Streaming and communication complexity of Hamming distance

Tatiana Starikovskaya
IRIF, Université Paris-Diderot

(Joint work with Raphaël Clifford, ICALP’16)
Approximate pattern matching

Problem

Pattern P of length n, text T

Find the Hamming distance between P and each n-length substring of T
Approximate pattern matching

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

“Big Data” Applications
- Computational biology
- Signal processing
- Text retrieval

Standard algorithms: $\Omega(n)$ space
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space = total space used; Time = time per character of T
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space = total space used; $\text{Time} =$ time per character of T

Text T
```
| c | a |
```
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Text T
```
c a a a
```
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space = total space used; $\textbf{Time} = \text{time per character of } T$

Text T
c a a a b
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space = total space used; $\text{Time} =$ time per character of T

Text T
\[
\begin{array}{cccccc}
\text{c} & \text{a} & \text{a} & \text{a} & \text{b} & \text{c}
\end{array}
\]
Model of computation

Problem
Pattern \(P\) of length \(n\), text \(T\)
Find the Hamming distance between \(P\) and each \(n\)-length substring of \(T\)

Model
- \(T = \) stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of \(T\) or \(P\)
- Space = total space used; **Time = time per character of \(T\)**

Text \(T\)
```
c a a b c a
```

Pattern \(P\)
```
  b c a a a a c
```
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space = total space used; **Time = time per character of T**

Text T
```
c a a b c a a
```
Pattern P
```
b c a a a a c
```
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space = total space used; **Time = time per character of T**

Text T
- $c\ a\ a\ b\ c\ a\ a\ a\ a$

Pattern P
- $b\ c\ a\ a\ a\ a\ c$
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space = total space used; Time = time per character of T

Text T
\[
\begin{array}{ccccccccc}
 c & a & a & b & c & a & a & a & c \\
\end{array}
\]

Pattern P
\[
\begin{array}{cccccc}
 b & c & a & a & a & c \\
\end{array}
\]
Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
- $T =$ stream of characters
- Length of the text and size of the universe are extremely large
- Can’t store a copy of T or P
- Space = total space used; **Time = time per character of T**

Text T

```
c a a a b c a a a a c a
```

Pattern P

```
 b c a a a a c
```
What is known: Hamming distance

- All distances
 - Space $\Omega(n)$ [Folklore]
 - Time $O(\log^2 n)$ [Clifford et al., CPM’11]
What is known: Hamming distance

- All distances
 - Space $\Omega(n)$ [Folklore]
 - Time $\mathcal{O}(\log^2 n)$ [Clifford et al., CPM’11]

- Only distances $\leq k$ [Clifford et al., SODA’16]
 - Exact values: space $\mathcal{O}(k^2 \text{polylog } n)$, time $\mathcal{O}(\sqrt{k \log k} + \text{polylog } n)$
 - $(1 + \varepsilon)$-approx.: space $\mathcal{O}(\varepsilon^{-2}k^2 \text{polylog } n)$, time $\mathcal{O}(\varepsilon^{-2} \text{polylog } n)$
This work:
(1+\(\varepsilon\))-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm
This work:
(1+\(\varepsilon\))-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm

Let's discuss that!
Lower bound for all HDs, approximate

3-parties CC problem

- **Alice** holds the pattern, **Bob** holds $T[1, n]$, **Charlie** holds $T[n + 1, 2n]$

- **Charlie**’s output: $(1 + \varepsilon)$-HD for each alignment of P and T
 Min. communication between **Alice**, **Bob**, and **Charlie**?
Lower bound for all HDs, approximate

- Streaming algorithm: $T = \text{stream}$, not allowed to store a copy of P or T, output $=(1+\varepsilon)$-HDs

- At time $= n$ it stores all the information needed to compute the $(1+\varepsilon)$-HDs

- Comm. protocol: send this information from A and B to C

- Lower bound for the CC problem \Rightarrow streaming lower bound
This work:
(1+ε)-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm
This work:
(1+\(\epsilon\))-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm

3-parties CC problem

Simpler CC problem:
B and C know the pattern
This work:
(1+\epsilon)-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm

3-parties CC problem

Simpler CC problem:
B and C know the pattern

Upper bounds
Lower bounds

Upper bounds
Lower bounds
This work:
(1+\(\varepsilon\))-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm

3-parties CC problem

Simpler CC problem:
B and C know the pattern

Upper bounds

Lower bounds
This work:
(1+\(\varepsilon\))-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm

3-parties CC problem

Simpler CC problem:
B and C know the pattern
Communication complexity
Simpler CC problem: B and C know the pattern

Lower bound: $\Omega(\varepsilon^{-1} \log^2 \varepsilon^{-1} n)$

- Window counting: $(1 + \varepsilon)$-approx. of $\#(b)$ in a sliding window of width $n = (1 + \varepsilon)$-approx. of HD between $P = aa\ldots a$ and T
- $\Omega(\varepsilon^{-1} \log^2 \varepsilon^{-1} n)$ bits [Datar et al., 2013]
3-parties CC problem

Lower bound: $\Omega(\varepsilon^{-1} \log^2 \varepsilon^{-1} n + \varepsilon^{-2} \log n)$

Bob $\overline{b a a b a b a a a a a a}$ Charlie

- Output $= (1 + \varepsilon)$-HD between $T[1,n]$ and $T[n + 1, 2n] = (1 + \varepsilon)$-approx. of HD between $T = T[1,n]00\ldots0$ (Bob and Charlie) and $P = T[n + 1, 2n]$ (Alice)

- $\Omega(\varepsilon^{-2} \log n)$ bits [Jayram & Woordruff, 2013]
Important notion: $(1 + \varepsilon)$-approximate sketch for HD

Intuition

- Sketch of a string is a very short vector

- L_2-distance between sketches \approx HD between strings
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Intuition

- Sketch of a string is a **very short** vector
- \(L_2\)-distance between sketches \(\approx\) HD between strings

Formal definition (binary alphabets)

- \(Y = \frac{1}{\varepsilon^2} \times n\) matrix of IID unbiased \(\pm 1\) random variables

\[
\text{sketch}(S) = \begin{pmatrix}
\pm 1 & \pm 1 & \ldots \\
\pm 1 & \ddots & \\
\vdots & & \ddots \\
\end{pmatrix} \begin{pmatrix}
S[1] \\
S[2] \\
\vdots \\
\end{pmatrix}
\]

length = \(1/\varepsilon^2\)
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = 1/\varepsilon^2 \times n\) matrix of IID unbiased \(\pm 1\) random variables

\[
\text{sketch}(S) = YS
\]

\(\text{length} = 1/\varepsilon^2\)
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = 1/\varepsilon^2 \times n \) matrix of IID unbiased \(\pm 1 \) random variables

\[
\text{sketch}(S) = YS
\]

length = \(1/\varepsilon^2\)

Lemma

\[(1 - \varepsilon) \cdot HD(S_1, S_2) \leq \varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2 \leq (1 + \varepsilon) \cdot HD(S_1, S_2)\]

Proof
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = \frac{1}{\varepsilon^2} \times n\) matrix of IID unbiased \(\pm 1\) random variables

\[
sketch(S) = YS
\]

length = \(\frac{1}{\varepsilon^2}\)

Lemma

\((1 - \varepsilon) \cdot HD(S_1, S_2) \leq \varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2 \leq (1 + \varepsilon) \cdot HD(S_1, S_2)\)

Proof

\[
\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = \mathbb{E}[\varepsilon^2 \cdot |Y(S_1 - S_2)|_2^2] = \varepsilon^2 \cdot \mathbb{E}[|Y(S_1 - S_2)|_2^2] =
\]
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = 1/\varepsilon^2 \times n \) matrix of IID unbiased \(\pm 1 \) random variables

\[
\text{sketch}(S) = YS \\
\text{length} = 1/\varepsilon^2
\]

Lemma

\((1 - \varepsilon) \cdot HD(S_1, S_2) \leq \varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2 \leq (1 + \varepsilon) \cdot HD(S_1, S_2)\)

Proof

\[
\mathbb{E}[\varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2] = \mathbb{E}[\varepsilon^2 \cdot |Y(S_1 - S_2)|_2^2] = \varepsilon^2 \cdot \mathbb{E}[|Y(S_1 - S_2)|_2^2] = \\
= \varepsilon^2 \cdot \mathbb{E}[\sum_{j=1}^{1/\varepsilon^2} (Y_j(S_1 - S_2))^2] = \mathbb{E}[(Y_1(S_1 - S_2))^2] = |S_1 - S_2|^2_2
\]
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = 1/\varepsilon^2 \times n\) matrix of IID unbiased \(\pm 1\) random variables

\[
sketch(S) = YS
\]

length = \(1/\varepsilon^2\)

