Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 27 mai 2014 à 14h00 en B107, Éric Fusy nous parlera de : La fonction à deux points et à trois points pour les quadrangulations et cartes

Résumé : Pour une famille F de cartes planaires on appelle "fonction à k points" la série génératrice de comptage des cartes de F avec k points marqués dont les distances deux à deux sont prescrites. On sait depuis les résultats de Bouttier, Di Francesco et Guitter (s'appuyant sur une bijection de Schaeffer) que la fonction à 2 points des quadrangulations admet une expression explicite, et des réultats plus récents de Bouttier et Guitter (s'appuyant sur une bijection de Miermont) ont établi une expression explicite pour la fonction à trois points des quadrangulations. Nous passerons en revue ces résultats et montrerons comment on peut exploiter une bijection récente due à Ambjorn et Budd pour établir des expressions explicites pour les fonctions à deux points et à trois points des cartes générales. Travaux en commun avec Jérémie Bouttier et Emmanuel Guitter

 [Slides.pdf]


Dernière modification : Tuesday 13 May 2014 Valid HTML 4.01! Valid CSS! Contact : Cyril.Banderier at lipn.univ-paris13.fr