Partitions of direct products of complete graphs into independent dominating sets

Mario Valencia-Pabon

Université Paris-Nord, Paris, France

Séminaire CALIN, 2010

Domination in graphs

\boxtimes Let $G=(V, E)$ be a finite undirected graph without loops. A set $S \subseteq V$ is called a dominating set of G if for every vertex $v \in V \backslash S$ there exists a vertex $u \in S$ such that u is adjacent to v.

Domination in graphs

\boxtimes Let $G=(V, E)$ be a finite undirected graph without loops. A set $S \subseteq V$ is called a dominating set of G if for every vertex $v \in V \backslash S$ there exists a vertex $u \in S$ such that u is adjacent to v.
\boxtimes Example

The minimum cardinality of a dominating set in a graph G is called the domination number of G and is denoted A set $S \subset V$ is called adjacent. The minimum cardinality of an independent dominating set in a granh is called the

Domination in graphs

\boxtimes Let $G=(V, E)$ be a finite undirected graph without loops. A set $S \subseteq V$ is called a dominating set of G if for every vertex $v \in V \backslash S$ there exists a vertex $u \in S$ such that u is adjacent to v.
\boxtimes Example

\boxtimes The minimum cardinality of a dominating set in a graph G is called the domination number of \boldsymbol{G}, and is denoted $\gamma(G)$.
adjacent. The minimum cardinality of an independent
dominatino set in a oranh is called the

Domination in graphs

\boxtimes Let $G=(V, E)$ be a finite undirected graph without loops. A set $S \subseteq V$ is called a dominating set of G if for every vertex $v \in V \backslash S$ there exists a vertex $u \in S$ such that u is adjacent to v.
\boxtimes Example

\boxtimes The minimum cardinality of a dominating set in a graph G is called the domination number of \boldsymbol{G}, and is denoted $\gamma(G)$.
$\boxtimes \mathrm{A}$ set $S \subseteq V$ is called independent if no two vertices in S are adjacent. The minimum cardinality of an independent dominating set in a graph is called the independent domination number of G and is denoted $i(G)$.

Mathematical History of Domination in Graphs

\boxtimes In 1862 C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
the late 1800s studied, among others, the following problems:

Mathematical History of Domination in Graphs

$\boxtimes \operatorname{In} 1862$ C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
\boxtimes In 1892 W. W. Rouse Ball reported that chess enthusiast in the late 1800s studied, among others, the following problems:
given type which are necessary to
every square of an $n \times n$ board

Mathematical History of Domination in Graphs

$\boxtimes \operatorname{In} 1862$ C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
\boxtimes In 1892 W. W. Rouse Ball reported that chess enthusiast in the late 1800s studied, among others, the following problems:

* Covering: what is the minimum number of chess pieces of a given type which are necessary to cover / attack / dominate every square of an $n \times n$ board ? (Ex. of min. dominating set).

Mathematical History of Domination in Graphs

$\boxtimes \operatorname{In} 1862$ C. F. De Jaenisch studied the problem of determining the minimum number of queens which are necessary to cover (or dominate) an $n \times n$ chessboard.
\boxtimes In 1892 W. W. Rouse Ball reported that chess enthusiast in the late 1800s studied, among others, the following problems:

* Covering: what is the minimum number of chess pieces of a given type which are necessary to cover / attack / dominate every square of an $n \times n$ board ? (Ex. of min. dominating set).
* Independent Covering: what is the minimum number of mutually non-attacking chess pieces of a given type which are necessary to dominate every square of a $n \times n$ board ? (Ex. of min. ind. dominating set).

Mathematical History of Domination in Graphs (2)

\boxtimes In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.

Mathematical History of Domination in Graphs (2)

\boxtimes In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
$\boxtimes \ln 1958$ C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
survey of the few results known at that time about

Mathematical History of Domination in Graphs (2)

\boxtimes In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
$\boxtimes \ln 1958$ C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
\boxtimes In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

Mathematical History of Domination in Graphs (2)

\boxtimes In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
$\boxtimes \ln 1958$ C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
\boxtimes In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

Bibliography

Mathematical History of Domination in Graphs (2)

\boxtimes In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
$\boxtimes \ln 1958$ C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
\boxtimes In 1977 E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

Bibliography

\boxtimes T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.

Mathematical History of Domination in Graphs (2)

\boxtimes In 1964, A. M. Yaglom and I. M. Yaglom produced elegant solutions to some of previous problems for the rooks, knights, kings and bishops chess pieces.
$\boxtimes \ln 1958$ C. Berge defined for the first time the concept of the domination number of a graph (see also O. Ore 1962).
$\boxtimes \operatorname{In} 1977$ E. J. Cockayne and S. T. Hedetniemi published a survey of the few results known at that time about dominating sets in graphs.

Bibliography

\boxtimes T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
\boxtimes T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Domination in graphs: advanced topics, Marcel Dekker, New York, 1998.

