Partitions of direct products of complete graphs into independent dominating sets

Mario Valencia-Pabon

Université Paris-Nord, Paris, France

Séminaire CALIN, 2010

⊠ Let G = (V, E) be a finite undirected graph without loops. A set $S \subseteq V$ is called a *dominating set* of G if for every vertex $v \in V \setminus S$ there exists a vertex $u \in S$ such that u is adjacent to v.

Example

- If The minimum cardinality of a dominating set in a graph G is called the *domination number* of G, and is denoted $\gamma(G)$.
- A set S ⊆ V is called *independent* if no two vertices in S are adjacent. The minimum cardinality of an independent dominating set in a graph is called the *independent* domination number of G and is denoted i(G).

- ⊠ Let G = (V, E) be a finite undirected graph without loops. A set $S \subseteq V$ is called a *dominating set* of G if for every vertex $v \in V \setminus S$ there exists a vertex $u \in S$ such that u is adjacent to v.
- ⊠ Example

- If The minimum cardinality of a dominating set in a graph G is called the *domination number* of G, and is denoted $\gamma(G)$.
- \boxtimes A set $S \subseteq V$ is called *independent* if no two vertices in S are adjacent. The minimum cardinality of an independent dominating set in a graph is called the *independent* domination number of G and is denoted i(G).

- ⊠ Let G = (V, E) be a finite undirected graph without loops. A set $S \subseteq V$ is called a *dominating set* of G if for every vertex $v \in V \setminus S$ there exists a vertex $u \in S$ such that u is adjacent to v.
- ⊠ Example

- The minimum cardinality of a dominating set in a graph G is called the *domination number* of G, and is denoted $\gamma(G)$.
- \boxtimes A set $S \subseteq V$ is called *independent* if no two vertices in S are adjacent. The minimum cardinality of an independent dominating set in a graph is called the *independent* domination number of G and is denoted i(G).

- ⊠ Let G = (V, E) be a finite undirected graph without loops. A set $S \subseteq V$ is called a *dominating set* of G if for every vertex $v \in V \setminus S$ there exists a vertex $u \in S$ such that u is adjacent to v.
- ⊠ Example

- \boxtimes The minimum cardinality of a dominating set in a graph G is called the *domination number* of G, and is denoted $\gamma(G)$.
- \boxtimes A set $S \subseteq V$ is called *independent* if no two vertices in S are adjacent. The minimum cardinality of an independent dominating set in a graph is called the *independent* domination number of G and is denoted i(G).

- ⊠ In 1862 C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
- ☑ In 1892 W. W. Rouse Ball reported that chess enthusiast in the late 1800s studied, among others, the following problems:
- Covering: what is the minimum number of chess pieces of a given type which are necessary to cover / attack / dominate every square of an n × n board ? (Ex. of min. dominating set).
- Independent Covering: what is the minimum number of mutually non-attacking chess pieces of a given type which are necessary to dominate every square of a n × n board ? (Ex. of min. ind. dominating set).

- ⊠ In 1862 C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
- ☑ In 1892 W. W. Rouse Ball reported that chess enthusiast in the late 1800s studied, among others, the following problems:
- * Covering: what is the minimum number of chess pieces of a given type which are necessary to cover / attack / dominate every square of an $n \times n$ board ? (Ex. of min. dominating set).
- Independent Covering: what is the minimum number of mutually non-attacking chess pieces of a given type which are necessary to dominate every square of a n × n board ? (Ex. of min. ind. dominating set).

- ⊠ In 1862 C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
- ☑ In 1892 W. W. Rouse Ball reported that chess enthusiast in the late 1800s studied, among others, the following problems:
- ★ Covering: what is the minimum number of chess pieces of a given type which are necessary to cover / attack / dominate every square of an n × n board ? (Ex. of min. dominating set).
- Independent Covering: what is the minimum number of mutually non-attacking chess pieces of a given type which are necessary to dominate every square of a n × n board ? (Ex. of min. ind. dominating set).

- ⊠ In 1862 C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
- ☑ In 1892 W. W. Rouse Ball reported that chess enthusiast in the late 1800s studied, among others, the following problems:
- * Covering: what is the minimum number of chess pieces of a given type which are necessary to cover / attack / dominate every square of an $n \times n$ board ? (Ex. of min. dominating set).
- ★ Independent Covering: what is the minimum number of mutually non-attacking chess pieces of a given type which are necessary to dominate every square of a n × n board ? (Ex. of min. ind. dominating set).

- In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
- ☑ In 1958 C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
- In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

- In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
- ☑ In 1958 C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
- In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

- In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
- ☑ In 1958 C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
- ☑ In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

- In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
- ☑ In 1958 C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
- ☑ In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

Bibliography

- ☑ T. W. Haynes, S. T. Hedetniemi, P. J. Slater. *Fundamentals* of domination in graphs, Marcel Dekker, New York, 1998.
- X T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Domination in graphs: advanced topics, Marcel Dekker, New York, 1998.

- In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
- ☑ In 1958 C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
- ☑ In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

Bibliography

X. W. Haynes, S. T. Hedetniemi, P. J. Slater. *Fundamentals of domination in graphs*, Marcel Dekker, New York, 1998.

T. W. Haynes, S. T. Hedetniemi, P. J. Slater. *Domination in graphs: advanced topics*, Marcel Dekker, New York, 1998.

- In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
- ☑ In 1958 C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
- ☑ In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

Bibliography

- X. W. Haynes, S. T. Hedetniemi, P. J. Slater. *Fundamentals of domination in graphs*, Marcel Dekker, New York, 1998.
- X. W. Haynes, S. T. Hedetniemi, P. J. Slater. *Domination in graphs: advanced topics*, Marcel Dekker, New York, 1998.

