
Streaming and communication
complexity of Hamming distance

Tatiana Starikovskaya
IRIF, Université Paris-Diderot

(Joint work with Raphaël Clifford, ICALP’16)

Approximate pattern matching

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

“Big Data” Applications
▸ Computational biology

▸ Signal processing

▸ Text retrieval

Standard algorithms: Ω(n) space

Approximate pattern matching

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

“Big Data” Applications
▸ Computational biology

▸ Signal processing

▸ Text retrieval

Standard algorithms: Ω(n) space

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c
Text T

a a b c a a a c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c
Text T

a

a b c a a a c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c
Text T

a a

b c a a a c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c
Text T

a a b

c a a a c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c
Text T

a a b c

a a a c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c

b c a a a c
Pattern P

c
Text T

a a b c a

a a c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c

b c a a a c
Pattern P

Text T
a a b c a a

a c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c

b c a a a c
Pattern P

Text T
a a b c a a a

c a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c

b c a a a c
Pattern P

Text T
a a b c a a a c

a

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
▸ T = stream of characters

▸ Length of the text and size of the universe are extremely large

▸ Can’t store a copy of T or P

▸ Space = total space used; Time = time per character of T

c

b c a a a c
Pattern P

Text T
a a b c a a a c a

What is known: Hamming distance

▸ All distances

▸ Space Ω(n) [Folklore]

▸ Time O(log2 n) [Clifford et al., CPM’11]

▸ Only distances ≤ k [Clifford et al., SODA’16]

▸ Exact values: space O(k2 polylog n), time O(

√

k log k + polylog n)

▸ (1 + ε)-approx.: space O(ε−2k2 polylog n), time O(ε−2 polylog n)

What is known: Hamming distance

▸ All distances

▸ Space Ω(n) [Folklore]

▸ Time O(log2 n) [Clifford et al., CPM’11]

▸ Only distances ≤ k [Clifford et al., SODA’16]

▸ Exact values: space O(k2 polylog n), time O(

√

k log k + polylog n)

▸ (1 + ε)-approx.: space O(ε−2k2 polylog n), time O(ε−2 polylog n)

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

Let's discuss that!

Lower bound for all HDs, approximate

Alice
a a a a a a

Bob Charlie
b a a b a b a a a a a a

3-parties CC problem

▸ Alice holds the pattern, Bob holds T[1,n], Charlie holds
T[n + 1,2n]

▸ Charlie’s output: (1 + ε)-HD for each alignment of P and T
Min. communication between Alice, Bob, and Charlie?

Lower bound for all HDs, approximate

a a a a a a

b a a b a b a a a a a a
Bob Charlie

Alice

▸ Streaming algorithm: T = stream, not allowed to store a copy of P
or T, output = (1 + ε)-HDs

▸ At time = n it stores all the information needed to compute the
(1 + ε)-HDs

▸ Comm. protocol: send this information from A and B to C

▸ Lower bound for the CC problem⇒ streaming lower bound

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

3-parties CC problem
Simpler CC problem:

B and C know the pattern

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

3-parties CC problem
Simpler CC problem:

B and C know the pattern

Upper
bounds

Upper
bounds

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

3-parties CC problem
Simpler CC problem:

B and C know the pattern

Upper
bounds

Upper
bounds

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

3-parties CC problem
Simpler CC problem:

B and C know the pattern

Upper
bounds

Upper
bounds

Communication complexity

Simpler CC problem: B and C know the pattern

Lower bound: Ω(ε−1 log2
ε−1n)

b a a b a b a a a a a a
Bob Charlie

▸ Window counting: (1 + ε)-approx. of #(b) in a sliding window of
width n = (1 + ε)-approx. of HD between P = aa . . .a and T

▸ Ω(ε−1 log2
ε−1n) bits [Datar et al., 2013]

3-parties CC problem

Lower bound: Ω(ε−1 log2
ε−1n + ε−2 log n)

b a a b a b a a a a a a
Bob Charlie

▸ Output = (1 + ε)-HD between T[1,n] and T[n + 1,2n] =
(1 + ε)-approx. of HD between T = T[1,n]00 . . .0 (Bob and
Charlie) and P = T[n + 1,2n] (Alice)

▸ Ω(ε−2 log n) bits [Jayram & Woordruff, 2013]