Complexity results for the Min. Dominating Set Problem

DOMINATING SET
INSTANCE: A graph $G=(V, E)$ and positive integer k
QUESTION: Does G a dominating set of size $\leq k$?

Complexity results for the Min. Dominating Set Problem

DOMINATING SET
INSTANCE: A graph $G=(V, E)$ and positive integer k
QUESTION: Does G a dominating set of size $\leq k$?
[Garey and Johnson, 1979] DOMINATING SET is
NP-complete (reduction from 3-SAT).

Complexity results for the Min. Dominating Set Problem

DOMINATING SET

INSTANCE: A graph $G=(V, E)$ and positive integer k
QUESTION: Does G a dominating set of size $\leq k$?
[Garey and Johnson, 1979] DOMINATING SET is
NP-complete (reduction from 3-SAT).

It is approximable within a
it is not approximable within a

Complexity results for the Min. Dominating Set Problem

DOMINATING SET

INSTANCE: A graph $G=(V, E)$ and positive integer k
QUESTION: Does G a dominating set of size $\leq k$?
[Garey and Johnson, 1979] DOMINATING SET is
NP-complete (reduction from 3-SAT).

It is approximable within a $1+\ln |V|$ factor [Johnson, 74], but it is not approximable within a $(1-\epsilon) \ln |V|$ factor, for any $\epsilon>0$, unless NP \subseteq DTIME $\left(|V|^{O(\ln \ln |V|)}\right)$ [Feige, 98].

Domatic Partitions in Graphs

- [Cockayne and Hedetniemi, 1977]. The domatic number d(G) of a graph $G=(V, E)$ is the maximum order of a partition of V into dominating sets.

Domatic Partitions in Graphs

- [Cockayne and Hedetniemi, 1977]. The domatic number $d(G)$ of a graph $G=(V, E)$ is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The idomatic number $\operatorname{id}(G)$ of a graph $G=(V, E)$ is the maximum order of a partition of V into independent dominating sets (if there exists one).

Domatic Partitions in Graphs

- [Cockayne and Hedetniemi, 1977]. The domatic number $d(G)$ of a graph $G=(V, E)$ is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The idomatic number id (G) of a graph $G=(V, E)$ is the maximum order of a partition of V into independent dominating sets (if there exists one).

where
denote the

Domatic Partitions in Graphs

- [Cockayne and Hedetniemi, 1977]. The domatic number $d(G)$ of a graph $G=(V, E)$ is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The idomatic number id (G) of a graph $G=(V, E)$ is the maximum order of a partition of V into independent dominating sets (if there exists one).

* Trivially, $i d(G) \leq \delta(G)+1$, where $\delta(G)$ denote the minimum degree of any vertex in G.

Domatic Partitions in Graphs

- [Cockayne and Hedetniemi, 1977]. The domatic number $d(G)$ of a graph $G=(V, E)$ is the maximum order of a partition of V into dominating sets.
- [Cockayne and Hedetniemi, 1977], [Zelinka, 1983]. The idomatic number id (G) of a graph $G=(V, E)$ is the maximum order of a partition of V into independent dominating sets (if there exists one).

* Trivially, $i d(G) \leq \delta(G)+1$, where $\delta(G)$ denote the minimum degree of any vertex in G.
\star The cycle C_{m} has an idomatic 3-partition if and only if $3 \mid \mathrm{m}$.

Complexity Results for the Idomatic Partition Problem

\boxtimes k-Idomatic-Partition (IkP)
INSTANCE: A graph $G=(V, E)$
QUESTION: Does G an idominating k-partition ?

Complexity Results for the Idomatic Partition Problem

\boxtimes k-Idomatic-Partition (IkP)
INSTANCE: A graph $G=(V, E)$
QUESTION: Does G an idominating k-partition ?
\boxtimes Idomatic-Partition (IP)
INSTANCE: A graph $G=(V, E)$
QUESTION: Does G an idominating partition ?

If $k I P$ is NP-complete for some integer k, then
NP-romnlete

Complexity Results for the Idomatic Partition Problem

\boxtimes k-Idomatic-Partition (IkP)
INSTANCE: A graph $G=(V, E)$
QUESTION: Does G an idominating k-partition ?

- Idomatic-Partition (IP)

INSTANCE: A graph $G=(V, E)$
QUESTION: Does G an idominating partition ?
\boxtimes Idomatic-k-Partition (kIP)
INSTANCE: A graph $G=(V, E)$ and a positive integer k QUESTION: Does G an idominating k-partition ?

If $k I P$ is NP-complete for some integer k, then
NP-complete

Complexity Results for the Idomatic Partition Problem

\boxtimes k-Idomatic-Partition (IkP) INSTANCE: A graph $G=(V, E)$
QUESTION: Does G an idominating k-partition ?
\boxtimes Idomatic-Partition (IP)
INSTANCE: A graph $G=(V, E)$
QUESTION: Does G an idominating partition ?
\boxtimes Idomatic-k-Partition (kIP)
INSTANCE: A graph $G=(V, E)$ and a positive integer k QUESTION: Does G an idominating k-partition ?
\boxtimes If kIP is NP-complete for some integer k, then $(k+1)$ IP is NP-complete.