DOMINATING SET INSTANCE : A graph G = (V, E) and positive integer k **QUESTION**: Does G a dominating set of size $\leq k$?

[Garey and Johnson, 1979] DOMINATING SET is NP-complete (reduction from 3-SAT).

DOMINATING SET INSTANCE : A graph G = (V, E) and positive integer k**QUESTION**: Does G a dominating set of size $\leq k$? **[Garey and Johnson, 1979]** DOMINATING SET is NP-complete (reduction from 3-SAT).

DOMINATING SET

INSTANCE : A graph G = (V, E) and positive integer k **QUESTION**: Does G a dominating set of size $\leq k$?

[Garey and Johnson, 1979] DOMINATING SET is NP-complete (reduction from 3-SAT).

It is approximable within a $1 + \ln |V|$ factor [Johnson,74], but it is not approximable within a $(1 - \epsilon) \ln |V|$ factor, for any $\epsilon > 0$, unless NP \subseteq DTIME($|V|^{O(\ln \ln |V|)}$) [Feige, 98].

DOMINATING SET

INSTANCE : A graph G = (V, E) and positive integer k **QUESTION**: Does G a dominating set of size $\leq k$?

[Garey and Johnson, 1979] DOMINATING SET is NP-complete (reduction from 3-SAT).

It is approximable within a $1 + \ln |V|$ factor [Johnson,74], but it is not approximable within a $(1 - \epsilon) \ln |V|$ factor, for any $\epsilon > 0$, unless NP \subseteq DTIME($|V|^{O(\ln \ln |V|)}$) [Feige, 98].

- [Cockayne and Hedetniemi, 1977]. The *domatic number* d(G) of a graph G = (V, E) is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The idomatic number id(G) of a graph G = (V, E) is the maximum order of a partition of V into independent dominating sets (if there exists one).

* Trivially, $id(G) \leq \delta(G) + 1$, where $\delta(G)$ denote the minimum degree of any vertex in G. *The cycle C_m has an idomatic 3-partition if and only if 3

- [Cockayne and Hedetniemi, 1977]. The *domatic number* d(G) of a graph G = (V, E) is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The *idomatic number* id(G) of a graph G = (V, E) is the maximum order of a partition of V into independent dominating sets (if there exists one).

* Trivially, $id(G) \le \delta(G) + 1$, where $\delta(G)$ denote the minimum degree of any vertex in G. *The cycle C_m has an idomatic 3-partition if and only if

- [Cockayne and Hedetniemi, 1977]. The *domatic number* d(G) of a graph G = (V, E) is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The idomatic number id(G) of a graph G = (V, E) is the maximum order of a partition of V into independent dominating sets (if there exists one).

* Trivially, $id(G) \le \delta(G) + 1$, where $\delta(G)$ denote the minimum degree of any vertex in G.

*The cycle C_m has an idomatic 3-partition if and only if 3|m.

- [Cockayne and Hedetniemi, 1977]. The *domatic number* d(G) of a graph G = (V, E) is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The *idomatic number id*(G) of a graph G = (V, E) is the maximum order of a partition of V into independent dominating sets (if there exists one).

* Trivially, $id(G) \le \delta(G) + 1$, where $\delta(G)$ denote the minimum degree of any vertex in G.

*The cycle C_m has an idomatic 3-partition if and only if 3|m.

- [Cockayne and Hedetniemi, 1977]. The *domatic number* d(G) of a graph G = (V, E) is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The *idomatic number id*(G) of a graph G = (V, E) is the maximum order of a partition of V into independent dominating sets (if there exists one).

* Trivially, $id(G) \le \delta(G) + 1$, where $\delta(G)$ denote the minimum degree of any vertex in G.

*The cycle C_m has an idomatic 3-partition if and only if 3 | m.

- \bowtie k-Idomatic-Partition (IkP) INSTANCE: A graph *G* = (*V*, *E*) QUESTION: Does *G* an idominating *k*-partition ?
- Idomatic-Partition (IP) INSTANCE: A graph G = (V, E)QUESTION: Does G an idominating partition ?
- Idomatic-k-Partition (kIP) INSTANCE: A graph G = (V, E) and a positive integer k QUESTION: Does G an idominating k-partition ?
- If kIP is NP-complete for some integer k, then (k + 1)IP is NP-complete.

- \bowtie k-Idomatic-Partition (IkP) INSTANCE: A graph *G* = (*V*, *E*) QUESTION: Does *G* an idominating *k*-partition ?
- ✓ Idomatic-Partition (IP) INSTANCE: A graph G = (V, E)QUESTION: Does G an idominating partition ?
- Idomatic-k-Partition (kIP) INSTANCE: A graph G = (V, E) and a positive integer k QUESTION: Does G an idominating k-partition ?
- ☑ If kIP is NP-complete for some integer k, then (k + 1)IP is NP-complete.

- \bowtie k-Idomatic-Partition (IkP) INSTANCE: A graph *G* = (*V*, *E*) QUESTION: Does *G* an idominating *k*-partition ?
- ✓ Idomatic-Partition (IP) INSTANCE: A graph G = (V, E)QUESTION: Does G an idominating partition ?
- Idomatic-k-Partition (kIP) INSTANCE: A graph G = (V, E) and a positive integer k QUESTION: Does G an idominating k-partition ?
- ☑ If kIP is NP-complete for some integer k, then (k + 1)IP is NP-complete.

