Random subgroups of free groups

Pascal Weil

LaBRI, CNRS et Université de Bordeaux
Joint work with
Frédérique Bassino, Cyril Nicaud - LIPN, LIGM
CALIN, LIPN, Décembre 2017

General context $1 / 2$

- Free group on (finite) alphabet $A, F(A)=F_{r}$ (if $r=|A|$): the group generated by A with no relations

General context $1 / 2$

- Free group on (finite) alphabet $A, F(A)=F_{r}$ (if $r=|A|$): the group generated by A with no relations
- Identified with the language of reduced words: a word on alphabet $A \cup A^{-1}$ is reduced if it contains no factor of the form $a a^{-1}$ or $a^{-1} a$

General context $1 / 2$

- Free group on (finite) alphabet $A, F(A)=F_{r}$ (if $r=|A|$): the group generated by A with no relations
- Identified with the language of reduced words: a word on alphabet $A \cup A^{-1}$ is reduced if it contains no factor of the form $a a^{-1}$ or $a^{-1} a$
- The group operation is $u \cdot v=\operatorname{red}(u v),(u v)^{-1}=v^{-1} u^{-1}$

General context $1 / 2$

- Free group on (finite) alphabet $A, F(A)=F_{r}$ (if $r=|A|$): the group generated by A with no relations
- Identified with the language of reduced words: a word on alphabet $A \cup A^{-1}$ is reduced if it contains no factor of the form $a a^{-1}$ or $a^{-1} a$
- The group operation is $u \cdot v=\operatorname{red}(u v),(u v)^{-1}=v^{-1} u^{-1}$
- Let $K \leq F(A)$: then K is rational in $F(A)$ if and only if the set of reduced words representing K is rational in $\left(A \cup A^{-1}\right)^{*}$ (Benois, 1969)

General context $1 / 2$

- Free group on (finite) alphabet $A, F(A)=F_{r}$ (if $r=|A|$): the group generated by A with no relations
- Identified with the language of reduced words: a word on alphabet $A \cup A^{-1}$ is reduced if it contains no factor of the form $a a^{-1}$ or $a^{-1} a$
- The group operation is $u \cdot v=\operatorname{red}(u v),(u v)^{-1}=v^{-1} u^{-1}$
- Let $K \leq F(A)$: then K is rational in $F(A)$ if and only if the set of reduced words representing K is rational in $\left(A \cup A^{-1}\right)^{*}$ (Benois, 1969)
- A subgroup $H \leq F(A)$ is finitely generated if and only H is rational (Anisimov and Seifert, 1975)

General context 2/2

Study the lattice of finitely generated ($f g$) subgroups of $F(A)=F_{r}$ (if $r=|A|$), algorithmically and asymptotically

- random generation - if algorithmically efficient: test of conjectures, exploration

General context $2 / 2$

Study the lattice of finitely generated $(f g)$ subgroups of $F(A)=F_{r}$ (if $r=|A|$), algorithmically and asymptotically

- random generation - if algorithmically efficient: test of conjectures, exploration
- statistical (or asymptotic) properties: evaluation of the frequency of certain properties: genericity, negligibility

General context $2 / 2$

Study the lattice of finitely generated ($f g$) subgroups of $F(A)=F_{r}$ (if $r=|A|$), algorithmically and asymptotically

- random generation - if algorithmically efficient: test of conjectures, exploration
- statistical (or asymptotic) properties: evaluation of the frequency of certain properties: genericity, negligibility
- Motivations: algorithmic complexity and cryptography + curiosity

General context 2/2

Study the lattice of finitely generated ($f g$) subgroups of $F(A)=F_{r}$ (if $r=|A|$), algorithmically and asymptotically

- random generation - if algorithmically efficient: test of conjectures, exploration
- statistical (or asymptotic) properties: evaluation of the frequency of certain properties: genericity, negligibility
- Motivations: algorithmic complexity and cryptography + curiosity
- Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov, Schupp, Shpilrain, Ollivier, Jitsukawa, ...

