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General context 1/2

� Free group on (finite) alphabet A, F (A) = Fr (if r = |A|): the
group generated by A with no relations
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� Free group on (finite) alphabet A, F (A) = Fr (if r = |A|): the
group generated by A with no relations

� Identified with the language of reduced words: a word on
alphabet A ∪ A−1 is reduced if it contains no factor of the
form aa−1 or a−1a

� The group operation is u · v = red(uv), (uv)−1 = v−1u−1

� Let K ≤ F (A): then K is rational in F (A) if and only if the
set of reduced words representing K is rational in (A ∪ A−1)∗

(Benois, 1969)
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General context 1/2

� Free group on (finite) alphabet A, F (A) = Fr (if r = |A|): the
group generated by A with no relations

� Identified with the language of reduced words: a word on
alphabet A ∪ A−1 is reduced if it contains no factor of the
form aa−1 or a−1a

� The group operation is u · v = red(uv), (uv)−1 = v−1u−1

� Let K ≤ F (A): then K is rational in F (A) if and only if the
set of reduced words representing K is rational in (A ∪ A−1)∗

(Benois, 1969)

� A subgroup H ≤ F (A) is finitely generated if and only H is
rational (Anisimov and Seifert, 1975)
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General context 2/2

Study the lattice of finitely generated (fg) subgroups of F (A) = Fr
(if r = |A|), algorithmically and asymptotically

� random generation – if algorithmically efficient: test of
conjectures, exploration
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Study the lattice of finitely generated (fg) subgroups of F (A) = Fr
(if r = |A|), algorithmically and asymptotically

� random generation – if algorithmically efficient: test of
conjectures, exploration

� statistical (or asymptotic) properties: evaluation of the
frequency of certain properties: genericity, negligibility
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General context 2/2

Study the lattice of finitely generated (fg) subgroups of F (A) = Fr
(if r = |A|), algorithmically and asymptotically

� random generation – if algorithmically efficient: test of
conjectures, exploration

� statistical (or asymptotic) properties: evaluation of the
frequency of certain properties: genericity, negligibility

� Motivations: algorithmic complexity and cryptography +
curiosity

� Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov,
Schupp, Shpilrain, Ollivier, Jitsukawa, . . .
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Which distribution on fg subgroups?

� Classical approach: a subgroup is generated by a random
tuple of reduced words. A k-tuple (few-generators), or a
sdn -tuple, where sn = cardinality of the sphere of radius n and
0 < d < 1 (Gromov’s density model)
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� Classical approach: a subgroup is generated by a random
tuple of reduced words. A k-tuple (few-generators), or a
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� Today: a different approach. Every fg subgroup H of F (A) is
characterized by a finite A-labeled graph, called the Stallings
graph of H.

Pascal Weil Random subgroups of free groups



Which distribution on fg subgroups?

� Classical approach: a subgroup is generated by a random
tuple of reduced words. A k-tuple (few-generators), or a
sdn -tuple, where sn = cardinality of the sphere of radius n and
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Which distribution on fg subgroups?

� Classical approach: a subgroup is generated by a random
tuple of reduced words. A k-tuple (few-generators), or a
sdn -tuple, where sn = cardinality of the sphere of radius n and
0 < d < 1 (Gromov’s density model)

� Today: a different approach. Every fg subgroup H of F (A) is
characterized by a finite A-labeled graph, called the Stallings
graph of H.

� This graph is efficiently computable (Touikan), opens the way
to countless efficient (and elegant) decision or computation
algorithms on fg subgroups. A natural finite discrete structure
attached to a subgroup.

� The idea: use these graphs to define what a random subgroup
is. There are finitely many possible Stallings graphs with n
vertices: draw one uniformly at random.