- \bowtie k-Idomatic-Partition (IkP) INSTANCE: A graph *G* = (*V*, *E*) QUESTION: Does *G* an idominating *k*-partition ?
- ✓ Idomatic-Partition (IP) INSTANCE: A graph G = (V, E)QUESTION: Does G an idominating partition ?
- Idomatic-k-Partition (kIP) INSTANCE: A graph G = (V, E) and a positive integer k QUESTION: Does G an idominating k-partition ?
- □ If kIP is NP-complete for some integer k, then (k + 1)IP is NP-complete.

[Dunbar et al., 00]. Problem kIP is NP-complete for each $k \ge 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Complexity Results for the Idomatic Partition Problem [Dunbar et al., 00]. Problem kIP is NP-complete for each $k \ge 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Complexity Results for the Idomatic Partition Problem [Dunbar et al., 00]. Problem kIP is NP-complete for each $k \ge 3$

(reduction from NOT-ALL-EQUAL-3SAT).

Complexity Results for the Idomatic Partition Problem [Dunbar et al., 00]. Problem kIP is NP-complete for each $k \ge 3$

(reduction from NOT-ALL-EQUAL-3SAT).

[Dunbar et al., 00]. Problem kIP is NP-complete for each $k \ge 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Problems IP and IkP are NP-complete [Dunbar et al.,00].

Graph Products

- ⊠ The *direct product* $G \times H$ of two graphs G and H is defined by $V(G \times H) = V(G) \times V(H)$, and where two vertices $(u_1, u_2), (v_1, v_2)$ are joined by an edge in $E(G \times H)$ if $\{u_1, v_1\} \in E(G)$ and $\{u_2, v_2\} \in E(H)$.
- \boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from V(G) to V(H) which preserves adjacencies.
- A graph G is vertex-transitive if for any pair of vertices $a, b \in G$ there exists an automorphism ρ of G such that $\rho(a) = b$.
- ⊠ Let $[n] = \{0, 1, ..., n 1\}.$

Graph Products

⊠ The *direct product* $G \times H$ of two graphs G and H is defined by $V(G \times H) = V(G) \times V(H)$, and where two vertices $(u_1, u_2), (v_1, v_2)$ are joined by an edge in $E(G \times H)$ if $\{u_1, v_1\} \in E(G)$ and $\{u_2, v_2\} \in E(H)$.

- \boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from V(G) to V(H) which preserves adjacencies.
- ⊠ A graph *G* is vertex-transitive if for any pair of vertices $a, b \in G$ there exists an automorphism ρ of *G* such that $\rho(a) = b$.
- □ Let $[n] = \{0, 1, ..., n-1\}.$

Graph Products

- ⊠ The *direct product* $G \times H$ of two graphs G and H is defined by $V(G \times H) = V(G) \times V(H)$, and where two vertices $(u_1, u_2), (v_1, v_2)$ are joined by an edge in $E(G \times H)$ if $\{u_1, v_1\} \in E(G)$ and $\{u_2, v_2\} \in E(H)$.
- \boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from V(G) to V(H) which preserves adjacencies.
- ⊠ A graph *G* is vertex-transitive if for any pair of vertices $a, b \in G$ there exists an automorphism ρ of *G* such that $\rho(a) = b$.

⊠ Let $[n] = \{0, 1, ..., n - 1\}.$
Graph Products

- ⊠ The *direct product* $G \times H$ of two graphs G and H is defined by $V(G \times H) = V(G) \times V(H)$, and where two vertices $(u_1, u_2), (v_1, v_2)$ are joined by an edge in $E(G \times H)$ if $\{u_1, v_1\} \in E(G)$ and $\{u_2, v_2\} \in E(H)$.
- \boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from V(G) to V(H) which preserves adjacencies.
- \bowtie A graph *G* is vertex-transitive if for any pair of vertices *a*, *b* ∈ *G* there exists an automorphism ρ of *G* such that $\rho(a) = b$.

⊠ Let $[n] = \{0, 1, ..., n - 1\}.$

Graph Products

- ⊠ The *direct product* $G \times H$ of two graphs G and H is defined by $V(G \times H) = V(G) \times V(H)$, and where two vertices $(u_1, u_2), (v_1, v_2)$ are joined by an edge in $E(G \times H)$ if $\{u_1, v_1\} \in E(G)$ and $\{u_2, v_2\} \in E(H)$.
- \boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from V(G) to V(H) which preserves adjacencies.
- \bowtie A graph *G* is vertex-transitive if for any pair of vertices *a*, *b* ∈ *G* there exists an automorphism *ρ* of *G* such that ρ(a) = b.
- ⊠ Let $[n] = \{0, 1, ..., n 1\}.$

⊠ Observation. Let *I* be an idomatic set of $K_{n_0} \times K_{n_1}$. Then, $I = \Pr_i^{-1}(v)$, where $i \in [1]$ and $v \in [n_i]$.

⊠ Observation. Let *I* be an idomatic set of $K_{n_0} \times K_{n_1}$. Then, $I = \Pr_i^{-1}(v)$, where $i \in [1]$ and $v \in [n_i]$.

(0,i)

(0,j)

⊠ Observation. Let *I* be an idomatic set of $K_{n_0} \times K_{n_1}$. Then, $I = \Pr_i^{-1}(v)$, where $i \in [1]$ and $v \in [n_i]$.