Which distribution on fg subgroups?

- Classical approach: a subgroup is generated by a random tuple of reduced words. A k-tuple (few-generators), or a s_{n}^{d}-tuple, where $s_{n}=$ cardinality of the sphere of radius n and $0<d<1$ (Gromov's density model)

Which distribution on fg subgroups?

- Classical approach: a subgroup is generated by a random tuple of reduced words. A k-tuple (few-generators), or a s_{n}^{d}-tuple, where $s_{n}=$ cardinality of the sphere of radius n and $0<d<1$ (Gromov's density model)
- Today: a different approach. Every fg subgroup H of $F(A)$ is characterized by a finite A-labeled graph, called the Stallings graph of H.

Which distribution on fg subgroups?

- Classical approach: a subgroup is generated by a random tuple of reduced words. A k-tuple (few-generators), or a s_{n}^{d}-tuple, where $s_{n}=$ cardinality of the sphere of radius n and $0<d<1$ (Gromov's density model)
- Today: a different approach. Every fg subgroup H of $F(A)$ is characterized by a finite A-labeled graph, called the Stallings graph of H.
- This graph is efficiently computable (Touikan), opens the way to countless efficient (and elegant) decision or computation algorithms on fg subgroups. A natural finite discrete structure attached to a subgroup.

Which distribution on fg subgroups?

- Classical approach: a subgroup is generated by a random tuple of reduced words. A k-tuple (few-generators), or a s_{n}^{d}-tuple, where $s_{n}=$ cardinality of the sphere of radius n and $0<d<1$ (Gromov's density model)
- Today: a different approach. Every fg subgroup H of $F(A)$ is characterized by a finite A-labeled graph, called the Stallings graph of H.
- This graph is efficiently computable (Touikan), opens the way to countless efficient (and elegant) decision or computation algorithms on fg subgroups. A natural finite discrete structure attached to a subgroup.
- The idea: use these graphs to define what a random subgroup is. There are finitely many possible Stallings graphs with n vertices: draw one uniformly at random.

Stallings graph of a finitely generated subgroup

$\Gamma(H)$, the Stallings graph of a finitely generated subgroup H : the interesting part of the Schreier graph $\Gamma(G ; H)$ - a picture of H and a unique representation

Stallings graph of a finitely generated subgroup

$\Gamma(H)$, the Stallings graph of a finitely generated subgroup H : the interesting part of the Schreier graph $\Gamma(G ; H)$ - a picture of H and a unique representation

$$
\begin{aligned}
& H=\left\langle h_{1}, h_{2}, h_{3}, h_{4}\right\rangle \\
& h_{1}=a^{3} b^{-1} \\
& h_{2}=a^{3} c a^{-2} \\
& h_{3}=a^{2} c d^{-1} b^{-1} \\
& h_{4}=a^{2} d e^{-1} d^{-1} b^{-1}
\end{aligned}
$$

Stallings graph of a finitely generated subgroup

$\Gamma(H)$, the Stallings graph of a finitely generated subgroup H : the interesting part of the Schreier graph $\Gamma(G ; H)$ - a picture of H and a unique representation

$$
\begin{aligned}
& H=\left\langle h_{1}, h_{2}, h_{3}, h_{4}\right\rangle \\
& h_{1}=a^{3} b^{-1} \\
& h_{2}=a^{3} c a^{-2} \\
& h_{3}=a^{2} c d^{-1} b^{-1} \\
& h_{4}=a^{2} d e^{-1} d^{-1} b^{-1}
\end{aligned}
$$

Stallings graph of a finitely generated subgroup

$\Gamma(H)$, the Stallings graph of a finitely generated subgroup H : the interesting part of the Schreier graph $\Gamma(G ; H)$ - a picture of H and a unique representation

$$
\begin{aligned}
& H=\left\langle h_{1}, h_{2}, h_{3}, h_{4}\right\rangle \\
& \text { rank }=E-V+1
\end{aligned}
$$

conjugation, finite index
intersection of subgroups, malnormality
effective separability

What does a random subgroup look like?