Important notion: (1 + ε)-approximate sketch for HD

Intuition

▸ Sketch of a string is a very short vector

▸ L2-distance between sketches ≈ HD between strings

Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

=
⎛
⎜
⎝

±1 ±1 . . .
±1 ⋱
⋮

⎞
⎟
⎠

Y

⎛
⎜
⎝

S[1]
S[2]
⋮

⎞
⎟
⎠

S

Important notion: (1 + ε)-approximate sketch for HD

Intuition

▸ Sketch of a string is a very short vector

▸ L2-distance between sketches ≈ HD between strings

Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

=
⎛
⎜
⎝

±1 ±1 . . .
±1 ⋱
⋮

⎞
⎟
⎠

Y

⎛
⎜
⎝

S[1]
S[2]
⋮

⎞
⎟
⎠

S

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2⋅∣sketch(S1)−sketch(S2)∣22] = E[ε2⋅∣Y(S1−S2)∣22] = ε2⋅E[∣Y(S1−S2)∣22] =
= ε2 ⋅E[∑1/ε2

j=1 (Yj(S1 − S2))
2] = E[(Y1(S1 − S2))

2] = ∣S1 − S2∣22

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof

E[ε2⋅∣sketch(S1)−sketch(S2)∣22] = E[ε2⋅∣Y(S1−S2)∣22] = ε2⋅E[∣Y(S1−S2)∣22] =
= ε2 ⋅E[∑1/ε2

j=1 (Yj(S1 − S2))
2] = E[(Y1(S1 − S2))

2] = ∣S1 − S2∣22

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2⋅∣sketch(S1)−sketch(S2)∣22] = E[ε2⋅∣Y(S1−S2)∣22] = ε2⋅E[∣Y(S1−S2)∣22] =

= ε2 ⋅E[∑1/ε2

j=1 (Yj(S1 − S2))
2] = E[(Y1(S1 − S2))

2] = ∣S1 − S2∣22

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2⋅∣sketch(S1)−sketch(S2)∣22] = E[ε2⋅∣Y(S1−S2)∣22] = ε2⋅E[∣Y(S1−S2)∣22] =
= ε2 ⋅E[∑1/ε2

j=1 (Yj(S1 − S2))
2] = E[(Y1(S1 − S2))

2] = ∣S1 − S2∣22

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ∣S1 − S2∣22

Var[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ε2 ⋅ Var[(Y1(S1 − S2))
2] ≤

≤ ε2 ⋅E[(Y1(S1 − S2))
4] ≤ ε2C ⋅E[(Y1(S1 − S2))

2]2 = ε2C ⋅ ∣S1 − S2∣42

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ∣S1 − S2∣22

Var[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ε2 ⋅ Var[(Y1(S1 − S2))
2] ≤

≤ ε2 ⋅E[(Y1(S1 − S2))
4] ≤ ε2C ⋅E[(Y1(S1 − S2))

2]2 = ε2C ⋅ ∣S1 − S2∣42

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ∣S1 − S2∣22

Var[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ε2 ⋅ Var[(Y1(S1 − S2))
2] ≤

≤ ε2 ⋅E[(Y1(S1 − S2))
4] ≤ ε2C ⋅E[(Y1(S1 − S2))

2]2 = ε2C ⋅ ∣S1 − S2∣42

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ∣S1 − S2∣22

Var[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] ≤ ε2C ⋅ ∣S1 − S2∣42

By Chebyshev’s inequality, with constant probability:
(1 − ε) ⋅ ∣S1 − S2∣22 ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅ ∣S1 − S2∣22

Important notion: (1 + ε)-approximate sketch for HD
Formal definition (binary alphabets)

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

sketch(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

length = 1/ε2

= YS

Lemma
(1 − ε) ⋅HD(S1,S2) ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅HD(S1,S2)

Proof
E[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] = ∣S1 − S2∣22

Var[ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22] ≤ ε2C ⋅ ∣S1 − S2∣42

By Chebyshev’s inequality, with constant probability:
(1 − ε) ⋅ ∣S1 − S2∣22 ≤ ε2 ⋅ ∣sketch(S1) − sketch(S2)∣22 ≤ (1 + ε) ⋅ ∣S1 − S2∣22

Important notion: (1 + ε)-approximate sketch for HD

One more trick

▸ Y can be generated from O(log n) random bits (random →
preudorandom)

Summary

▸ Sketch of a string is a vector of length O(ε−2 log n) bits

▸ Sketches give (1 + ε)-approximation of HD

Important notion: (1 + ε)-approximate sketch for HD

One more trick

▸ Y can be generated from O(log n) random bits (random →
preudorandom)

Summary

▸ Sketch of a string is a vector of length O(ε−2 log n) bits

▸ Sketches give (1 + ε)-approximation of HD

Simpler CC problem: B and C know the pattern

B & C
a a a a a a

Bob Charlie
b a a b a b a a a a a a

▸ B knows T[1,n], C knows T[n + 1,2n], B and C know P

▸ Observation: C doesn’t need any information to compute HDs
between suffixes of P and T[n + 1,2n]

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3
. . .