.

▷ Observation. Let *I* be an idomatic set of $K_{n_0} \times K_{n_1}$. Then, $I = \Pr_i^{-1}(v)$, where $i \in [1]$ and $v \in [n_i]$. (0,i) (0,j) (0,j) (a,b)

⊠ Observation. Let *I* be an idomatic set of $K_{n_0} \times K_{n_1}$. Then, $I = \Pr_i^{-1}(v)$, where $i \in [1]$ and $v \in [n_i]$.

$$\begin{array}{rcl} (0,i) & (0,0) \\ (0,j) & = & (0,1) \\ \vdots & \vdots \\ & & (0,n-1) \end{array} = \Pr_1(0)^{-1}$$

[Dunbar et al., 00] For any integers $m, n \ge 2$, $K_m \times K_n$ has only idomatic k-partitions, where $k \in \{m, n\}$.

Idomatic partitions of $\times_{i=0}^{2} K_{n_i}$

\boxtimes **Ex.** The graph $K_2 \times K_3 \times K_4$ has an idomatic 6-partition.

Question. For which values of k there exists an idomatic k-partition of the direct product of three or more complete graphs ? Idomatic partitions of $\times_{i=0}^{2} K_{n_i}$

 $\boxtimes \text{ Ex. The graph } K_2 \times K_3 \times K_4 \text{ has an idomatic 6-partition.}$ (0,0,0) (0,1,0) (0,2,0) (0,0,2) (0,1,2) (0,2,2)(0,1,1) (0,2,1) (0,0,1) (0,1,3) (0,2,3) (0,0,3)(1,0,1) (1,1,1) (1,2,1) (1,0,3) (1,1,3) (1,2,3)(1,1,0) (1,2,0) (1,0,0) (1,1,2) (1,2,2) (1,0,2)(1,0,2) (

Question. For which values of k there exists an idomatic k-partition of the direct product of three or more complete graphs ? Idomatic partitions of $\times_{i=0}^{2} K_{n_i}$

- $\boxtimes \text{ Ex. The graph } K_2 \times K_3 \times K_4 \text{ has an idomatic 6-partition.}$ (0,0,0) (0,1,0) (0,2,0) (0,0,2) (0,1,2) (0,2,2)(0,1,1) (0,2,1) (0,0,1) (0,1,3) (0,2,3) (0,0,3)(1,0,1) (1,1,1) (1,2,1) (1,0,3) (1,1,3) (1,2,3)(1,1,0) (1,2,0) (1,0,0) (1,1,2) (1,2,2) (1,0,2)(1,0,2) (
- Question. For which values of k there exists an idomatic k-partition of the direct product of three or more complete graphs ?

- ⊠ Let Γ be a group and C a subset of Γ (i.e. *the connector set*) closed under inverses and identity free. The *Cayley graph* Cay(Γ , C) is the graph with Γ as its vertex set, two vertices u and v being joined by an edge if and only if $u^{-1}v \in C$. Ex. cycles, complete graphs, etc. Cayley graphs constitute a rich class of vertex-transitive graphs.
- ⊠ Let $t \ge 1$ be an integer and let $n_1, n_2, ..., n_t$ be positive integers. The graph $G = K_{n_1} \times K_{n_2} \times ... \times K_{n_t}$ can be seen as the Cayley graph of the direct product group $\mathcal{G} = Z_{n_1} \times Z_{n_2} \times ... \times Z_{n_t}$ with connector set $[n_1] \setminus \{0\} \times ... \times [n_t] \setminus \{0\}$, where Z_{n_i} denotes the additive cyclic group of integers modulo n_i .

- ⊠ Let Γ be a group and C a subset of Γ (i.e. *the connector set*) closed under inverses and identity free. The *Cayley graph* Cay(Γ , C) is the graph with Γ as its vertex set, two vertices u and v being joined by an edge if and only if $u^{-1}v \in C$. Ex. cycles, complete graphs, etc. Cayley graphs constitute a rich class of vertex-transitive graphs.
- ⊠ Let $t \ge 1$ be an integer and let $n_1, n_2, ..., n_t$ be positive integers. The graph $G = K_{n_1} \times K_{n_2} \times ... \times K_{n_t}$ can be seen as the Cayley graph of the direct product group $\mathcal{G} = Z_{n_1} \times Z_{n_2} \times ... \times Z_{n_t}$ with connector set $[n_1] \setminus \{0\} \times ... \times [n_t] \setminus \{0\}$, where Z_{n_i} denotes the additive cyclic group of integers modulo n_i .

- ⊠ H_1 : Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let *I* be an independent dominating set in *G*. If the set *I* contains at least two vertices of *G* agreeing in exactly two positions, then *I* is equal to the set $[n_s] \times \{i\} \times [n_t]$ for some $i \in [n_p]$, with $s, t, p \in [3]$ and s, t and p pairwise different.
- ⊠ H_2 : Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let I be an independent set of G such that no two vertices in it agreeing in exactly two positions. Thus, the set I is a dominating set of G if and only if

 $I = \{ (\alpha_0, \alpha_1, \alpha_2), (\alpha_0, \beta_1, \beta_2), (\beta_0, \alpha_1, \beta_2), (\beta_0, \beta_1, \alpha_2) \},\$

for some $\alpha_i, \beta_i \in [n_i]$, with $\alpha_i \neq \beta_i$ and $i \in [3]$.