- So: there is a finite number of Stallings graph with n vertices. Draw one uniformly at random to get a random subgroup of size n

What does a random subgroup look like?

- So: there is a finite number of Stallings graph with n vertices. Draw one uniformly at random to get a random subgroup of size n

A picture with $n=200$

What does a random subgroup look like?

- So: there is a finite number of Stallings graph with n vertices. Draw one uniformly at random to get a random subgroup of size n

What does a random subgroup look like?

- So: there is a finite number of Stallings graph with n vertices. Draw one uniformly at random to get a random subgroup of size n

- Many more edges, many more cycles in the graph based distribution. Higher rank, lesser probability of malnormality, etc.

How do we investigate random Stallings graphs?

- Characterize Stallings graphs as discrete objects:

How do we investigate random Stallings graphs?

- Characterize Stallings graphs as discrete objects:
- finite graphs with a base vertex

How do we investigate random Stallings graphs?

- Characterize Stallings graphs as discrete objects:
- finite graphs with a base vertex
- connected

How do we investigate random Stallings graphs?

- Characterize Stallings graphs as discrete objects:
- finite graphs with a base vertex
- connected
- with a locally injective A-labeling

How do we investigate random Stallings graphs?

- Characterize Stallings graphs as discrete objects:
- finite graphs with a base vertex
- connected
- with a locally injective A-labeling
- every vertex has valency at least 2, except maybe the base vertex.

How do we investigate random Stallings graphs?

- Characterize Stallings graphs as discrete objects:
- finite graphs with a base vertex
- connected
- with a locally injective A-labeling
- every vertex has valency at least 2, except maybe the base vertex.
- There are many! although estimating that number is non-trivial

General strategy to draw a random Stallings graph

- View Stallings graphs as purely combinatorial objects: a collection $\left(f_{a}\right)_{a \in A}$ of partial injections $[n] \rightarrow[n]$, subject to the connectedness and no vertex of valency 1 (global) constraints

General strategy to draw a random Stallings graph

- View Stallings graphs as purely combinatorial objects: a collection $\left(f_{a}\right)_{a \in A}$ of partial injections $[n] \rightarrow[n]$, subject to the connectedness and no vertex of valency 1 (global) constraints
- Draw a random partial injection f_{a} of [n], independently for each letter $a \in A$

General strategy to draw a random Stallings graph

- View Stallings graphs as purely combinatorial objects: a collection $\left(f_{a}\right)_{a \in A}$ of partial injections $[n] \rightarrow[n]$, subject to the connectedness and no vertex of valency 1 (global) constraints
- Draw a random partial injection f_{a} of [n], independently for each letter $a \in A$
- If the $\left(f_{a}\right)_{a \in A}$ do not induce an admissible graph (with base vertex 1), reject and repeat

General strategy to draw a random Stallings graph

- View Stallings graphs as purely combinatorial objects: a collection $\left(f_{a}\right)_{a \in A}$ of partial injections $[n] \rightarrow[n]$, subject to the connectedness and no vertex of valency 1 (global) constraints
- Draw a random partial injection f_{a} of [n], independently for each letter $a \in A$
- If the $\left(f_{a}\right)_{a \in A}$ do not induce an admissible graph (with base vertex 1), reject and repeat
- What needs to be done is explain how one draws random partial injections, and

General strategy to draw a random Stallings graph

- View Stallings graphs as purely combinatorial objects: a collection $\left(f_{a}\right)_{a \in A}$ of partial injections $[n] \rightarrow[n]$, subject to the connectedness and no vertex of valency 1 (global) constraints
- Draw a random partial injection f_{a} of [n], independently for each letter $a \in A$
- If the $\left(f_{a}\right)_{a \in A}$ do not induce an admissible graph (with base vertex 1), reject and repeat
- What needs to be done is explain how one draws random partial injections, and
- to estimate the probability of non-admissibility - we show that it tends to 0 as n tends to infinity