HD ≤ (1/ε)10

Bob

▸ Select O(logε n) prefixes of the pattern

▸ First prefix: Prefix of maximal length `1 with HD ≤ (1/ε)2

▸ Second prefix: Prefix of maximal length `2 ≥ `1 with HD ≤ (1/ε)3

▸ . . .

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3
. . .

HD ≤ (1/ε)10

Bob

▸ Divide prefix j into 1/ε2 blocks with HD ≤ (1/ε)j−1

▸ Compute O(1/ε2) sketches for the text

▸ Send the block borders and the sketches to Charlie

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3
. . .

HD ≤ (1/ε)10

Bob

▸ Divide prefix j into 1/ε2 blocks with HD ≤ (1/ε)j−1

▸ Compute O(1/ε2) sketches for the text

▸ Send the block borders and the sketches to Charlie

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3

sketch sketch sketch sketch

. . .

HD ≤ (1/ε)10

Bob

▸ Divide prefix j into 1/ε2 blocks with HD ≤ (1/ε)j−1

▸ Compute O(1/ε2) sketches for the text

▸ Send the block borders and the sketches to Charlie

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3
. . .

HD ≤ (1/ε)10

Bob

▸ Find the shortest prefix containing P

▸ HD(P2, T): use sketches — (1 + ε)-approximation

▸ HD(P1, T): use the prefix’s block — additive error ≤ ε ⋅HD(P,T)

▸ CC = O(ε−4 log2 n) [Lower bound: Ω(ε−1 log2
ε−1n)]

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3

sketch sketch sketch sketch

. . .

HD ≤ (1/ε)10

Bob

P1 P2

▸ Find the shortest prefix containing P

▸ HD(P2, T): use sketches — (1 + ε)-approximation

▸ HD(P1, T): use the prefix’s block — additive error ≤ ε ⋅HD(P,T)

▸ CC = O(ε−4 log2 n) [Lower bound: Ω(ε−1 log2
ε−1n)]

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3
. . .

HD ≤ (1/ε)10

Bob

P1 P2

sketch sketch sketch sketch

▸ Find the shortest prefix containing P

▸ HD(P2, T): use sketches — (1 + ε)-approximation

▸ HD(P1, T): use the prefix’s block — additive error ≤ ε ⋅HD(P,T)

▸ CC = O(ε−4 log2 n) [Lower bound: Ω(ε−1 log2
ε−1n)]

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3
. . .

HD ≤ (1/ε)10

Bob

P1 P2

sketch sketch sketch sketch

▸ Find the shortest prefix containing P

▸ HD(P2, T): use sketches — (1 + ε)-approximation

▸ HD(P1, T): use the prefix’s block — additive error ≤ ε ⋅HD(P,T)

▸ CC = O(ε−4 log2 n) [Lower bound: Ω(ε−1 log2
ε−1n)]

Simpler CC problem: B and C know the pattern

HD ≤ (1/ε)2

HD ≤ (1/ε)3
. . .

HD ≤ (1/ε)10

Bob

P1 P2

sketch sketch sketch sketch

▸ Find the shortest prefix containing P

▸ HD(P2, T): use sketches — (1 + ε)-approximation

▸ HD(P1, T): use the prefix’s block — additive error ≤ ε ⋅HD(P,T)

▸ CC = O(ε−4 log2 n) [Lower bound: Ω(ε−1 log2
ε−1n)]

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

3-parties CC problem
Simpler CC problem:

B and C know the pattern

Upper
bounds

Upper
bounds

3-parties CC problem

Alice
a a a a a a

Bob Charlie
c a a b a b a a a a a a

▸ B knows T[1,n], C knows T[n + 1,2n], only A knows P

▸ Observation: C doesn’t need any information to compute HDs
between suffixes of P and his part of the text

▸ Can’t use prefixes of P to approximate T — C doesn’t know P

3-parties CC problem
Bob B

sketch
B

sketch
B

sketch
B

sketch
B

sketch
B

sketch
B

sketch
B

sketchsketch

P1 P2

▸ Divide the text T into blocks of length B =
√

n

▸ Compute a sketch of each block

▸ Large Hamming distance: HD (prefix of P, T) ≥ B/ε
▸ HD(P1, T): use sketches to compute (1 + ε)-approx. H′