Pascal Weil Random subgroups of free groups



Stallings graph of a finitely generated subgroup

Γ(H), the Stallings graph of a finitely generated subgroup H: the
interesting part of the Schreier graph Γ(G ;H) – a picture of H and
a unique representation
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Stallings graph of a finitely generated subgroup

Γ(H), the Stallings graph of a finitely generated subgroup H: the
interesting part of the Schreier graph Γ(G ;H) – a picture of H and
a unique representation

H = 〈h1, h2, h3, h4〉

h1 = a3b−1

h2 = a3ca−2

h3 = a2cd−1b−1

h4 = a2de−1d−1b−1
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Stallings graph of a finitely generated subgroup

Γ(H), the Stallings graph of a finitely generated subgroup H: the
interesting part of the Schreier graph Γ(G ;H) – a picture of H and
a unique representation
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Stallings graph of a finitely generated subgroup

Γ(H), the Stallings graph of a finitely generated subgroup H: the
interesting part of the Schreier graph Γ(G ;H) – a picture of H and
a unique representation
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rank = E − V + 1

conjugation, finite index

intersection of subgroups, malnormality

effective separability
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What does a random subgroup look like?

� So: there is a finite number of Stallings graph with n vertices.
Draw one uniformly at random to get a random subgroup of
size n
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What does a random subgroup look like?

� So: there is a finite number of Stallings graph with n vertices.
Draw one uniformly at random to get a random subgroup of
size n

A picture with n = 200
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What does a random subgroup look like?

� So: there is a finite number of Stallings graph with n vertices.
Draw one uniformly at random to get a random subgroup of
size n
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What does a random subgroup look like?

� So: there is a finite number of Stallings graph with n vertices.
Draw one uniformly at random to get a random subgroup of
size n

� Many more edges, many more cycles in the graph based
distribution. Higher rank, lesser probability of malnormality,
etc.
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How do we investigate random Stallings graphs?

� Characterize Stallings graphs as discrete objects:
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How do we investigate random Stallings graphs?

� Characterize Stallings graphs as discrete objects:

� finite graphs with a base vertex

� connected

� with a locally injective A-labeling

� every vertex has valency at least 2, except maybe the base
vertex.
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How do we investigate random Stallings graphs?

� Characterize Stallings graphs as discrete objects:

� finite graphs with a base vertex

� connected

� with a locally injective A-labeling

� every vertex has valency at least 2, except maybe the base
vertex.

� There are many! although estimating that number is
non-trivial
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General strategy to draw a random Stallings graph

� View Stallings graphs as purely combinatorial objects: a
collection (fa)a∈A of partial injections [n] → [n], subject to the
connectedness and no vertex of valency 1 (global) constraints
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General strategy to draw a random Stallings graph

� View Stallings graphs as purely combinatorial objects: a
collection (fa)a∈A of partial injections [n] → [n], subject to the
connectedness and no vertex of valency 1 (global) constraints

� Draw a random partial injection fa of [n], independently for
each letter a ∈ A
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General strategy to draw a random Stallings graph

� View Stallings graphs as purely combinatorial objects: a
collection (fa)a∈A of partial injections [n] → [n], subject to the
connectedness and no vertex of valency 1 (global) constraints

� Draw a random partial injection fa of [n], independently for
each letter a ∈ A

� If the (fa)a∈A do not induce an admissible graph (with base
vertex 1), reject and repeat

Pascal Weil Random subgroups of free groups



General strategy to draw a random Stallings graph

� View Stallings graphs as purely combinatorial objects: a
collection (fa)a∈A of partial injections [n] → [n], subject to the
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� Draw a random partial injection fa of [n], independently for
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� If the (fa)a∈A do not induce an admissible graph (with base
vertex 1), reject and repeat

� What needs to be done is explain how one draws random
partial injections, and
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General strategy to draw a random Stallings graph

� View Stallings graphs as purely combinatorial objects: a
collection (fa)a∈A of partial injections [n] → [n], subject to the
connectedness and no vertex of valency 1 (global) constraints

� Draw a random partial injection fa of [n], independently for
each letter a ∈ A

� If the (fa)a∈A do not induce an admissible graph (with base
vertex 1), reject and repeat

� What needs to be done is explain how one draws random
partial injections, and

� to estimate the probability of non-admissibility – we show that
it tends to 0 as n tends to infinity
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Strategy to draw a random injection

� A size n partial injection (i.e., a partial injection [n] → [n]) is
a disjoint union of orbits that are either cycles, or sequences
(non-empty)
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Strategy to draw a random injection

� A size n partial injection (i.e., a partial injection [n] → [n]) is
a disjoint union of orbits that are either cycles, or sequences
(non-empty)