Strategy to draw a random injection

- A size n partial injection (i.e., a partial injection $[n] \rightarrow[n]$) is a disjoint union of orbits that are either cycles, or sequences (non-empty)

Strategy to draw a random injection

- A size n partial injection (i.e., a partial injection $[n] \rightarrow[n]$) is a disjoint union of orbits that are either cycles, or sequences (non-empty)
- Compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits

Strategy to draw a random injection

- A size n partial injection (i.e., a partial injection $[n] \rightarrow[n]$) is a disjoint union of orbits that are either cycles, or sequences (non-empty)
- Compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits
- Draw a size m of an orbit, decide whether it is a cycle or a sequence; and draw another random partial injection of size $n-m$

A versatile tool: exponential generating series (EGS)

- EGS of structures $\mathcal{A}: \sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}$ if there are a_{n} structures \mathcal{A} of size n

A versatile tool: exponential generating series (EGS)

- EGS of structures $\mathcal{A}: \sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}$ if there are a_{n} structures \mathcal{A} of size n
- Example: for sequences. There are n ! sequences of size n. EGS is $\sum_{n} z^{n}=\frac{1}{1-z}$

A versatile tool: exponential generating series (EGS)

- EGS of structures $\mathcal{A}: \sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}$ if there are a_{n} structures \mathcal{A} of size n
- Example: for sequences. There are n ! sequences of size n. EGS is $\sum_{n} z^{n}=\frac{1}{1-z}$
- A calculus of EGSs (Flajolet, Sedgewick, etc): if $A(z)$ and $B(z)$ are the EGS for structures \mathcal{A} and \mathcal{B}, then

A versatile tool: exponential generating series (EGS)

- EGS of structures $\mathcal{A}: \sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}$ if there are a_{n} structures \mathcal{A} of size n
- Example: for sequences. There are n ! sequences of size n. EGS is $\sum_{n} z^{n}=\frac{1}{1-z}$
- A calculus of EGSs (Flajolet, Sedgewick, etc): if $A(z)$ and $B(z)$ are the EGS for structures \mathcal{A} and \mathcal{B}, then
- structures \mathcal{A} or $\mathcal{B}: A(z)+B(z)$

A versatile tool: exponential generating series (EGS)

- EGS of structures $\mathcal{A}: \sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}$ if there are a_{n} structures \mathcal{A} of size n
- Example: for sequences. There are n ! sequences of size n. EGS is $\sum_{n} z^{n}=\frac{1}{1-z}$
- A calculus of EGSs (Flajolet, Sedgewick, etc): if $A(z)$ and $B(z)$ are the EGS for structures \mathcal{A} and \mathcal{B}, then
- structures \mathcal{A} or $\mathcal{B}: A(z)+B(z)$
- sequences of structures $\mathcal{A}: 1+A(z)+A^{2}(z)+\cdots=\frac{1}{1-A(z)}$

A versatile tool: exponential generating series (EGS)

- EGS of structures $\mathcal{A}: \sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}$ if there are a_{n} structures \mathcal{A} of size n
- Example: for sequences. There are n ! sequences of size n. EGS is $\sum_{n} z^{n}=\frac{1}{1-z}$
- A calculus of EGSs (Flajolet, Sedgewick, etc): if $A(z)$ and $B(z)$ are the EGS for structures \mathcal{A} and \mathcal{B}, then
- structures \mathcal{A} or $\mathcal{B}: A(z)+B(z)$
- sequences of structures $\mathcal{A}: 1+A(z)+A^{2}(z)+\cdots=\frac{1}{1-A(z)}$
- cycles of structures $\mathcal{A}: \log \left(\frac{1}{1-A(z)}\right)$

A versatile tool: exponential generating series (EGS)