Complexity Results for the Idomatic Partition Problem

[Dunbar et al., 00]. Problem kIP is NP-complete for each $k \geq 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Complexity Results for the Idomatic Partition Problem

[Dunbar et al., 00]. Problem kIP is NP-complete for each $k \geq 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Complexity Results for the Idomatic Partition Problem

[Dunbar et al., 00]. Problem kIP is NP-complete for each $k \geq 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Complexity Results for the Idomatic Partition Problem

[Dunbar et al., 00]. Problem kIP is NP-complete for each $k \geq 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Complexity Results for the Idomatic Partition Problem

[Dunbar et al., 00]. Problem kIP is NP-complete for each $k \geq 3$ (reduction from NOT-ALL-EQUAL-3SAT).

Problems IP and IkP are NP-complete [Dunbar et al.,00].

Graph Products

\boxtimes The direct product $G \times H$ of two graphs G and H is defined by $V(G \times H)=V(G) \times V(H)$, and where two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are joined by an edge in $E(G \times H)$ if $\left\{u_{1}, v_{1}\right\} \in E(G)$ and $\left\{u_{2}, v_{2}\right\} \in E(H)$.

Graph Products

\boxtimes The direct product $G \times H$ of two graphs G and H is defined by $V(G \times H)=V(G) \times V(H)$, and where two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are joined by an edge in $E(G \times H)$ if $\left\{u_{1}, v_{1}\right\} \in E(G)$ and $\left\{u_{2}, v_{2}\right\} \in E(H)$.

Let G and H be two graphs.
H is an application from $V(G)$ to $V(H)$ which preserves
adiacencies.
A graph G is vertex-transitive if for any pair of vertices $a, b \in G$ there exists an automorphism p of G such that

Graph Products

\boxtimes The direct product $G \times H$ of two graphs G and H is defined by $V(G \times H)=V(G) \times V(H)$, and where two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are joined by an edge in $E(G \times H)$ if $\left\{u_{1}, v_{1}\right\} \in E(G)$ and $\left\{u_{2}, v_{2}\right\} \in E(H)$.
\boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from $V(G)$ to $V(H)$ which preserves adjacencies.

Graph Products

\boxtimes The direct product $G \times H$ of two graphs G and H is defined by $V(G \times H)=V(G) \times V(H)$, and where two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are joined by an edge in $E(G \times H)$ if $\left\{u_{1}, v_{1}\right\} \in E(G)$ and $\left\{u_{2}, v_{2}\right\} \in E(H)$.
\boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from $V(G)$ to $V(H)$ which preserves adjacencies.
\boxtimes A graph G is vertex-transitive if for any pair of vertices $a, b \in G$ there exists an automorphism ρ of G such that $\rho(a)=b$.

Graph Products

\boxtimes The direct product $G \times H$ of two graphs G and H is defined by $V(G \times H)=V(G) \times V(H)$, and where two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are joined by an edge in $E(G \times H)$ if $\left\{u_{1}, v_{1}\right\} \in E(G)$ and $\left\{u_{2}, v_{2}\right\} \in E(H)$.
\boxtimes Let G and H be two graphs. An homomorphism ψ from G to H is an application from $V(G)$ to $V(H)$ which preserves adjacencies.
\boxtimes A graph G is vertex-transitive if for any pair of vertices $a, b \in G$ there exists an automorphism ρ of G such that $\rho(a)=b$.
\boxtimes Let $[n]=\{0,1, \ldots, n-1\}$.

Idomatic sets and Idomatic partitions of $K_{m} \times K_{n}$

\boxtimes Observation. Let I be an idomatic set of $K_{n_{0}} \times K_{n_{1}}$. Then, $I=\operatorname{Pr}_{i}^{-1}(v)$, where $i \in[1]$ and $v \in\left[n_{i}\right]$.

Idomatic sets and Idomatic partitions of $K_{m} \times K_{n}$

\boxtimes Observation. Let I be an idomatic set of $K_{n_{0}} \times K_{n_{1}}$. Then, $I=\operatorname{Pr}_{i}^{-1}(v)$, where $i \in[1]$ and $v \in\left[n_{i}\right]$.
(0,i)
(0,j)

Idomatic sets and Idomatic partitions of $K_{m} \times K_{n}$

\boxtimes Observation. Let I be an idomatic set of $K_{n_{0}} \times K_{n_{1}}$. Then, $I=\operatorname{Pr}_{i}^{-1}(v)$, where $i \in[1]$ and $v \in\left[n_{i}\right]$.
$(0, i)$
$(0, j)$
(0,k)

Idomatic sets and Idomatic partitions of $K_{m} \times K_{n}$

\boxtimes Observation. Let I be an idomatic set of $K_{n_{0}} \times K_{n_{1}}$. Then, $I=\operatorname{Pr}_{i}^{-1}(v)$, where $i \in[1]$ and $v \in\left[n_{i}\right]$.