� Compute the distribution of sizes of orbits (cycles and
sequences), and the distribution of cycles vs. sequences for
each size of orbits
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Strategy to draw a random injection

� A size n partial injection (i.e., a partial injection [n] → [n]) is
a disjoint union of orbits that are either cycles, or sequences
(non-empty)

� Compute the distribution of sizes of orbits (cycles and
sequences), and the distribution of cycles vs. sequences for
each size of orbits

� Draw a size m of an orbit, decide whether it is a cycle or a
sequence; and draw another random partial injection of size
n −m
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A versatile tool: exponential generating series (EGS)

� EGS of structures A:
∑

n≥0
an
n! z

n if there are an structures A
of size n
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A versatile tool: exponential generating series (EGS)

� EGS of structures A:
∑

n≥0
an
n! z

n if there are an structures A
of size n

� Example: for sequences. There are n! sequences of size n.
EGS is

∑
n z

n = 1
1−z

Pascal Weil Random subgroups of free groups



A versatile tool: exponential generating series (EGS)

� EGS of structures A:
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n≥0
an
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n if there are an structures A
of size n

� Example: for sequences. There are n! sequences of size n.
EGS is

∑
n z

n = 1
1−z

� A calculus of EGSs (Flajolet, Sedgewick, etc): if A(z) and
B(z) are the EGS for structures A and B, then
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A versatile tool: exponential generating series (EGS)

� EGS of structures A:
∑

n≥0
an
n! z

n if there are an structures A
of size n

� Example: for sequences. There are n! sequences of size n.
EGS is

∑
n z

n = 1
1−z

� A calculus of EGSs (Flajolet, Sedgewick, etc): if A(z) and
B(z) are the EGS for structures A and B, then

� structures A or B: A(z) + B(z)

� sequences of structures A: 1 + A(z) + A2(z) + · · · = 1
1−A(z)
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A versatile tool: exponential generating series (EGS)

� EGS of structures A:
∑

n≥0
an
n! z

n if there are an structures A
of size n

� Example: for sequences. There are n! sequences of size n.
EGS is

∑
n z

n = 1
1−z

� A calculus of EGSs (Flajolet, Sedgewick, etc): if A(z) and
B(z) are the EGS for structures A and B, then

� structures A or B: A(z) + B(z)

� sequences of structures A: 1 + A(z) + A2(z) + · · · = 1
1−A(z)

� cycles of structures A: log
(

1
1−A(z)

)
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A versatile tool: exponential generating series (EGS)

� EGS of structures A:
∑

n≥0
an
n! z

n if there are an structures A
of size n

� Example: for sequences. There are n! sequences of size n.
EGS is

∑
n z

n = 1
1−z

� A calculus of EGSs (Flajolet, Sedgewick, etc): if A(z) and
B(z) are the EGS for structures A and B, then

� structures A or B: A(z) + B(z)

� sequences of structures A: 1 + A(z) + A2(z) + · · · = 1
1−A(z)

� cycles of structures A: log
(

1
1−A(z)

)

� sets of structures A: exp(A(z))
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Exponential generating series of partial injections

� The EGS for a single point is z . The EGS for sequences is
1

1−z , and for non-empty sequences 1
1−z − 1 = z

1−z
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Exponential generating series of partial injections

� The EGS for a single point is z . The EGS for sequences is
1

1−z , and for non-empty sequences 1
1−z − 1 = z

1−z

� The EGS for cycles is log
(

1
1−z

)
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Exponential generating series of partial injections

� The EGS for a single point is z . The EGS for sequences is
1

1−z , and for non-empty sequences 1
1−z − 1 = z

1−z

� The EGS for cycles is log
(

1
1−z

)

� The EGS for partial injections is

I (z) = exp
(

z
1−z + log( 1

1−z )
)
= 1

1−z exp(
z

1−z )
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Exponential generating series of partial injections

� The EGS for a single point is z . The EGS for sequences is
1

1−z , and for non-empty sequences 1
1−z − 1 = z

1−z

� The EGS for cycles is log
(

1
1−z

)

� The EGS for partial injections is

I (z) = exp
(

z
1−z + log( 1

1−z )
)
= 1

1−z exp(
z

1−z )

� Let I (z) =
∑

n
In
n!z

n. We will be interested in an asymptotic
equivalent of the coefficients of I (z)
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Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