- EGS of structures $\mathcal{A}: \sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}$ if there are a_{n} structures \mathcal{A} of size n
- Example: for sequences. There are n ! sequences of size n. EGS is $\sum_{n} z^{n}=\frac{1}{1-z}$
- A calculus of EGSs (Flajolet, Sedgewick, etc): if $A(z)$ and $B(z)$ are the EGS for structures \mathcal{A} and \mathcal{B}, then
- structures \mathcal{A} or $\mathcal{B}: A(z)+B(z)$
- sequences of structures $\mathcal{A}: 1+A(z)+A^{2}(z)+\cdots=\frac{1}{1-A(z)}$
- cycles of structures $\mathcal{A}: \log \left(\frac{1}{1-A(z)}\right)$
- sets of structures $\mathcal{A}: \exp (A(z))$

Exponential generating series of partial injections

- The EGS for a single point is z. The EGS for sequences is $\frac{1}{1-z}$, and for non-empty sequences $\frac{1}{1-z}-1=\frac{z}{1-z}$

Exponential generating series of partial injections

- The EGS for a single point is z. The EGS for sequences is $\frac{1}{1-z}$, and for non-empty sequences $\frac{1}{1-z}-1=\frac{z}{1-z}$
- The EGS for cycles is $\log \left(\frac{1}{1-z}\right)$

Exponential generating series of partial injections

- The EGS for a single point is z. The EGS for sequences is $\frac{1}{1-z}$, and for non-empty sequences $\frac{1}{1-z}-1=\frac{z}{1-z}$
- The EGS for cycles is $\log \left(\frac{1}{1-z}\right)$
- The EGS for partial injections is

$$
I(z)=\exp \left(\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)\right)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)
$$

Exponential generating series of partial injections

- The EGS for a single point is z. The EGS for sequences is $\frac{1}{1-z}$, and for non-empty sequences $\frac{1}{1-z}-1=\frac{z}{1-z}$
- The EGS for cycles is $\log \left(\frac{1}{1-z}\right)$
- The EGS for partial injections is
$I(z)=\exp \left(\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)\right)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- Let $I(z)=\sum_{n} \frac{I_{n}}{n!} z^{n}$. We will be interested in an asymptotic equivalent of the coefficients of $I(z)$

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- r-tuples of partial injections: $1+J(z)$, with $J(z)=\sum_{n \geq 1} \frac{l_{n}^{r}}{n!} z^{n}$

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- r-tuples of partial injections: $1+J(z)$, with $J(z)=\sum_{n \geq 1} \frac{l_{n}^{r}}{n!} z^{n}$
- Let $C(z)$ be the EGS of connected r-tuples: then

$$
1+J(z)=\exp C(z), \text { so } C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}
$$

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- r-tuples of partial injections: $1+J(z)$, with $J(z)=\sum_{n \geq 1} \frac{l_{n}^{r}}{n!} z^{n}$
- Let $C(z)$ be the EGS of connected r-tuples: then $1+J(z)=\exp C(z)$, so $C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}$
- Then $\mathbb{P}\left(\right.$ connected $\left._{n}\right)=\frac{C_{n}}{I_{n}}$.

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- r-tuples of partial injections: $1+J(z)$, with $J(z)=\sum_{n \geq 1} \frac{l_{n}^{r}}{n!} z^{n}$
- Let $C(z)$ be the EGS of connected r-tuples: then $1+J(z)=\exp C(z)$, so $C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}$
- Then $\mathbb{P}\left(\right.$ connected $\left._{n}\right)=\frac{C_{n}}{I_{n}}$.
- Then... dive into complex analysis!

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- r-tuples of partial injections: $1+J(z)$, with $J(z)=\sum_{n \geq 1} \frac{l_{n}^{r}}{n!} z^{n}$
- Let $C(z)$ be the EGS of connected r-tuples: then

$$
1+J(z)=\exp C(z), \text { so } C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}
$$

- Then $\mathbb{P}\left(\right.$ connected $\left._{n}\right)=\frac{C_{n}}{I_{n}}$.
- Then... dive into complex analysis!

