This incursion into the realm of elementary and probabilistic number theory of continued fractions, via modular forms, allows us to study the alternating sum of coefficients of a continued fraction, thus solving the longstanding open problem of their limit law.
|
|
|
f | ( | Tj(x0) | ) | = | ó õ |
|
f(y) dl(y). |
æ ç ç è |
|
ö ÷ ÷ ø |
= (-1)(c-1)(d-1)/4 |
æ ç ç è |
|
ö ÷ ÷ ø |
. |
æ ç ç è |
|
ö ÷ ÷ ø |
=(-1) |
|
, |
s(d,c)= |
|
((hd/c))((h/c)), |
h(z) = e |
|
|
(1 - e |
|
) |
ln h |
æ ç ç è |
|
ö ÷ ÷ ø |
= |
|
(1) |
a b |
c d |
ln h(z) = |
|
- |
|
|
, |
s(c, d) = |
|
+ |
|
+ |
|
- s(d, c). |
s(d,c)= |
|
æ ç ç è |
-3+ |
|
- |
|
(-1)iai |
ö ÷ ÷ ø |
. |
a b |
c d |
1') f(gz)=c(g) |
æ ç ç è |
|
ö ÷ ÷ ø |
|
f(z)
(for gÎ G), and 2')
ó õó õ |
|
| | f(x+iy) | | | 2 |
|
<¥. |
á f,gñ
=ó õó õ |
|
f(z)g(z)yr |
|
. |
S(m,n,c)=å | e |
|
, |
S(m,n,c,c,G)=åc(g) | e |
|
, |
a c |
c d |
1 q |
0 1 |
1 q |
0 1 |
tj(m, n, c, G) = |
|
e |
|
|
e |
|
=S | ( | 1,1,c,cr,SL(2,Z) | ) | , |
|
|
| | { n<N:f(n)<x } | | | =F(x). |
|
|
|
eitf(n)=g(t), |
ó õ |
|
|
dy = e |
|
, |
| | { 0<d<c<N:gcd(d,c)=1 } | | | = |
|
+O(Nln N) |
|
e |
|
~ e |
|
|
. |
|
e |
|
= |
|
e |
|
+ O |
æ è |
N2(ln | N) |
|
ö ø |
. |