Pascal Weil Random subgroups of free groups



Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

� r -tuples of partial injections: 1+ J(z), with J(z) =
∑

n≥1
I rn
n!z

n
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Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

� r -tuples of partial injections: 1+ J(z), with J(z) =
∑

n≥1
I rn
n!z

n

� Let C (z) be the EGS of connected r -tuples: then
1 + J(z) = expC (z), so C (z) = log(1 + J(z)) =

∑
n

Cn
n! z

n
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Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

� r -tuples of partial injections: 1+ J(z), with J(z) =
∑

n≥1
I rn
n!z

n

� Let C (z) be the EGS of connected r -tuples: then
1 + J(z) = expC (z), so C (z) = log(1 + J(z)) =

∑
n

Cn
n! z

n

� Then P(connectedn) =
Cn
I rn
.
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Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

� r -tuples of partial injections: 1+ J(z), with J(z) =
∑

n≥1
I rn
n!z

n

� Let C (z) be the EGS of connected r -tuples: then
1 + J(z) = expC (z), so C (z) = log(1 + J(z)) =

∑
n

Cn
n! z

n

� Then P(connectedn) =
Cn
I rn
.

� Then. . . dive into complex analysis!
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Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

� r -tuples of partial injections: 1+ J(z), with J(z) =
∑

n≥1
I rn
n!z

n

� Let C (z) be the EGS of connected r -tuples: then
1 + J(z) = expC (z), so C (z) = log(1 + J(z)) =

∑
n

Cn
n! z

n

� Then P(connectedn) =
Cn
I rn
.

� Then. . . dive into complex analysis!

Use a theorem of Bender (with F (z , y) = log(1 + y))

Let F (z , y) is a real function, analytic at (0, 0). Let J(z) =
∑

n>0 jnz
n,

C (z) =
∑

n>0 cnz
n and D(z) =

∑
n>0 dnz

n with C (z) = F (z , J(z))

and D(z) = ∂F
∂y (z , J(z)). If jn−1 = o(jn) and there exists such that∑n−s

k=s |jk jn−k | = O(jn−s), then cn =
∑s−1

k=0 dk jn−k +O(jn−s).
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Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

� r -tuples of partial injections: 1+ J(z), with J(z) =
∑

n≥1
I rn
n!z

n

� Let C (z) be the EGS of connected r -tuples: then
1 + J(z) = expC (z), so C (z) = log(1 + J(z)) =

∑
n

Cn
n! z

n

� Then P(connectedn) =
Cn
I rn
.

� Then. . . dive into complex analysis!

� P(connectedn) = 1− 2r

nr−1 + o( 1
nr−1 )
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Connectedness is generic

� Partial injections I (z) =
∑ In

n!z
n = 1

1−z exp(
z

1−z )

� r -tuples of partial injections: 1+ J(z), with J(z) =
∑

n≥1
I rn
n!z

n

� Let C (z) be the EGS of connected r -tuples: then
1 + J(z) = expC (z), so C (z) = log(1 + J(z)) =

∑
n

Cn
n! z

n

� Then P(connectedn) =
Cn
I rn
.

� Then. . . dive into complex analysis!

� P(connectedn) = 1− 2r

nr−1 + o( 1
nr−1 )

� Generically, every r -tuple of partial injections is connected
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Number of sequences, admissibility 1/2

� For a given partial injection fa, a point in [n] is either isolated
(a sequence of length 1), or an extremity of a sequence, or
has arity 2 in the graph of fa

Pascal Weil Random subgroups of free groups



Number of sequences, admissibility 1/2

� For a given partial injection fa, a point in [n] is either isolated
(a sequence of length 1), or an extremity of a sequence, or
has arity 2 in the graph of fa

� A vertex has arity 1 if it is an extremity for one letter and
isolated for all the other letters.
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Number of sequences, admissibility 1/2

� For a given partial injection fa, a point in [n] is either isolated
(a sequence of length 1), or an extremity of a sequence, or
has arity 2 in the graph of fa

� A vertex has arity 1 if it is an extremity for one letter and
isolated for all the other letters.