Use a theorem of Bender (with $F(z, y)=\log (1+y)$)
Let $F(z, y)$ is a real function, analytic at $(0,0)$. Let $J(z)=\sum_{n>0} j_{n} z^{n}$, $C(z)=\sum_{n>0} c_{n} z^{n}$ and $D(z)=\sum_{n>0} d_{n} z^{n}$ with $C(z)=F(z, J(z))$ and $D(z)=\frac{\partial F}{\partial y}(z, J(z))$. If $j_{n-1}=o\left(j_{n}\right)$ and there exists such that $\sum_{k=s}^{n-s}\left|j_{k} j_{n-k}\right|=\mathcal{O}\left(j_{n-s}\right)$, then $c_{n}=\sum_{k=0}^{s-1} d_{k} j_{n-k}+\mathcal{O}\left(j_{n-s}\right)$.

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- r-tuples of partial injections: $1+J(z)$, with $J(z)=\sum_{n \geq 1} \frac{l_{n}^{r}}{n!} z^{n}$
- Let $C(z)$ be the EGS of connected r-tuples: then $1+J(z)=\exp C(z)$, so $C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}$
- Then $\mathbb{P}\left(\right.$ connected $\left._{n}\right)=\frac{C_{n}}{I_{n}}$.
- Then... dive into complex analysis!
- $\mathbb{P}\left(\right.$ connected $\left._{n}\right)=1-\frac{2^{r}}{n^{r-1}}+o\left(\frac{1}{n^{r-1}}\right)$

Connectedness is generic

- Partial injections $I(z)=\sum \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- r-tuples of partial injections: $1+J(z)$, with $J(z)=\sum_{n \geq 1} \frac{l_{n}^{r}}{n!} z^{n}$
- Let $C(z)$ be the EGS of connected r-tuples: then $1+J(z)=\exp C(z)$, so $C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}$
- Then $\mathbb{P}\left(\right.$ connected $\left._{n}\right)=\frac{C_{n}}{I_{n}}$.
- Then... dive into complex analysis!
- $\mathbb{P}\left(\right.$ connected $\left._{n}\right)=1-\frac{2^{r}}{n^{r-1}}+o\left(\frac{1}{n^{r-1}}\right)$
- Generically, every r-tuple of partial injections is connected

Number of sequences, admissibility $1 / 2$

- For a given partial injection f_{a}, a point in [n] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f_{a}

Number of sequences, admissibility $1 / 2$

- For a given partial injection f_{a}, a point in [n] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f_{a}
- A vertex has arity 1 if it is an extremity for one letter and isolated for all the other letters.

Number of sequences, admissibility $1 / 2$

- For a given partial injection f_{a}, a point in [n] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f_{a}
- A vertex has arity 1 if it is an extremity for one letter and isolated for all the other letters.
- The number of extremities, and of isolated points can be bounded above and under in terms of the number of sequences in the partial injection

Number of sequences, admissibility $1 / 2$

- For a given partial injection f_{a}, a point in [n] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f_{a}
- A vertex has arity 1 if it is an extremity for one letter and isolated for all the other letters.
- The number of extremities, and of isolated points can be bounded above and under in terms of the number of sequences in the partial injection
- So: study the random variable sequence ${ }_{n}$, which counts the number of sequences in a partial injection: use an analogous calculus for bivariate EGSs, to study $I(z, u)=\sum_{n, k} \frac{I_{n, k}}{n!} z^{n} u^{k}$, where $I_{n, k}$ is the number of partial injections of size n with k sequences

Number of sequences, admissibility $2 / 2$

$$
I(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)
$$

Number of sequences, admissibility $2 / 2$

$$
I(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)
$$

- More complex analysis (and more complicated!) shows that $\mathbb{E}\left(\right.$ sequence $\left._{n}\right)=\sqrt{n}+o(\sqrt{n})$, with standard deviation $o(\sqrt{n})$

Number of sequences, admissibility $2 / 2$

$$
I(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)
$$

- More complex analysis (and more complicated!) shows that $\mathbb{E}\left(\right.$ sequence $\left._{n}\right)=\sqrt{n}+o(\sqrt{n})$, with standard deviation $o(\sqrt{n})$
- This gives bounds to the expected number of isolated points and extremities, and we use Chebyshev to show that the probability that a vertex has valency 1 is $o(1)$