- ⊠ H_1 : Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let I be an independent dominating set in G. If the set I contains at least two vertices of G agreeing in exactly two positions, then I is equal to the set $[n_s] \times \{i\} \times [n_t]$ for some $i \in [n_p]$, with $s, t, p \in [3]$ and s, t and p pairwise different.
- ⊠ H_2 : Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let I be an independent set of G such that no two vertices in it agreeing in exactly two positions. Thus, the set I is a dominating set of G if and only if

 $I = \{ (\alpha_0, \alpha_1, \alpha_2), (\alpha_0, \beta_1, \beta_2), (\beta_0, \alpha_1, \beta_2), (\beta_0, \beta_1, \alpha_2) \},\$

for some $\alpha_i, \beta_i \in [n_i]$, with $\alpha_i \neq \beta_i$ and $i \in [3]$.

- ⊠ **Def.** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let *I* be an independent dominating set in *G*. The set *I* is said to be of **Type A** if it verifies the hypothesis H_1 and it is said to be of **Type B** if it verifies the hypothesis H_2 .
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let *I* be an independent set in *G*. Then, *I* is also a dominating set in *G* if and only if it is of Type A or Type B.

- ⊠ **Def.** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let *I* be an independent dominating set in *G*. The set *I* is said to be of **Type A** if it verifies the hypothesis H_1 and it is said to be of **Type B** if it verifies the hypothesis H_2 .
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let I be an independent set in G. Then, I is also a dominating set in G if and only if it is of Type A or Type B.

- ⊠ **Def.:** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let G_1, G_2, \ldots, G_t be an idomatic *t*-partition of *G*, with t > 1. Such an idomatic partition is called
 - of **Type A**: If all independent dominating sets *G_i* are of Type A.
 - of **Type B**: If all independent dominating sets *G_i* are of **Type** B.
 - of **Type C**: If there is at least one independent dominating set G_i of Type A, and at least one independent dominating set G_j of Type B, with $i \neq j$.

- ⊠ **Def.:** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let G_1, G_2, \ldots, G_t be an idomatic *t*-partition of *G*, with t > 1. Such an idomatic partition is called
 - of **Type A**: If all independent dominating sets *G_i* are of **Type** A.
 - of **Type B**: If all independent dominating sets *G_i* are of **Type** B.
 - of **Type C**: If there is at least one independent dominating set G_i of Type A, and at least one independent dominating set G_j of Type B, with $i \neq j$.

- ⊠ **Def.:** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let G_1, G_2, \ldots, G_t be an idomatic *t*-partition of *G*, with t > 1. Such an idomatic partition is called
 - of **Type A**: If all independent dominating sets *G_i* are of **Type** A.
 - of **Type B**: If all independent dominating sets *G_i* are of Type B.
 - of **Type C**: If there is at least one independent dominating set G_i of Type A, and at least one independent dominating set G_j of Type B, with $i \neq j$.

- ⊠ **Def.:** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let G_1, G_2, \ldots, G_t be an idomatic *t*-partition of *G*, with t > 1. Such an idomatic partition is called
 - of **Type A**: If all independent dominating sets *G_i* are of Type A.
 - of **Type B**: If all independent dominating sets *G_i* are of Type B.
 - of **Type C**: If there is at least one independent dominating set G_i of Type A, and at least one independent dominating set G_j of Type B, with $i \neq j$.

- ⊠ **Def.:** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let G_1, G_2, \ldots, G_t be an idomatic *t*-partition of *G*, with t > 1. Such an idomatic partition is called
 - of **Type A**: If all independent dominating sets *G_i* are of Type A.
 - of **Type B**: If all independent dominating sets *G_i* are of Type B.
 - of **Type C**: If there is at least one independent dominating set G_i of Type A, and at least one independent dominating set G_j of Type B, with $i \neq j$.

(0,2,0), (0,2,1), (0,2,2), (0,2,3), (1,2,0), (1,2,1), (1,2,2), (1,2,3)

- ⊠ **Def.:** Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let G_1, G_2, \ldots, G_t be an idomatic *t*-partition of *G*, with t > 1. Such an idomatic partition is called
 - of **Type A**: If all independent dominating sets *G_i* are of Type A.
 - of **Type B**: If all independent dominating sets *G_i* are of Type B.
 - of **Type C**: If there is at least one independent dominating set G_i of Type A, and at least one independent dominating set G_j of Type B, with $i \neq j$.

(0,2,0),(0,2,1),(0,2,2),(0,2,3),(1,2,0),(1,2,1),(1,2,2),(1,2,3)

- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. Then, G has an idomatic n_i -partition of Type A for each $i \in [3]$. Moreover, such partitions are the only idomatic partitions of Type A of G.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_j \ge 2$. If G has an idomatic partition of Type B then there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even, then G has an idomatic partition of Type B of order $\frac{n_0.n_1.n_2}{4}$.

- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. Then, G has an idomatic n_i -partition of Type A for each $i \in [3]$. Moreover, such partitions are the only idomatic partitions of Type A of G.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If G has an idomatic partition of Type B then there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even, then G has an idomatic partition of Type B of order $\frac{n_0.n_1.n_2}{4}$.

- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. Then, G has an idomatic n_i -partition of Type A for each $i \in [3]$. Moreover, such partitions are the only idomatic partitions of Type A of G.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If G has an idomatic partition of Type B then there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even, then G has an idomatic partition of Type B of order $\frac{n_0.n_1.n_2}{4}$.

 \boxtimes Let n_1, n_2 be even and let $\mathcal{G} = \mathbb{Z}_{n_0} \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ be a group.