Idomatic sets and Idomatic partitions of $K_{m} \times K_{n}$

\boxtimes Observation. Let I be an idomatic set of $K_{n_{0}} \times K_{n_{1}}$. Then, $I=\operatorname{Pr}_{i}^{-1}(v)$, where $i \in[1]$ and $v \in\left[n_{i}\right]$.
(0,i)
$(0,0)$
$(0, \mathrm{j})=(0,1)=\operatorname{Pr}_{1}(0)^{-1}$
(0,n-1)

Idomatic sets and Idomatic partitions of $K_{m} \times K_{n}$

\boxtimes Observation. Let I be an idomatic set of $K_{n_{0}} \times K_{n_{1}}$. Then, $I=\operatorname{Pr}_{i}^{-1}(v)$, where $i \in[1]$ and $v \in\left[n_{i}\right]$.

$$
\begin{array}{cc}
(0, \mathrm{i}) \\
(0, \mathrm{j}) & (0,0) \\
\vdots & (0,1) \\
& \vdots \\
& (0, \mathrm{n}-1)
\end{array}
$$

[Dunbar et al., 00] For any integers $m, n \geq 2, K_{m} \times K_{n}$ has only idomatic k-partitions, where $k \in\{m, n\}$.

Idomatic partitions of $\times{ }_{i=0}^{2} K_{n_{i}}$

$\boxtimes E x$. The graph $K_{2} \times K_{3} \times K_{4}$ has an idomatic 6-partition.

Idomatic partitions of $\times{ }_{i=0}^{2} K_{n_{i}}$

\boxtimes Ex. The graph $K_{2} \times K_{3} \times K_{4}$ has an idomatic 6-partition.
$(0,0,0)$
$(0,1,0)$
$(0,2,0)$
$(0,0,2)$
$(0,1,2) \quad(0,2,2)$
$(0,1,1) \quad(0,2,1) \quad(0,0,1)$
$(0,1,3) \quad(0,2,3)$
$(0,0,3)$
$(1,0,1) \quad(1,1,1) \quad(1,2,1)$
$(1,0,3) \quad(1,1,3)$
$(1,2,3)$
$(1,1,0) \quad(1,2,0) \quad(1,0,0)$
$(1,1,2)$
$(1,2,2)$
$(1,0,2)$

Idomatic partitions of $\times{ }_{i=0}^{2} K_{n_{i}}$

\boxtimes Ex. The graph $K_{2} \times K_{3} \times K_{4}$ has an idomatic 6-partition.
$(0,0,0) \quad(0,1,0) \quad(0,2,0) \quad(0,0,2) \quad(0,1,2) \quad(0,2,2)$
$(0,1,1) \quad(0,2,1) \quad(0,0,1) \quad(0,1,3) \quad(0,2,3) \quad(0,0,3)$
$(1,0,1) \quad(1,1,1) \quad(1,2,1) \quad(1,0,3) \quad(1,1,3) \quad(1,2,3)$
$(1,1,0) \quad(1,2,0) \quad(1,0,0) \quad(1,1,2) \quad(1,2,2) \quad(1,0,2)$
\boxtimes Question. For which values of k there exists an idomatic k-partition of the direct product of three or more complete graphs ?

Idomatic sets of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let Γ be a group and C a subset of Γ (i.e. the connector set) closed under inverses and identity free. The Cayley graph $\operatorname{Cay}(\Gamma, C)$ is the graph with Γ as its vertex set, two vertices u and v being joined by an edge if and only if $u^{-1} v \in C$. Ex. cycles, complete graphs, etc. Cayley graphs constitute a rich class of vertex-transitive graphs.

where $Z_{n_{i}}$ denotes the additive

Idomatic sets of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let Γ be a group and C a subset of Γ (i.e. the connector set) closed under inverses and identity free. The Cayley graph Cay (Γ, C) is the graph with Γ as its vertex set, two vertices u and v being joined by an edge if and only if $u^{-1} v \in C$. Ex. cycles, complete graphs, etc. Cayley graphs constitute a rich class of vertex-transitive graphs.
\boxtimes Let $t \geq 1$ be an integer and let $n_{1}, n_{2}, \ldots, n_{t}$ be positive integers. The graph $G=K_{n_{1}} \times K_{n_{2}} \times \ldots \times K_{n_{t}}$ can be seen as the Cayley graph of the direct product group
$\mathcal{G}=Z_{n_{1}} \times Z_{n_{2}} \times \ldots \times Z_{n_{t}}$ with connector set
$\left[n_{1}\right] \backslash\{0\} \times \ldots \times\left[n_{t}\right] \backslash\{0\}$, where $Z_{n_{i}}$ denotes the additive cyclic group of integers modulo n_{i}.