Number of sequences, admissibility $2 / 2$

$$
I(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)
$$

- More complex analysis (and more complicated!) shows that $\mathbb{E}\left(\right.$ sequence $\left._{n}\right)=\sqrt{n}+o(\sqrt{n})$, with standard deviation $o(\sqrt{n})$
- This gives bounds to the expected number of isolated points and extremities, and we use Chebyshev to show that the probability that a vertex has valency 1 is $o(1)$
- Generically, every r-tuple of partial injections is admissible

Number of sequences, admissibility $2 / 2$

$$
I(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)
$$

- More complex analysis (and more complicated!) shows that $\mathbb{E}\left(\right.$ sequence $\left._{n}\right)=\sqrt{n}+o(\sqrt{n})$, with standard deviation $o(\sqrt{n})$
- This gives bounds to the expected number of isolated points and extremities, and we use Chebyshev to show that the probability that a vertex has valency 1 is $o(1)$
- Generically, every r-tuple of partial injections is admissible
- and this justifies the rejection algorithm

Consequences

- Since the number of sequences of f_{a} has expected value \sqrt{n}, the number of a-labeled edge has expected value $n-\sqrt{n}$

Consequences

- Since the number of sequences of f_{a} has expected value \sqrt{n}, the number of a-labeled edge has expected value $n-\sqrt{n}$
- The expected rank of a random subgroup of size n is $E-V+1$, that is,

$$
(|A|-1) n-|A| \sqrt{n}+1
$$

Consequences

- Since the number of sequences of f_{a} has expected value \sqrt{n}, the number of a-labeled edge has expected value $n-\sqrt{n}$
- The expected rank of a random subgroup of size n is $E-V+1$, that is,

$$
(|A|-1) n-|A| \sqrt{n}+1
$$

- Also: $\frac{I_{n}}{n!} \sim \frac{1}{\sqrt{2 e \pi}} n^{-\frac{1}{4}} e^{2 \sqrt{n}}$ [saddlepoint asymptotics]

Consequences

- Since the number of sequences of f_{a} has expected value \sqrt{n}, the number of a-labeled edge has expected value $n-\sqrt{n}$
- The expected rank of a random subgroup of size n is $E-V+1$, that is,

$$
(|A|-1) n-|A| \sqrt{n}+1
$$

- Also: $\frac{I_{n}}{n!} \sim \frac{1}{\sqrt{2 e \pi}} n^{-\frac{1}{4}} e^{2 \sqrt{n}}$ [saddlepoint asymptotics]
- The number of size n subgroups in F_{r} is equivalent to

$$
n!^{r-1} \frac{n^{1-r / 4} e^{2 r \sqrt{n}}}{(2 \sqrt{e \pi})^{r}}
$$

How to randomly draw a size n partial injection $1 / 2$

- A size n partial injection is a disjoint union of orbits that are either cycles, or sequences: compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits

How to randomly draw a size n partial injection $1 / 2$

- A size n partial injection is a disjoint union of orbits that are either cycles, or sequences: compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits
- Draw at random the size k of an orbit, decide whether it is a cycle or a sequence; and draw another random partial injection of size $n-m$

How to randomly draw a size n partial injection $1 / 2$

- A size n partial injection is a disjoint union of orbits that are either cycles, or sequences: compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits
- Draw at random the size k of an orbit, decide whether it is a cycle or a sequence; and draw another random partial injection of size $n-m$
- More calculus on EGSs: pick at random a component of a random partial injection. Then the probability that this component has size k is $\frac{I_{n-k}}{I_{n}}(k+1) \frac{(n-1)!}{(n-k)!}$,

How to randomly draw a size n partial injection $1 / 2$

- A size n partial injection is a disjoint union of orbits that are either cycles, or sequences: compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits
- Draw at random the size k of an orbit, decide whether it is a cycle or a sequence; and draw another random partial injection of size $n-m$
- More calculus on EGSs: pick at random a component of a random partial injection. Then the probability that this component has size k is $\frac{I_{n-k}}{I_{n}}(k+1) \frac{(n-1)!}{(n-k)!}$,
- and the probability that a size k component is a sequence is $\frac{k}{k+1}$

How to randomly draw a size n partial injection $2 / 2$

- How to pick at random a size $k \in[n]$, according to the distribution where $p_{k}=\frac{I_{n-k}}{I_{n}}(k+1) \frac{(n-1)!}{(n-k)!}$?