- ⊠ Let $\langle a_i \rangle$ be a cyclic subgroup of order $n_i/2$ in \mathbb{Z}_{n_i} , for i = 1, 2.
- ⊠ Let $\mathcal{P} = <(1,0,0) > . <(0,a_1,0) > . <(0,0,a_2) >$ be the subgroup of \mathcal{G} induced by the join of the cyclic subgroups $<(1,0,0) >, <(0,a_1,0) >$ and $<(0,0,a_2) >$ of \mathcal{G} .
- ⊠ Let $\mathcal{P} = \{p_1, \ldots, p_r\}$, with $p_1 = (0, 0, 0)$ and $r = \prod n_i/4$. Then, \mathcal{P} , $\mathcal{P} + (0, 1, 1)$, $\mathcal{P} + (1, 0, 1)$, and $\mathcal{P} + (1, 1, 0)$ is a partition of \mathcal{G} into cosets of \mathcal{P} .
- $\boxtimes \times K_{n_i} \cong \operatorname{Cay}(\times \mathbb{Z}_{n_i}, \times ([n_i] \setminus \{0\})). \text{ Indeed, for any vertices} a, b, c \in \times K_{n_i}, \text{ we have that that } a + b \sim a + c \text{ iff } b \sim c.$

- \square Let n_1, n_2 be even and let $\mathcal{G} = \mathbb{Z}_{n_0} \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ be a group.
- ▷ Let $\langle a_i \rangle$ be a cyclic subgroup of order $n_i/2$ in \mathbb{Z}_{n_i} , for i = 1, 2.
- ⊠ Let $\mathcal{P} = \{p_1, \ldots, p_r\}$, with $p_1 = (0, 0, 0)$ and $r = \prod n_i/4$. Then, \mathcal{P} , $\mathcal{P} + (0, 1, 1)$, $\mathcal{P} + (1, 0, 1)$, and $\mathcal{P} + (1, 1, 0)$ is a partition of \mathcal{G} into cosets of \mathcal{P} .
- $\boxtimes \times K_{n_i} \cong \operatorname{Cay}(\times \mathbb{Z}_{n_i}, \times ([n_i] \setminus \{0\})). \text{ Indeed, for any vertices} a, b, c \in \times K_{n_i}, \text{ we have that that } a + b \sim a + c \text{ iff } b \sim c.$

- \square Let n_1, n_2 be even and let $\mathcal{G} = \mathbb{Z}_{n_0} \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ be a group.
- ▷ Let $\langle a_i \rangle$ be a cyclic subgroup of order $n_i/2$ in \mathbb{Z}_{n_i} , for i = 1, 2.
- ⊠ Let $\mathcal{P} = \{p_1, \ldots, p_r\}$, with $p_1 = (0, 0, 0)$ and $r = \prod n_i/4$. Then, \mathcal{P} , $\mathcal{P} + (0, 1, 1)$, $\mathcal{P} + (1, 0, 1)$, and $\mathcal{P} + (1, 1, 0)$ is a partition of \mathcal{G} into cosets of \mathcal{P} .
- $\boxtimes \times K_{n_i} \cong \operatorname{Cay}(\times \mathbb{Z}_{n_i}, \times ([n_i] \setminus \{0\})). \text{ Indeed, for any vertices} a, b, c \in \times K_{n_i}, \text{ we have that that } a + b \sim a + c \text{ iff } b \sim c.$

- \boxtimes Let n_1, n_2 be even and let $\mathcal{G} = \mathbb{Z}_{n_0} \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ be a group.
- \boxtimes Let $\langle a_i \rangle$ be a cyclic subgroup of order $n_i/2$ in \mathbb{Z}_{n_i} , for i = 1, 2.
- $\boxtimes \text{ Let } \mathcal{P} = \{p_1, \dots, p_r\}, \text{ with } p_1 = (0, 0, 0) \text{ and } r = \prod n_i/4.$ Then, $\mathcal{P}, \mathcal{P} + (0, 1, 1), \mathcal{P} + (1, 0, 1), \text{ and } \mathcal{P} + (1, 1, 0) \text{ is a partition of } \mathcal{G} \text{ into cosets of } \mathcal{P}.$
- $\boxtimes \times K_{n_i} \cong \operatorname{Cay}(\times \mathbb{Z}_{n_i}, \times ([n_i] \setminus \{0\})). \text{ Indeed, for any vertices} \\ a, b, c \in \times K_{n_i}, \text{ we have that that } a + b \sim a + c \text{ iff } b \sim c.$

- \boxtimes Let n_1, n_2 be even and let $\mathcal{G} = \mathbb{Z}_{n_0} \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ be a group.
- \boxtimes Let $\langle a_i \rangle$ be a cyclic subgroup of order $n_i/2$ in \mathbb{Z}_{n_i} , for i = 1, 2.
- ⊠ Let $\mathcal{P} = \{p_1, \ldots, p_r\}$, with $p_1 = (0, 0, 0)$ and $r = \prod n_i/4$. Then, \mathcal{P} , $\mathcal{P} + (0, 1, 1)$, $\mathcal{P} + (1, 0, 1)$, and $\mathcal{P} + (1, 1, 0)$ is a partition of \mathcal{G} into cosets of \mathcal{P} .
- $\boxtimes \times K_{n_i} \cong \operatorname{Cay}(\times \mathbb{Z}_{n_i}, \times([n_i] \setminus \{0\}))$. Indeed, for any vertices $a, b, c \in \times K_{n_i}$, we have that that $a + b \sim a + c$ iff $b \sim c$.

- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. Then, G has an idomatic partition of Type B if and only if there exist $j, k \in [3]$, with $j \ne k$, such that n_i and n_k are both even.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let q_1, q_2 be two positive integers. Then, G has an idomatic $(q_1 + q_2)$ -partition of Type C if and only if there exists $i \in [3]$ such that $n_i - q_1 > 1$ and $K_{n_j} \times K_{n_k} \times K_{n_i - q_1}$ admits an idomatic q_2 -partition of Type B, with $j, k, i \in [3]$ and j, k, i pairwise different.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If \mathcal{I} is an idomatic partition of G, then \mathcal{I} must be of Type A, B or C.

- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. Then, G has an idomatic partition of Type B if and only if there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let q_1, q_2 be two positive integers. Then, G has an idomatic $(q_1 + q_2)$ -partition of Type C if and only if there exists $i \in [3]$ such that $n_i - q_1 > 1$ and $K_{n_j} \times K_{n_k} \times K_{n_i - q_1}$ admits an idomatic q_2 -partition of Type B, with $j, k, i \in [3]$ and j, k, i pairwise different.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If \mathcal{I} is an idomatic partition of G, then \mathcal{I} must be of Type A, B or C.

- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. Then, G has an idomatic partition of Type B if and only if there exist $j, k \in [3]$, with $j \ne k$, such that n_j and n_k are both even.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$, and let q_1, q_2 be two positive integers. Then, G has an idomatic $(q_1 + q_2)$ -partition of Type C if and only if there exists $i \in [3]$ such that $n_i - q_1 > 1$ and $K_{n_j} \times K_{n_k} \times K_{n_i - q_1}$ admits an idomatic q_2 -partition of Type B, with $j, k, i \in [3]$ and j, k, i pairwise different.
- ⊠ Let $G = K_{n_0} \times K_{n_1} \times K_{n_2}$, with $n_i \ge 2$. If \mathcal{I} is an idomatic partition of G, then \mathcal{I} must be of Type A, B or C.

Idomatic number of $\times_{i=0}^{2} k_{n_i}$

⊠ Let $G = \times_{i=0}^{2} k_{n_i}$, with $n_i \ge 2$, and let id(G) denote the idomatic number of graph *G*. Let $t = \max\{n_0, n_1, n_2\}$. Then,

If n_i is an odd integer for all i ∈ [3], then id(G) = t.
 If n_i is an even integer and n_j ≤ n_k are odd integers, with i, j, k ∈ [3] and i, j and k pairwise different, then id(G) = max{t, n_i.n_j.(n_k-1)/4 + 1}.
 If n_i and n_j are even integers, with i, j ∈ [3] and i ≠ j, then id(G) = n_i.n_j.n_k.

Idomatic number of $\times_{i=0}^{2} k_{n_i}$

▷ Let $G = \times_{i=0}^{2} k_{n_i}$, with $n_i \ge 2$, and let id(G) denote the idomatic number of graph G. Let $t = \max\{n_0, n_1, n_2\}$. Then,

- 1. If n_i is an odd integer for all $i \in [3]$, then id(G) = t.
- If n_i is an even integer and n_j ≤ n_k are odd integers, with i, j, k ∈ [3] and i, j and k pairwise different, then id(G) = max{t, n_i.n_j.(n_k-1)/4 + 1}.
 If n_i and n_j are even integers, with i, j ∈ [3] and i ≠ j, then id(G) = n_i.n_j.n_k.
Idomatic number of $\times_{i=0}^{2} k_{n_i}$

□ Let G = ×²_{i=0}k_{ni}, with n_i ≥ 2, and let id(G) denote the idomatic number of graph G. Let t = max{n₀, n₁, n₂}. Then,
1. If n_i is an odd integer for all i ∈ [3], then id(G) = t.
2. If n_i is an even integer and n_j ≤ n_k are odd integers, with i, j, k ∈ [3] and i, j and k pairwise different, then id(G) = max{t, n_i:n_j.(n_k-1)/4 + 1}.
3. If n_i and n_j are even integers, with i, j ∈ [3] and i ≠ j, then id(G) = max(G) = max (A) = max(A) = max(A

Idomatic number of $\times_{i=0}^{2} k_{n_i}$

$$\boxtimes \text{ Let } G = \times_{i=1}^{k} K_{n_i} \text{ and let } u = (u_1, \dots, u_k) \text{ and } v = (v_1, \dots, v_k) \text{ be vertices of } G. \text{ Then let } e(u, v) = |\{i : u_i = v_i\}|. \text{ Thus } u \sim v \text{ iff } e(u, v) = 0.$$

- ⊠ Let $X \subset V(G)$ and let $\{e(u, v) : u, v \in X, u \neq v\} = \{j_1, \dots, j_r\}$. Then, we say that X is a $T_{\{j_1,\dots,j_r\}}$ -set.
- ⊠ [Klavzar et al.,10] if *I* is an idomatic set of $\times_{i=0}^{3} K_{n_i}$ then, *I* is either a $T_{\{1\}}$ or $T_{\{1,2\}}$ or $T_{\{1,2,3\}}$ -set. Indeed, for each one of these *T* sets, there exists an idomatic partition of *G* composed of such *T* sets.
- [Conjecture 1] For k > 3, if I is an idomatic set of $G = \times_{i=0}^{k} K_{n_i}$ then, I is a $T_{\{1,...,i\}}$ for some $1 \le i < k$. Indeed, for each i, there exists an idomatic $T_{\{1,...,i\}}$ -set and there exists an idomatic partition of G composed of such T sets.