Idomatic sets of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

$\boxtimes H_{1}$: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let / be an independent dominating set in G. If the set / contains at least two vertices of G agreeing in exactly two positions, then / is equal to the set $\left[n_{s}\right] \times\{i\} \times\left[n_{t}\right]$ for some $i \in\left[n_{p}\right]$, with $s, t, p \in[3]$ and s, t and p pairwise different.

Idomatic sets of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

$\boxtimes H_{1}$: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let / be an independent dominating set in G. If the set / contains at least two vertices of G agreeing in exactly two positions, then / is equal to the set $\left[n_{s}\right] \times\{i\} \times\left[n_{t}\right]$ for some $i \in\left[n_{p}\right]$, with $s, t, p \in[3]$ and s, t and p pairwise different.
$\boxtimes H_{2}$: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $/$ be an independent set of G such that no two vertices in it agreeing in exactly two positions. Thus, the set / is a dominating set of G if and only if

$$
I=\left\{\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right),\left(\alpha_{0}, \beta_{1}, \beta_{2}\right),\left(\beta_{0}, \alpha_{1}, \beta_{2}\right),\left(\beta_{0}, \beta_{1}, \alpha_{2}\right)\right\}
$$

for some $\alpha_{i}, \beta_{i} \in\left[n_{i}\right]$, with $\alpha_{i} \neq \beta_{i}$ and $i \in[3]$.

Idomatic sets of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def. Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $/$ be an independent dominating set in G. The set $/$ is said to be of Type \mathbf{A} if it verifies the hypothesis H_{1} and it is said to be of Type B if it verifies the hypothesis H_{2}.

Idomatic sets of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def. Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $/$ be an independent dominating set in G. The set $/$ is said to be of Type \mathbf{A} if it verifies the hypothesis H_{1} and it is said to be of Type B if it verifies the hypothesis H_{2}.
\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $/$ be an independent set in G. Then, I is also a dominating set in G if and only if it is of Type A or Type B.

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def.: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $G_{1}, G_{2}, \ldots, G_{t}$ be an idomatic t-partition of G, with $t>1$. Such an idomatic partition is called

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def.: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $G_{1}, G_{2}, \ldots, G_{t}$ be an idomatic t-partition of G, with $t>1$. Such an idomatic partition is called

- of Type A: If all independent dominating sets G_{i} are of Type A.

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def.: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $G_{1}, G_{2}, \ldots, G_{t}$ be an idomatic t-partition of G, with $t>1$. Such an idomatic partition is called

- of Type A: If all independent dominating sets G_{i} are of Type A.
- of Type B: If all independent dominating sets G_{i} are of Type B.
of Type C: If there is at least one independent dominating set and at least one independent dominating set

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def.: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $G_{1}, G_{2}, \ldots, G_{t}$ be an idomatic t-partition of G, with $t>1$. Such an idomatic partition is called

- of Type A: If all independent dominating sets G_{i} are of Type A.
- of Type B: If all independent dominating sets G_{i} are of Type B.
- of Type C: If there is at least one independent dominating set G_{i} of Type A, and at least one independent dominating set G_{j} of Type B, with $i \neq j$.

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def.: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $G_{1}, G_{2}, \ldots, G_{t}$ be an idomatic t-partition of G, with $t>1$. Such an idomatic partition is called

- of Type A: If all independent dominating sets G_{i} are of Type A.
- of Type B: If all independent dominating sets G_{i} are of Type B.
- of Type C: If there is at least one independent dominating set G_{i} of Type A, and at least one independent dominating set G_{j} of Type B, with $i \neq j$.

$$
\begin{array}{llll}
(0,0,0) & (0,0,1) & (0,0,2) & (0,0,3) \\
(0,1,1) & (0,1,2) & (0,1,3) & (0,1,0) \\
(1,0,1) & (1,0,2) & (1,0,3) & (1,0,0) \\
(1,1,0) & (1,1,1) & (1,1,2) & (1,1,3)
\end{array}
$$

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Def.: Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let $G_{1}, G_{2}, \ldots, G_{t}$ be an idomatic t-partition of G, with $t>1$.
Such an idomatic partition is called

- of Type A: If all independent dominating sets G_{i} are of Type A.
- of Type B: If all independent dominating sets G_{i} are of Type B.
- of Type C: If there is at least one independent dominating set G_{i} of Type A, and at least one independent dominating set G_{j} of Type B, with $i \neq j$.

$(0,0,0)$	$(0,0,1)$	$(0,0,2)$	$(0,0,3)$
$(0,1,1)$	$(0,1,2)$	$(0,1,3)$	$(0,1,0)$
$(1,0,1)$	$(1,0,2)$	$(1,0,3)$	$(1,0,0)$
$(1,1,0)$	$(1,1,1)$	$(1,1,2)$	$(1,1,3)$
$, 1),(0,2,2),(0,2,3),(1,2,0),(1,2,1),(1,2,2),(1,2,3)$			

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. Then, G has an idomatic n_{i}-partition of Type A for each $i \in[3]$. Moreover, such partitions are the only idomatic partitions of Type A of G.