How to randomly draw a size n partial injection $2 / 2$

- How to pick at random a size $k \in[n]$, according to the distribution where $p_{k}=\frac{I_{n-k}}{I_{n}}(k+1) \frac{(n-1)!}{(n-k)!}$?
- Requires a pre-computation phase, to compute the $I_{k}(k \leq n)$.

How to randomly draw a size n partial injection $2 / 2$

- How to pick at random a size $k \in[n]$, according to the distribution where $p_{k}=\frac{I_{n-k}}{I_{n}}(k+1) \frac{(n-1)!}{(n-k)!}$?
- Requires a pre-computation phase, to compute the $I_{k}(k \leq n)$.
- We have $I(z)=\sum_{n} \frac{I_{n}}{n!} z^{n}=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$ and $I^{\prime}(z)=\sum_{n} \frac{I_{n+1}}{n!} z^{n}$, we find that

$$
\begin{gathered}
(1-z)^{2} I^{\prime}(z)=(2-z) I(z) \text { and } \\
I_{n}=2 n I_{n-1}-(n-1)^{2} I_{n-2} \text { with } I_{0}=1 \text { and } I_{1}=2
\end{gathered}
$$

Complexity

- It looks complicated!...

Complexity

- It looks complicated!...
- But it is fast

Complexity

- It looks complicated!...
- But it is fast
- In the RAM model, the pre-computation is $\mathcal{O}(n)$ and each random draw is $\mathcal{O}(n)$

Complexity

- It looks complicated!...
- But it is fast
- In the RAM model, the pre-computation is $\mathcal{O}(n)$ and each random draw is $\mathcal{O}(n)$
- In the bit (or logarithmic cost) complexity, I_{n} requires space and time $\mathcal{O}(n \log n)$. The pre-computation in $\mathcal{O}\left(n^{2} \log n\right)$ and each random draw is in $\mathcal{O}\left(n^{2} \log ^{2} n\right)$

Generic and negligible properties

- H is malnormal if, for each $x \notin H, x^{-1} H x \cap H=1$. This property is negligible

Generic and negligible properties

- H is malnormal if, for each $x \notin H, x^{-1} H x \cap H=1$. This property is negligible
- Why? H is not malnormal if there exists $u \neq 1$ and two vertices $x \neq y$ such that u labels a loop at x and at y. This will be the case, for instance, if for some letter, the partial injection f_{a} has a cycle of length ≥ 2

Generic and negligible properties

- H is malnormal if, for each $x \notin H, x^{-1} H x \cap H=1$. This property is negligible
- Why? H is not malnormal if there exists $u \neq 1$ and two vertices $x \neq y$ such that u labels a loop at x and at y. This will be the case, for instance, if for some letter, the partial injection f_{a} has a cycle of length ≥ 2
- With probablility tending to e^{-r}, H contains a conjugate of a letter.

Generic and negligible properties

- H is malnormal if, for each $x \notin H, x^{-1} H x \cap H=1$. This property is negligible
- Why? H is not malnormal if there exists $u \neq 1$ and two vertices $x \neq y$ such that u labels a loop at x and at y. This will be the case, for instance, if for some letter, the partial injection f_{a} has a cycle of length ≥ 2
- With probablility tending to e^{-r}, H contains a conjugate of a letter.
- H is minimal if for every automorphism φ of $F(A), \varphi(H)$ is not smaller than H (in terms of the number of vertices of its Stallings graph). This is a generic property

Thank you for your attention!