Lemma

\((1 - \varepsilon) \cdot HD(S_1, S_2) \leq \varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2 \leq (1 + \varepsilon) \cdot HD(S_1, S_2)\)

Proof

\[E[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2\]
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = 1/\varepsilon^2 \times n\) matrix of IID unbiased \(\pm 1\) random variables

\[
sketch(S) = YS
\]

length \(= 1/\varepsilon^2\)

Lemma

\((1 - \varepsilon) \cdot HD(S_1, S_2) \leq \varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2 \leq (1 + \varepsilon) \cdot HD(S_1, S_2)\)

Proof

\[
\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2
\]

\[
\text{Var}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = \varepsilon^2 \cdot \text{Var}[(Y_1(S_1 - S_2))^2] \leq
\]
Important notion: $(1 + \varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\text{sketch}(S) = YS$$
$$\text{length} = 1/\varepsilon^2$$

Lemma

$(1 - \varepsilon) \cdot \text{HD}(S_1, S_2) \leq \varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2 \leq (1 + \varepsilon) \cdot \text{HD}(S_1, S_2)$

Proof

$$\mathbb{E}[\varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2] = |S_1 - S_2|_2^2$$

$$\text{Var}[\varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2] = \varepsilon^2 \cdot \text{Var}[(Y_1(S_1 - S_2))^2] \leq \varepsilon^2 \cdot \mathbb{E}[(Y_1(S_1 - S_2))^4] \leq \varepsilon^2 C \cdot \mathbb{E}[(Y_1(S_1 - S_2))^2]^2 = \varepsilon^2 C \cdot |S_1 - S_2|_2^4$$
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = 1/\varepsilon^2 \times n\) matrix of IID unbiased \(\pm 1\) random variables

\[
sketch(S) = YS
\]

length = \(1/\varepsilon^2\)

Lemma

\[(1 - \varepsilon) \cdot HD(S_1, S_2) \leq \varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2 \leq (1 + \varepsilon) \cdot HD(S_1, S_2)\]

Proof

\[\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2\]

\[\text{Var}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] \leq \varepsilon^2 C \cdot |S_1 - S_2|_2^4\]
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

Formal definition (binary alphabets)

- \(Y = 1/\varepsilon^2 \times n\) matrix of IID unbiased \(\pm 1\) random variables

\[
\text{sketch}(S) = YS
\]

length = \(1/\varepsilon^2\)

Lemma

\((1 - \varepsilon) \cdot \text{HD}(S_1, S_2) \leq \varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2 \leq (1 + \varepsilon) \cdot \text{HD}(S_1, S_2)\)

Proof

\[
\mathbb{E}[\varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2] = |S_1 - S_2|_2^2
\]

\[
\text{Var}[\varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2] \leq \varepsilon^2 C \cdot |S_1 - S_2|_2^4
\]

By Chebyshev’s inequality, with constant probability:

\((1 - \varepsilon) \cdot |S_1 - S_2|_2^2 \leq \varepsilon^2 \cdot |\text{sketch}(S_1) - \text{sketch}(S_2)|_2^2 \leq (1 + \varepsilon) \cdot |S_1 - S_2|_2^2\)
Important notion: $(1 + \varepsilon)$-approximate sketch for HD

One more trick

- Y can be generated from $\mathcal{O}(\log n)$ random bits (random \rightarrow pseudorandom)
Important notion: \((1 + \varepsilon)\)-approximate sketch for HD

One more trick

- \(Y\) can be generated from \(\mathcal{O}(\log n)\) random bits (random \(\rightarrow\) pseudorandom)

Summary

- Sketch of a string is a vector of length \(\mathcal{O}(\varepsilon^{-2} \log n)\) bits
- Sketches give \((1 + \varepsilon)\)-approximation of HD
Simpler CC problem: B and C know the pattern