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. Then, G has an idomatic n_{i}-partition of Type A for each $i \in[3]$. Moreover, such partitions are the only idomatic partitions of Type A of G.
\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. If G has an idomatic partition of Type B then there exist $j, k \in[3]$, with $j \neq k$, such that n_{j} and n_{k} are both even.
with
idomatic partition of Type B of order

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. Then, G has an idomatic n_{i}-partition of Type A for each $i \in[3]$. Moreover, such partitions are the only idomatic partitions of Type A of G.
\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. If G has an idomatic partition of Type B then there exist $j, k \in[3]$, with $j \neq k$, such that n_{j} and n_{k} are both even.
\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. If there exist $j, k \in[3]$, with $j \neq k$, such that n_{j} and n_{k} are both even, then G has an idomatic partition of Type B of order $\frac{n_{0} \cdot n_{1} \cdot n_{2}}{4}$.

Idomatic partitions of Type B for $\times_{i=0}^{2} K_{n_{i}}$

\boxtimes Let n_{1}, n_{2} be even and let $\mathcal{G}=\mathbb{Z}_{n_{0}} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ be a group.

Idomatic partitions of Type B for $\times_{i=0}^{2} K_{n_{i}}$

\boxtimes Let n_{1}, n_{2} be even and let $\mathcal{G}=\mathbb{Z}_{n_{0}} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ be a group.
\boxtimes Let $\left\langle a_{i}\right\rangle$ be a cyclic subgroup of order $n_{i} / 2$ in $\mathbb{Z}_{n_{i}}$, for $i=1,2$.

Idomatic partitions of Type B for $\times_{i=0}^{2} K_{n_{i}}$

\boxtimes Let n_{1}, n_{2} be even and let $\mathcal{G}=\mathbb{Z}_{n_{0}} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ be a group.
\boxtimes Let $\left\langle a_{i}\right\rangle$ be a cyclic subgroup of order $n_{i} / 2$ in $\mathbb{Z}_{n_{i}}$, for $i=1,2$.
\boxtimes Let $\mathcal{P}=<(1,0,0)>.<\left(0, a_{1}, 0\right)>.<\left(0,0, a_{2}\right)>$ be the subgroup of \mathcal{G} induced by the join of the cyclic subgroups $\left.<(1,0,0)\rangle,<\left(0, a_{1}, 0\right)\right\rangle$ and $<\left(0,0, a_{2}\right)>$ of \mathcal{G}.

Idomatic partitions of Type B for $\times_{i=0}^{2} K_{n_{i}}$

\boxtimes Let n_{1}, n_{2} be even and let $\mathcal{G}=\mathbb{Z}_{n_{0}} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ be a group.
\boxtimes Let $\left\langle a_{i}\right\rangle$ be a cyclic subgroup of order $n_{i} / 2$ in $\mathbb{Z}_{n_{i}}$, for $i=1,2$.
\boxtimes Let $\mathcal{P}=<(1,0,0)>.<\left(0, a_{1}, 0\right)>.<\left(0,0, a_{2}\right)>$ be the subgroup of \mathcal{G} induced by the join of the cyclic subgroups $\left.<(1,0,0)\rangle,<\left(0, a_{1}, 0\right)\right\rangle$ and $\left.<\left(0,0, a_{2}\right)\right\rangle$ of \mathcal{G}.
\boxtimes Let $\mathcal{P}=\left\{p_{1}, \ldots, p_{r}\right\}$, with $p_{1}=(0,0,0)$ and $r=\prod n_{i} / 4$. Then, $\mathcal{P}, \mathcal{P}+(0,1,1), \mathcal{P}+(1,0,1)$, and $\mathcal{P}+(1,1,0)$ is a partition of \mathcal{G} into cosets of \mathcal{P}.

Idomatic partitions of Type B for $\times_{i=0}^{2} K_{n_{i}}$

\boxtimes Let n_{1}, n_{2} be even and let $\mathcal{G}=\mathbb{Z}_{n_{0}} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ be a group.
\boxtimes Let $\left\langle a_{i}\right\rangle$ be a cyclic subgroup of order $n_{i} / 2$ in $\mathbb{Z}_{n_{i}}$, for $i=1,2$.
\boxtimes Let $\mathcal{P}=<(1,0,0)>.<\left(0, a_{1}, 0\right)>.<\left(0,0, a_{2}\right)>$ be the subgroup of \mathcal{G} induced by the join of the cyclic subgroups $<(1,0,0)>,<\left(0, a_{1}, 0\right)>$ and $<\left(0,0, a_{2}\right)>$ of \mathcal{G}.
\boxtimes Let $\mathcal{P}=\left\{p_{1}, \ldots, p_{r}\right\}$, with $p_{1}=(0,0,0)$ and $r=\prod n_{i} / 4$. Then, $\mathcal{P}, \mathcal{P}+(0,1,1), \mathcal{P}+(1,0,1)$, and $\mathcal{P}+(1,1,0)$ is a partition of \mathcal{G} into cosets of \mathcal{P}.
$\boxtimes \times K_{n_{i}} \cong \operatorname{Cay}\left(\times \mathbb{Z}_{n_{i}}, \times\left(\left[n_{i}\right] \backslash\{0\}\right)\right)$. Indeed, for any vertices $a, b, c \in \times K_{n_{i}}$, we have that that $a+b \sim a+c$ iff $b \sim c$.