$$\mathbb{E} \text{ Let } G = \times_{i=1}^{k} K_{n_i} \text{ and let } u = (u_1, \dots, u_k) \text{ and } \\ v = (v_1, \dots, v_k) \text{ be vertices of } G. \text{ Then let } \\ e(u, v) = |\{i : u_i = v_i\}|. \text{ Thus } u \sim v \text{ iff } e(u, v) = 0.$$

- ⊠ Let $X \subset V(G)$ and let { $e(u, v) : u, v \in X, u \neq v$ } = { $j_1, ..., j_r$ }. Then, we say that X is a $T_{\{j_1,...,j_r\}}$ -set.
- ⊠ [Klavzar et al.,10] if *I* is an idomatic set of $\times_{i=0}^{3} K_{n_i}$ then, *I* is either a $T_{\{1\}}$ or $T_{\{1,2\}}$ or $T_{\{1,2,3\}}$ -set. Indeed, for each one of these *T* sets, there exists an idomatic partition of *G* composed of such *T* sets.
- ⊠ [Conjecture 1] For k > 3, if *I* is an idomatic set of $G = \times_{i=0}^{k} K_{n_i}$ then, *I* is a $T_{\{1,...,i\}}$ for some $1 \le i < k$. Indeed, for each *i*, there exists an idomatic $T_{\{1,...,i\}}$ -set and there exists an idomatic partition of *G* composed of such *T* sets.

$$\mathbb{E} \text{ Let } G = \times_{i=1}^{k} K_{n_i} \text{ and let } u = (u_1, \dots, u_k) \text{ and } \\ v = (v_1, \dots, v_k) \text{ be vertices of } G. \text{ Then let } \\ e(u, v) = |\{i : u_i = v_i\}|. \text{ Thus } u \sim v \text{ iff } e(u, v) = 0.$$

- ⊠ Let $X \subset V(G)$ and let { $e(u, v) : u, v \in X, u \neq v$ } = { $j_1, ..., j_r$ }. Then, we say that X is a $T_{\{j_1,...,j_r\}}$ -set.
- \boxtimes [Klavzar et al.,10] if *I* is an idomatic set of $\times_{i=0}^{3} K_{n_i}$ then, *I* is either a $T_{\{1\}}$ or $T_{\{1,2\}}$ or $T_{\{1,2\}}$ -set. Indeed, for each one of these *T* sets, there exists an idomatic partition of *G* composed of such *T* sets.
- ⊠ [Conjecture 1] For k > 3, if *I* is an idomatic set of $G = \times_{i=0}^{k} K_{n_i}$ then, *I* is a $T_{\{1,...,i\}}$ for some $1 \le i < k$. Indeed, for each *i*, there exists an idomatic $T_{\{1,...,i\}}$ -set and there exists an idomatic partition of *G* composed of such *T* sets.

$$\mathbb{E} \text{ Let } G = \times_{i=1}^{k} K_{n_i} \text{ and let } u = (u_1, \dots, u_k) \text{ and } \\ v = (v_1, \dots, v_k) \text{ be vertices of } G. \text{ Then let } \\ e(u, v) = |\{i : u_i = v_i\}|. \text{ Thus } u \sim v \text{ iff } e(u, v) = 0.$$

- ⊠ Let $X \subset V(G)$ and let $\{e(u, v) : u, v \in X, u \neq v\} = \{j_1, \dots, j_r\}$. Then, we say that X is a $T_{\{j_1,\dots,j_r\}}$ -set.
- ⊠ [Klavzar et al.,10] if *I* is an idomatic set of $\times_{i=0}^{3} K_{n_i}$ then, *I* is either a $T_{\{1\}}$ or $T_{\{1,2\}}$ or $T_{\{1,2,3\}}$ -set. Indeed, for each one of these *T* sets, there exists an idomatic partition of *G* composed of such *T* sets.
- \boxtimes [Conjecture 1] For k > 3, if I is an idomatic set of $G = \times_{i=0}^{k} K_{n_i}$ then, I is a $T_{\{1,...,i\}}$ for some $1 \le i < k$. Indeed, for each i, there exists an idomatic $T_{\{1,...,i\}}$ -set and there exists an idomatic partition of G composed of such T sets.

Solution So

Forbidden Configurations for b-colorings:

⊠ [Problem] Let $G = \times_{i=1}^{k} K_{n_i}$, with k > 2 and $n_i \ge 2$. Is it any b-coloring of G an idomatic partition of G ?

- Solution So
- ☑ Forbidden Configurations for b-colorings:

⊠ [Problem] Let $G = \times_{i=1}^{k} K_{n_i}$, with k > 2 and $n_i \ge 2$. Is it any b-coloring of G an idomatic partition of G ?

- Solution So
- ☑ Forbidden Configurations for b-colorings:

Configuration A

Configuration B

⊠ [Problem] Let $G = \times_{i=1}^{k} K_{n_i}$, with k > 2 and $n_i \ge 2$. Is it any b-coloring of G an idomatic partition of G ?

- Solution So
- ☑ Forbidden Configurations for b-colorings:

Configuration A Configuration B $\boxtimes \text{ [Problem] Let } G = \times_{i=1}^{k} K_{n_i} \text{, with } k > 2 \text{ and } n_i \ge 2. \text{ Is it any b-coloring of } G \text{ an idomatic partition of } G \text{ ?}$

Thank You !