� The number of extremities, and of isolated points can be
bounded above and under in terms of the number of
sequences in the partial injection
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Number of sequences, admissibility 1/2

� For a given partial injection fa, a point in [n] is either isolated
(a sequence of length 1), or an extremity of a sequence, or
has arity 2 in the graph of fa

� A vertex has arity 1 if it is an extremity for one letter and
isolated for all the other letters.

� The number of extremities, and of isolated points can be
bounded above and under in terms of the number of
sequences in the partial injection

� So: study the random variable sequencen, which counts the
number of sequences in a partial injection: use an analogous

calculus for bivariate EGSs, to study I (z , u) =
∑

n,k
In,k
n! z

nuk ,
where In,k is the number of partial injections of size n with k
sequences
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Number of sequences, admissibility 2/2

�

I (z , u) =
1

1− z
exp(

zu

1− z
)
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Number of sequences, admissibility 2/2

�

I (z , u) =
1

1− z
exp(

zu

1− z
)

� More complex analysis (and more complicated!) shows that
E(sequencen) =

√
n + o(

√
n), with standard deviation o(

√
n)
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Number of sequences, admissibility 2/2

�

I (z , u) =
1

1− z
exp(

zu

1− z
)

� More complex analysis (and more complicated!) shows that
E(sequencen) =

√
n + o(

√
n), with standard deviation o(

√
n)

� This gives bounds to the expected number of isolated points
and extremities, and we use Chebyshev to show that the
probability that a vertex has valency 1 is o(1)
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Number of sequences, admissibility 2/2

�

I (z , u) =
1

1− z
exp(

zu

1− z
)

� More complex analysis (and more complicated!) shows that
E(sequencen) =

√
n + o(

√
n), with standard deviation o(

√
n)

� This gives bounds to the expected number of isolated points
and extremities, and we use Chebyshev to show that the
probability that a vertex has valency 1 is o(1)

� Generically, every r -tuple of partial injections is admissible
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Number of sequences, admissibility 2/2

�

I (z , u) =
1

1− z
exp(

zu

1− z
)

� More complex analysis (and more complicated!) shows that
E(sequencen) =

√
n + o(

√
n), with standard deviation o(

√
n)

� This gives bounds to the expected number of isolated points
and extremities, and we use Chebyshev to show that the
probability that a vertex has valency 1 is o(1)

� Generically, every r -tuple of partial injections is admissible

� and this justifies the rejection algorithm
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Consequences

� Since the number of sequences of fa has expected value
√
n,

the number of a-labeled edge has expected value n−√
n
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Consequences

� Since the number of sequences of fa has expected value
√
n,

the number of a-labeled edge has expected value n−√
n

� The expected rank of a random subgroup of size n is
E − V + 1, that is,

(|A| − 1)n − |A|√n+ 1
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Consequences

� Since the number of sequences of fa has expected value
√
n,

the number of a-labeled edge has expected value n−√
n

� The expected rank of a random subgroup of size n is
E − V + 1, that is,

(|A| − 1)n − |A|√n+ 1

� Also: In
n! ∼ 1√

2eπ
n−

1
4 e2

√
n [saddlepoint asymptotics]
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Consequences

� Since the number of sequences of fa has expected value
√
n,

the number of a-labeled edge has expected value n−√
n

� The expected rank of a random subgroup of size n is
E − V + 1, that is,

(|A| − 1)n − |A|√n+ 1

� Also: In
n! ∼ 1√

2eπ
n−

1
4 e2

√
n [saddlepoint asymptotics]

� The number of size n subgroups in Fr is equivalent to

n!r−1n
1−r/4e2r

√
n

(2
√
eπ)r
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How to randomly draw a size n partial injection 1/2

� A size n partial injection is a disjoint union of orbits that are
either cycles, or sequences: compute the distribution of sizes
of orbits (cycles and sequences), and the distribution of cycles
vs. sequences for each size of orbits
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How to randomly draw a size n partial injection 1/2

� A size n partial injection is a disjoint union of orbits that are
either cycles, or sequences: compute the distribution of sizes
of orbits (cycles and sequences), and the distribution of cycles
vs. sequences for each size of orbits

� Draw at random the size k of an orbit, decide whether it is a
cycle or a sequence; and draw another random partial
injection of size n −m
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How to randomly draw a size n partial injection 1/2

� A size n partial injection is a disjoint union of orbits that are
either cycles, or sequences: compute the distribution of sizes
of orbits (cycles and sequences), and the distribution of cycles
vs. sequences for each size of orbits

� Draw at random the size k of an orbit, decide whether it is a
cycle or a sequence; and draw another random partial
injection of size n −m

� More calculus on EGSs: pick at random a component of a
random partial injection. Then the probability that this
component has size k is

In−k

In
(k + 1) (n−1)!