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. Then, G has an idomatic partition of Type B if and only if there exist $j, k \in[3]$, with $j \neq k$, such that n_{j} and n_{k} are both even.

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. Then, G has an idomatic partition of Type B if and only if there exist $j, k \in[3]$, with $j \neq k$, such that n_{j} and n_{k} are both even.
\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let q_{1}, q_{2} be two positive integers. Then, G has an idomatic $\left(q_{1}+q_{2}\right)$-partition of Type C if and only if there exists $i \in[3]$ such that $n_{i}-q_{1}>1$ and $K_{n_{j}} \times K_{n_{k}} \times K_{n_{i}-q_{1}}$ admits an idomatic q_{2}-partition of Type B , with $j, k, i \in[3]$ and j, k, i pairwise different.
partition of G, then I must be of Type

Idomatic partitions of $K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$

\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. Then, G has an idomatic partition of Type B if and only if there exist $j, k \in[3]$, with $j \neq k$, such that n_{j} and n_{k} are both even.
\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$, and let q_{1}, q_{2} be two positive integers. Then, G has an idomatic $\left(q_{1}+q_{2}\right)$-partition of Type C if and only if there exists $i \in[3]$ such that $n_{i}-q_{1}>1$ and $K_{n_{j}} \times K_{n_{k}} \times K_{n_{i}-q_{1}}$ admits an idomatic q_{2}-partition of Type B , with $j, k, i \in[3]$ and j, k, i pairwise different.
\boxtimes Let $G=K_{n_{0}} \times K_{n_{1}} \times K_{n_{2}}$, with $n_{i} \geq 2$. If \mathcal{I} is an idomatic partition of G, then \mathcal{I} must be of Type A, B or C.

Idomatic number of $\times_{i=0}^{2} k_{n_{i}}$

\boxtimes Let $G=\times{ }_{i=0}^{2} k_{n_{i}}$, with $n_{i} \geq 2$, and let $i d(G)$ denote the idomatic number of graph G. Let $t=\max \left\{n_{0}, n_{1}, n_{2}\right\}$. Then,

Idomatic number of $\times_{i=0}^{2} k_{n_{i}}$

\boxtimes Let $G=\times_{i=0}^{2} k_{n_{i}}$, with $n_{i} \geq 2$, and let $i d(G)$ denote the idomatic number of graph G. Let $t=\max \left\{n_{0}, n_{1}, n_{2}\right\}$. Then,

1. If n_{i} is an odd integer for all $i \in[3]$, then $i d(G)=t$.

Idomatic number of $\times{ }_{i=0}^{2} k_{n_{i}}$

\boxtimes Let $G=\times_{i=0}^{2} k_{n_{i}}$, with $n_{i} \geq 2$, and let $i d(G)$ denote the idomatic number of graph G. Let $t=\max \left\{n_{0}, n_{1}, n_{2}\right\}$. Then,

1. If n_{i} is an odd integer for all $i \in[3]$, then $\operatorname{id}(G)=t$.
2. If n_{i} is an even integer and $n_{j} \leq n_{k}$ are odd integers, with $i, j, k \in[3]$ and i, j and k pairwise different, then $i d(G)=\max \left\{t, \frac{n_{i} \cdot n_{j} \cdot\left(n_{k}-1\right)}{4}+1\right\}$.

Idomatic number of $\times_{i=0}^{2} k_{n_{i}}$

\boxtimes Let $G=\times_{i=0}^{2} k_{n_{i}}$, with $n_{i} \geq 2$, and let $i d(G)$ denote the idomatic number of graph G. Let $t=\max \left\{n_{0}, n_{1}, n_{2}\right\}$. Then,

1. If n_{i} is an odd integer for all $i \in[3]$, then $i d(G)=t$.
2. If n_{i} is an even integer and $n_{j} \leq n_{k}$ are odd integers, with $i, j, k \in[3]$ and i, j and k pairwise different, then $i d(G)=\max \left\{t, \frac{n_{i} \cdot n_{j} \cdot\left(n_{k}-1\right)}{4}+1\right\}$.
3. If n_{i} and n_{j} are even integers, with $i, j \in[3]$ and $i \neq j$, then $i d(G)=\frac{n_{i} \cdot n_{j} \cdot n_{k}}{4}$.

Open Problems

\boxtimes Let $G=\times_{i=1}^{k} K_{n_{i}}$ and let $u=\left(u_{1}, \ldots, u_{k}\right)$ and
$v=\left(v_{1}, \ldots, v_{k}\right)$ be vertices of G. Then let $e(u, v)=\left|\left\{i: u_{i}=v_{i}\right\}\right|$. Thus $u \sim v$ iff $e(u, v)=0$.