- B knows $T[1, n]$, C knows $T[n + 1, 2n]$, B and C know P

- **Observation**: C doesn’t need any information to compute HDs between suffixes of P and $T[n + 1, 2n]$
Simpler CC problem: B and C know the pattern

- Select $O(\log_\varepsilon n)$ prefixes of the pattern
- First prefix: Prefix of maximal length ℓ_1 with $\text{HD} \leq (1/\varepsilon)^2$
- Second prefix: Prefix of maximal length $\ell_2 \geq \ell_1$ with $\text{HD} \leq (1/\varepsilon)^3$
- ...
Simpler CC problem: B and C know the pattern

- Divide prefix j into $1/\varepsilon^2$ blocks with $\text{HD} \leq (1/\varepsilon)^{j-1}$
Simpler CC problem: **B** and **C** know the pattern

- Divide prefix \(j \) into \(1/\varepsilon^2 \) blocks with \(\text{HD} \leq (1/\varepsilon)^{j-1} \)
- Compute \(\mathcal{O}(1/\varepsilon^2) \) sketches for the text
Simpler CC problem: \textbf{B} and \textbf{C} know the pattern

- Divide prefix j into $1/\varepsilon^2$ blocks with $\text{HD} \leq (1/\varepsilon)^{j-1}$
- Compute $O(1/\varepsilon^2)$ sketches for the text
- Send the block borders and the sketches to \textbf{Charlie}
Simpler CC problem: \textbf{B} and \textbf{C} know the pattern

\[\text{HD} \leq (1/\varepsilon)^{10} \]

\[\cdots \]

\[\text{HD} \leq (1/\varepsilon)^3 \]

\[\text{HD} \leq (1/\varepsilon)^2 \]

Bob
Simpler CC problem: \textbf{B} and \textbf{C} know the pattern

\[
\text{HD} \leq (1/\varepsilon)^{10}
\]

\[
\ldots
\]

\[
\text{HD} \leq (1/\varepsilon)^{3}
\]

\[
\text{HD} \leq (1/\varepsilon)^{2}
\]

\begin{itemize}
 \item Find the shortest prefix containing \textit{P}
\end{itemize}
Simpler CC problem: Bob and C know the pattern

- Find the shortest prefix containing P
- $\text{HD}(P_2, T)$: use sketches — $(1 + \varepsilon)$-approximation
Simpler CC problem: B and C know the pattern

- Find the shortest prefix containing P
- $\text{HD}(P_2, T)$: use sketches — $(1 + \varepsilon)$-approximation
- $\text{HD}(P_1, T)$: use the prefix’s block — additive error $\leq \varepsilon \cdot \text{HD}(P, T)$
Simpler CC problem: \(B \) and \(C \) know the pattern

Find the shortest prefix containing \(P \)

- \(\text{HD}(P_2, T) \): use sketches — \((1 + \varepsilon)\)-approximation
- \(\text{HD}(P_1, T) \): use the prefix’s block — additive error \(\leq \varepsilon \cdot \text{HD}(P, T) \)
- \(\text{CC} = \mathcal{O}(\varepsilon^{-4} \log^2 n) \) [Lower bound: \(\Omega(\varepsilon^{-1} \log^2 \varepsilon^{-1} n) \)]
This work:
(1+\(\varepsilon\))-Approximate HDs problem

Lower bounds:
reduction to a CC problem

Upper bounds:
show a streaming algorithm

3-parties CC problem

Simpler CC problem:
B and C know the pattern
3-parties CC problem

- B knows $T[1, n]$, C knows $T[n + 1, 2n]$, only A knows P

- **Observation:** C doesn’t need any information to compute HDs between suffixes of P and his part of the text

- Can’t use prefixes of P to approximate T — C doesn’t know P
3-parties CC problem

- Divide the text T into blocks of length $B = \sqrt{n}$
- Compute a sketch of each block
- Large Hamming distance: $\text{HD (prefix of } P, T) \geq B/\varepsilon$
 - $\text{HD}(P_1, T)$: use sketches to compute $(1 + \varepsilon)$-approx. H'
 - $\text{HD}(P_2, T)$: ignore
3-parties CC problem

- Divide the text T into blocks of length $B = \sqrt{n}$
- Compute a sketch of each block
- Large Hamming distance: $\text{HD} \ (\text{prefix of } P, T) \geq B/\varepsilon$
 - $\text{HD}(P_1, T)$: use sketches to compute $(1 + \varepsilon)$-approx. H'
 - $\text{HD}(P_2, T)$: ignore