(n−k)! ,
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How to randomly draw a size n partial injection 1/2

� A size n partial injection is a disjoint union of orbits that are
either cycles, or sequences: compute the distribution of sizes
of orbits (cycles and sequences), and the distribution of cycles
vs. sequences for each size of orbits

� Draw at random the size k of an orbit, decide whether it is a
cycle or a sequence; and draw another random partial
injection of size n −m

� More calculus on EGSs: pick at random a component of a
random partial injection. Then the probability that this
component has size k is

In−k

In
(k + 1) (n−1)!

(n−k)! ,

� and the probability that a size k component is a sequence is
k

k+1
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How to randomly draw a size n partial injection 2/2

� How to pick at random a size k ∈ [n], according to the

distribution where pk =
In−k

In
(k + 1) (n−1)!

(n−k)! ?
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How to randomly draw a size n partial injection 2/2

� How to pick at random a size k ∈ [n], according to the

distribution where pk =
In−k

In
(k + 1) (n−1)!

(n−k)! ?

� Requires a pre-computation phase, to compute the Ik (k ≤ n).
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How to randomly draw a size n partial injection 2/2

� How to pick at random a size k ∈ [n], according to the

distribution where pk =
In−k

In
(k + 1) (n−1)!

(n−k)! ?

� Requires a pre-computation phase, to compute the Ik (k ≤ n).

� We have I (z) =
∑

n
In
n!z

n = 1
1−z exp(

z
1−z ) and

I ′(z) =
∑

n
In+1

n! z
n, we find that

(1− z)2I ′(z) = (2− z)I (z) and

In = 2nIn−1 − (n − 1)2In−2 with I0 = 1 and I1 = 2.
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Complexity

� It looks complicated!. . .
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Complexity

� It looks complicated!. . .

� But it is fast
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Complexity

� It looks complicated!. . .

� But it is fast

� In the RAM model, the pre-computation is O(n) and each
random draw is O(n)
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Complexity

� It looks complicated!. . .

� But it is fast

� In the RAM model, the pre-computation is O(n) and each
random draw is O(n)

� In the bit (or logarithmic cost) complexity, In requires space
and time O(n log n). The pre-computation in O(n2 log n) and
each random draw is in O(n2 log2 n)
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Generic and negligible properties

� H is malnormal if, for each x 	∈ H, x−1Hx ∩ H = 1. This
property is negligible
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Generic and negligible properties

� H is malnormal if, for each x 	∈ H, x−1Hx ∩ H = 1. This
property is negligible

� Why? H is not malnormal if there exists u 	= 1 and two
vertices x 	= y such that u labels a loop at x and at y . This
will be the case, for instance, if for some letter, the partial
injection fa has a cycle of length ≥ 2
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Generic and negligible properties

� H is malnormal if, for each x 	∈ H, x−1Hx ∩ H = 1. This
property is negligible

� Why? H is not malnormal if there exists u 	= 1 and two
vertices x 	= y such that u labels a loop at x and at y . This
will be the case, for instance, if for some letter, the partial
injection fa has a cycle of length ≥ 2

� With probablility tending to e−r , H contains a conjugate of a
letter.
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Generic and negligible properties

� H is malnormal if, for each x 	∈ H, x−1Hx ∩ H = 1. This
property is negligible

� Why? H is not malnormal if there exists u 	= 1 and two
vertices x 	= y such that u labels a loop at x and at y . This
will be the case, for instance, if for some letter, the partial
injection fa has a cycle of length ≥ 2

� With probablility tending to e−r , H contains a conjugate of a
letter.

� H is minimal if for every automorphism ϕ of F (A), ϕ(H) is
not smaller than H (in terms of the number of vertices of its
Stallings graph). This is a generic property
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Thank you for your attention!
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