-
3-642-12251-4_11

[27] Alexis Saurin. 2012. Böhm theorem and Böhm trees for theΛ`-calculus.
Theoretical Computer Science 435 (2012), 106 – 138. https://doi.org/10.
1016/j.tcs.2012.02.027 Functional and Logic Programming.

[28] Lionel Vaux. 2007. _-calcul différentiel et logique classique : interactions
calculatoires. (Differential _-calculus and classical logic : their compu-
tational interactions). Ph. D. Dissertation. University of the Mediter-
ranean, Marseille, France. https://tel.archives-ouvertes.fr/tel-00194149

[29] Lionel Vaux. 2007. The differential _`-calculus. Theor. Comput. Sci.
379, 1-2 (2007), 166–209. https://doi.org/10.1016/j.tcs.2007.02.028

[30] Lionel Vaux. 2019. Normalizing the Taylor expansion of non-
deterministic _-terms, via parallel reduction of resource vectors. Log.
Methods Comput. Sci. 15, 3 (2019). https://doi.org/10.23638/LMCS-
15(3:9)2019

https://hal.archives-ouvertes.fr/hal-00154500
https://hal.archives-ouvertes.fr/hal-00154500
https://arxiv.org/abs/2006.05433
https://arxiv.org/abs/2006.05433
https://doi.org/10.4230/LIPIcs.FSCD.2019.13
https://doi.org/10.4230/LIPIcs.FSCD.2019.13
https://doi.org/10.1016/S0304-3975(01)00297-3
https://doi.org/10.1016/S0304-3975(01)00297-3
http://perso.ens-lyon.fr/olivier.laurent/lmmodels.pdf
http://perso.ens-lyon.fr/olivier.laurent/lmmodels.pdf
https://doi.org/10.1007/BFb0013061
http://www.lama.univ-savoie.fr/pagesmembres/david/ftp/py.pdf
http://www.lama.univ-savoie.fr/pagesmembres/david/ftp/py.pdf
https://doi.org/10.1007/978-3-642-12251-4_11
https://doi.org/10.1007/978-3-642-12251-4_11
https://doi.org/10.1016/j.tcs.2012.02.027
https://doi.org/10.1016/j.tcs.2012.02.027
https://tel.archives-ouvertes.fr/tel-00194149
https://doi.org/10.1016/j.tcs.2007.02.028
https://doi.org/10.23638/LMCS-15(3:9)2019
https://doi.org/10.23638/LMCS-15(3:9)2019

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Quick overview of -calculus

	2 Resource -calculus
	2.1 Strong normalisation
	2.2 Confluence

	3 Qualitative Taylor expansion
	3.1 Crucial properties
	3.2 The -theory =

	4 Applying the approximation theory
	4.1 Stability
	4.2 The perpendicular Lines Property

	5 Conclusions and Future Works
	Acknowledgments
	References