▸ HD(P2, T): ignore

Lemma
H′ is a good approximation of HD

Proof
1. H′ ≤ (1 + ε) ⋅HD(P2,T) ≤ (1 + ε) ⋅HD

2. H′ ≥ (1 − ε) ⋅HD(P2,T) ≥ (1 − ε) ⋅HD −HD(P1,T) ≥ (1 − 2ε) ⋅HD

3-parties CC problem
Bob B

sketch
B

sketch
B

sketch
B

sketch
B

sketch
B

sketch
B

sketch
B

sketchsketch

P1 P2

▸ Divide the text T into blocks of length B =
√

n

▸ Compute a sketch of each block

▸ Large Hamming distance: HD (prefix of P, T) ≥ B/ε
▸ HD(P1, T): use sketches to compute (1 + ε)-approx. H′

▸ HD(P2, T): ignore

Lemma
H′ is a good approximation of HD

Proof
1. H′ ≤ (1 + ε) ⋅HD(P2,T) ≤ (1 + ε) ⋅HD

2. H′ ≥ (1 − ε) ⋅HD(P2,T) ≥ (1 − ε) ⋅HD −HD(P1,T) ≥ (1 − 2ε) ⋅HD

3-parties CC problem
Bob B B B B B B B B B

⊗ ⊗⊗ ⊗ ⊗ ⊗ ⊗

P1 P2

▸ Small Hamming distance: HD (prefix of P, T) ≥ B/ε
▸ If #(⊗) in a block ≤ 1, B sends it to C

▸ Starting from the first block where #(⊗) ≥ 2, T and P can be
encoded in small space (periodicity)

▸ C can restore P and T from the encoding and compute HDs

▸ CC = O(1/ε2√n log n) ,
[Lower bound: Ω(ε−2 log n + ε−1 log2

ε−1n)]

Upper bounds:
show a streaming algorithm

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

3-parties CC problem
Simpler CC problem:

B and C know the pattern

Upper
bounds

Upper
bounds

Streaming algorithm

Streaming algorithm

Text T
sketch

sketch
Pattern P

Reminder

▸ Y = 1/ε2 × n matrix of IID unbiased ±1 random variables

▸ sketch(S) = Y ⋅ S

Problem

▸ How to maintain the sketch of T?

▸ We don’t have random access to T and we can’t store many of its
characters

Streaming algorithm

sketch
B

sketch
B

sketch
B

sketch
B

super-sketch

Reminder

▸ Y = (1/ε2) × n matrix of IID unbiased ±1 random variables

▸ sketch(S) = Y ⋅ S

New notion: super-sketch

▸ σi — IID unbiased ±1 variables

▸ super-sketch = ∑σi ⋅ sketchi

▸ Analysis: similar to sketches

Streaming algorithm

P[1,B − i] P[B − i + 1,n − i] P[n − i + 1,n]

B B B B B
sketch sketch sketch

super-sketch

▸ HD between P[B − i + 1,n − i] and T: super-sketch

▸ Store a super-sketch for each (n − B)-length substring of P

▸ B =

√

n/ε super-sketches in total

▸ At each block border compute a super-sketch of the last n/B
blocks from their sketches

▸ O(n/B) = O(ε
√

n) time, can be de-amortized

Streaming algorithm

P[1,B − i] P[B − i + 1,n − i] P[n − i + 1,n]

B B B B B

simpler CC problem super-sketch sketch

▸ HD between the suffix of P and T: sketch

▸ HD between the prefix of P and T: similar to the simpler CC
problem for the pattern P[1,B]

P[1,B − i]

B B

simpler CC problem

Complexity: O(1/ε3√n log2 n) bits of space, O(1/ε2 log2 n) time ,

Streaming algorithm

P[1,B − i] P[B − i + 1,n − i] P[n − i + 1,n]

B B B B B

simpler CC problem super-sketch sketch

▸ HD between the suffix of P and T: sketch

▸ HD between the prefix of P and T: similar to the simpler CC
problem for the pattern P[1,B]

P[1,B − i]

B B

simpler CC problem

Complexity: O(1/ε3√n log2 n) bits of space, O(1/ε2 log2 n) time ,

Upper bounds:

Lower bounds:
reduction to a CC problem

This work:
(1+ε)-Approximate HDs problem

3-parties CC problem
Simpler CC problem:

B and C know the pattern

Upper bounds Upper bounds

O (ε−3√n log1.5n)

O (ε−1 log2(ε−1n))O (ε−4 log2n)O (ε−2 logn+ε−1 log2(ε−1n))O (ε−2√n log2n)