Open Problems

\boxtimes Let $G=\times_{i=1}^{k} K_{n_{i}}$ and let $u=\left(u_{1}, \ldots, u_{k}\right)$ and
$v=\left(v_{1}, \ldots, v_{k}\right)$ be vertices of G. Then let $e(u, v)=\left|\left\{i: u_{i}=v_{i}\right\}\right|$. Thus $u \sim v$ iff $e(u, v)=0$.
\boxtimes Let $X \subset V(G)$ and let $\{e(u, v): u, v \in X, u \neq v\}=\left\{j_{1}, \ldots, j_{r}\right\}$. Then, we say that X is a $\left.T_{\left\{j_{1}, \ldots, j_{r}\right\}}\right\}^{\text {-set. }}$

Open Problems

\boxtimes Let $G=\times_{i=1}^{k} K_{n_{i}}$ and let $u=\left(u_{1}, \ldots, u_{k}\right)$ and $v=\left(v_{1}, \ldots, v_{k}\right)$ be vertices of G. Then let $e(u, v)=\left|\left\{i: u_{i}=v_{i}\right\}\right|$. Thus $u \sim v$ iff $e(u, v)=0$.
\boxtimes Let $X \subset V(G)$ and let $\{e(u, v): u, v \in X, u \neq v\}=\left\{j_{1}, \ldots, j_{r}\right\}$. Then, we say that X is a $T_{\left\{j_{1}, \ldots, j_{r}\right\}}$-set.
$\boxtimes\left[\right.$ Klavzar et al.,10] if I is an idomatic set of $\times_{i=0}^{3} K_{n_{i}}$ then, I is either a $T_{\{1\}}$ or $T_{\{1,2\}}$ or $T_{\{1,2,3\}}$-set. Indeed, for each one of these T sets, there exists an idomatic partition of G composed of such T sets.

Open Problems

\boxtimes Let $G=\times_{i=1}^{k} K_{n_{i}}$ and let $u=\left(u_{1}, \ldots, u_{k}\right)$ and $v=\left(v_{1}, \ldots, v_{k}\right)$ be vertices of G. Then let $e(u, v)=\left|\left\{i: u_{i}=v_{i}\right\}\right|$. Thus $u \sim v$ iff $e(u, v)=0$.
\boxtimes Let $X \subset V(G)$ and let $\{e(u, v): u, v \in X, u \neq v\}=\left\{j_{1}, \ldots, j_{r}\right\}$. Then, we say that X is a $T_{\left\{j_{1}, \ldots, j_{r}\right\}}$-set.
$\boxtimes\left[\right.$ Klavzar et al.,10] if I is an idomatic set of $\times_{i=0}^{3} K_{n_{i}}$ then, I is either a $T_{\{1\}}$ or $T_{\{1,2\}}$ or $T_{\{1,2,3\}}$-set. Indeed, for each one of these T sets, there exists an idomatic partition of G composed of such T sets.
\boxtimes [Conjecture 1] For $k>3$, if I is an idomatic set of $G=\times_{i=0}^{k} K_{n_{i}}$ then, I is a $T_{\{1, \ldots, i\}}$ for some $1 \leq i<k$. Indeed, for each i, there exists an idomatic $T_{\{1, \ldots, i\}}$-set and there exists an idomatic partition of G composed of such T sets.

Relaxed Idomatic partitions: b-colorings

\boxtimes Observation Let ϕ be a proper coloring of $G=K_{n} \times k_{m}$, with $m, n \geq 2$. Then, ϕ is a b-coloring of G iff ϕ is an idomatic partition of G.

Forbidden Configurations for b-colorings:

Relaxed Idomatic partitions: b-colorings

\boxtimes Observation Let ϕ be a proper coloring of $G=K_{n} \times k_{m}$, with $m, n \geq 2$. Then, ϕ is a b-coloring of G iff ϕ is an idomatic partition of G.
\boxtimes Forbidden Configurations for b-colorings:

Relaxed Idomatic partitions: b-colorings

\boxtimes Observation Let ϕ be a proper coloring of $G=K_{n} \times k_{m}$, with $m, n \geq 2$. Then, ϕ is a b-coloring of G iff ϕ is an idomatic partition of G.
\boxtimes Forbidden Configurations for b-colorings:

Relaxed Idomatic partitions: b-colorings

\boxtimes Observation Let ϕ be a proper coloring of $G=K_{n} \times k_{m}$, with $m, n \geq 2$. Then, ϕ is a b-coloring of G iff ϕ is an idomatic partition of G.
\boxtimes Forbidden Configurations for b-colorings:

Configuration A
Configuration B
\boxtimes [Problem] Let $G=\times_{i=1}^{k} K_{n_{i}}$, with $k>2$ and $n_{i} \geq 2$. Is it any b-coloring of G an idomatic partition of G ?

Thank You !