Lemma
H' is a good approximation of HD

Proof
1. $H' \leq (1 + \varepsilon) \cdot \text{HD}(P_2, T) \leq (1 + \varepsilon) \cdot \text{HD}$
2. $H' \geq (1 - \varepsilon) \cdot \text{HD}(P_2, T) \geq (1 - \varepsilon) \cdot \text{HD} - \text{HD}(P_1, T) \geq (1 - 2\varepsilon) \cdot \text{HD}$
3-parties CC problem

- Small Hamming distance: $\text{HD} (\text{prefix of } P, T) \geq \frac{B}{\varepsilon}$
 - If $\#(\otimes)$ in a block ≤ 1, B sends it to C
 - Starting from the first block where $\#(\otimes) \geq 2$, T and P can be encoded in small space (periodicity)
 - C can restore P and T from the encoding and compute HDs
- $CC = \mathcal{O}(\frac{1}{\varepsilon^2 \sqrt{n} \log n})$ ♦
 - [Lower bound: $\Omega(\varepsilon^{-2} \log n + \varepsilon^{-1} \log^2 \varepsilon^{-1} n)$]
This work:
(1+\(\varepsilon\))-Approximate HDs problem

Lower bounds:
- reduction to a CC problem

Upper bounds:
- show a streaming algorithm

3-parties CC problem
- Upper bounds
- Lower bounds

Simpler CC problem:
- B and C know the pattern
- Upper bounds
- Lower bounds
Streaming algorithm
Streaming algorithm

Text T

Pattern P

Reminder

- $Y = \frac{1}{\epsilon^2} \times n$ matrix of IID unbiased ± 1 random variables
- $\text{sketch}(S) = Y \cdot S$

Problem

- How to maintain the sketch of T?
- We don’t have random access to T and we can’t store many of its characters
Streaming algorithm

\[
\begin{array}{cccc}
 B & B & B & B \\
 \text{sketch} & \text{sketch} & \text{sketch} & \text{sketch} \\
 \text{super-sketch}
\end{array}
\]

Reminder

- \(Y = \left(\frac{1}{\varepsilon^2} \right) \times n \) matrix of IID unbiased \(\pm 1 \) random variables
- \(\text{sketch}(S) = Y \cdot S \)

New notion: super-sketch

- \(\sigma_i \) — IID unbiased \(\pm 1 \) variables
- \(\text{super-sketch} = \sum \sigma_i \cdot \text{sketch}_i \)
- Analysis: similar to sketches
Streaming algorithm

- HD between $P[B - i + 1, n - i]$ and T: super-sketch

- Store a super-sketch for each $(n - B)$-length substring of P
 - $B = \sqrt{n}/\varepsilon$ super-sketches in total

- At each block border compute a super-sketch of the last n/B blocks from their sketches
 - $O(n/B) = O(\varepsilon \sqrt{n})$ time, can be de-amortized
Streaming algorithm

- HD between the suffix of \(P \) and \(T \): sketch
Streaming algorithm

- HD between the suffix of P and T: sketch

- HD between the prefix of P and T: similar to the simpler CC problem for the pattern $P[1, B]$

Complexity: $O\left(\frac{1}{\varepsilon^3 \sqrt{n} \log^2 n}\right)$ bits of space, $O\left(\frac{1}{\varepsilon^2 \log^2 n}\right)$ time
This work: (1+\(\varepsilon\))-Approximate HDs problem

Lower bounds:
- Reduction to a CC problem

Upper bounds:
- \(O(\varepsilon^{-3}\sqrt{n}\log^{1.5}n)\)

3-parties CC problem

Simpler CC problem:
- B and C know the pattern

Upper bounds:
- \(O(\varepsilon^{-2}\sqrt{n}\log^2 n)\)

Lower bounds:
- \(O(\varepsilon^{-2}\log n + \varepsilon^{-4}\log^2(\varepsilon^{-1}n))\)

Upper bounds:
- \(O(\varepsilon^{-4}\log^2 n)\)

Lower bounds:
- \(O(\varepsilon^{-1}\log^2(\varepsilon^{-1}n))\)