Streaming and communication complexity of Hamming distance

Tatiana Starikovskaya
IRIF, Université Paris-Diderot

(Joint work with Raphaël Clifford, ICALP'16)

Approximate pattern matching

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Approximate pattern matching

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T
"Big Data" Applications

- Computational biology
- Signal processing
- Text retrieval

Standard algorithms: $\Omega(n)$ space

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Te
c

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T
Text T
c-a a

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Text T
c a a b c

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Text T
c a a blll

Pattern P

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Text T							
c		a	b	c	a	a	a

Pattern P

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Pattern P

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Text T

Pattern P

Model of computation

Problem

Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model

- $T=$ stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space $=$ total space used; Time $=$ time per character of T

Pattern P

What is known: Hamming distance

- All distances
- Space $\Omega(n)$ [Folklore]
- Time $\mathcal{O}\left(\log ^{2} n\right)$ [Clifford et al., CPM'11]

What is known: Hamming distance

- All distances
- Space $\Omega(n)$ [Folklore]
- Time $\mathcal{O}\left(\log ^{2} n\right)$ [Clifford et al., CPM'11]
- Only distances $\leq k$ [Clifford et al., SODA'16]
- Exact values: space $\mathcal{O}\left(k^{2}\right.$ polylog $\left.n\right)$, time $\mathcal{O}(\sqrt{k} \log k+$ polylog $n)$
- (1+ $\varepsilon)$-approx.: space $\mathcal{O}\left(\varepsilon^{-2} k^{2}\right.$ polylog $\left.n\right)$, time $\mathcal{O}\left(\varepsilon^{-2}\right.$ polylog $\left.n\right)$

This work:

(1+ $)$-Approximate HDs problem

This work:

(1+ $)$-Approximate HDs problem

Lower bound for all HDs, approximate

3-parties CC problem

- Alice holds the pattern, Bob holds $T[1, n]$, Charlie holds $T[n+1,2 n]$
- Charlie's output: $(1+\varepsilon)$-HD for each alignment of P and T Min. communication between Alice, Bob, and Charlie?

Lower bound for all HDs, approximate

- Streaming algorithm: $T=$ stream, not allowed to store a copy of P or T, output $=(1+\varepsilon)$-HDs
- At time $=n$ it stores all the information needed to compute the $(1+\varepsilon)$-HDs
- Comm. protocol: send this information from A and B to C
- Lower bound for the CC problem \Rightarrow streaming lower bound

This work:

(1+ $)$-Approximate HDs problem

This work:

(1+ ε)-Approximate HDs problem

3-parties CC problem

Simpler CC problem:
B and C know the pattern

This work:

(1+ $)$-Approximate HDs problem

This work:

(1+ $)$-Approximate HDs problem

This work:

(1+ $)$-Approximate HDs problem

Communication complexity

Simpler CC problem: B and C know the pattern

Lower bound: $\Omega\left(\varepsilon^{-1} \log ^{2} \varepsilon^{-1} n\right)$

- Window counting: $(1+\varepsilon)$-approx. of \#(b) in a sliding window of width $n=(1+\varepsilon)$-approx. of HD between $P=a a \ldots a$ and T
- $\Omega\left(\varepsilon^{-1} \log ^{2} \varepsilon^{-1} n\right)$ bits [Datar et al., 2013]

3-parties CC problem

Lower bound: $\Omega\left(\varepsilon^{-1} \log ^{2} \varepsilon^{-1} n+\varepsilon^{-2} \log n\right)$

$$
\begin{aligned}
& \text { Bob } \\
& \text { ba a } \quad \text { a b|a a a a a a }
\end{aligned}
$$

- Output $=(1+\varepsilon)$-HD between $T[1, n]$ and $T[n+1,2 n]=$ ($1+\varepsilon$)-approx. of HD between $T=T[1, n] 00 \ldots 0$ (Bob and Charlie) and $P=T[n+1,2 n]$ (Alice)
- $\Omega\left(\varepsilon^{-2} \log n\right)$ bits [Jayram \& Woordruff, 2013]

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Intuition

- Sketch of a string is a very short vector
- L_{2}-distance between sketches \approx HD between strings

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Intuition

- Sketch of a string is a very short vector
- L_{2}-distance between sketches \approx HD between strings

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\left(\begin{array}{ccc}
\pm 1 & \pm 1 & \cdots \\
\pm 1 & \ddots & \\
\vdots & &
\end{array}\right)\left(\begin{array}{c}
S[1] \\
S[2] \\
\vdots
\end{array}\right)
$$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathbf{Y S}
$$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathbf{Y S}
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathrm{YS}
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof
$\mathbb{E}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\mathbb{E}\left[\varepsilon^{2} \cdot\left|Y\left(S_{1}-S_{2}\right)\right|_{2}^{2}\right]=\varepsilon^{2} \cdot \mathbb{E}\left[\left|Y\left(S_{1}-S_{2}\right)\right|_{2}^{2}\right]=$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathrm{Y} S
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof
$\mathbb{E}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\mathbb{E}\left[\varepsilon^{2} \cdot\left|Y\left(S_{1}-S_{2}\right)\right|_{2}^{2}\right]=\varepsilon^{2} \cdot \mathbb{E}\left[\left|Y\left(S_{1}-S_{2}\right)\right|_{2}^{2}\right]=$
$=\varepsilon^{2} \cdot \mathbb{E}\left[\sum_{j=1}^{1 / \varepsilon^{2}}\left(Y_{j}\left(S_{1}-S_{2}\right)\right)^{2}\right]=\mathbb{E}\left[\left(Y_{1}\left(S_{1}-S_{2}\right)\right)^{2}\right]=\left|S_{1}-S_{2}\right|_{2}^{2}$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathbf{Y S}
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof
$\mathbb{E}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\left|S_{1}-S_{2}\right|_{2}^{2}$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathrm{YS}
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof
$\mathbb{E}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\left|S_{1}-S_{2}\right|_{2}^{2}$
$\operatorname{Var}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\varepsilon^{2} \cdot \operatorname{Var}\left[\left(Y_{1}\left(S_{1}-S_{2}\right)\right)^{2}\right] \leq$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathrm{YS}
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof
$\mathbb{E}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\left|S_{1}-S_{2}\right|_{2}^{2}$
$\operatorname{Var}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\varepsilon^{2} \cdot \operatorname{Var}\left[\left(Y_{1}\left(S_{1}-S_{2}\right)\right)^{2}\right] \leq$
$\leq \varepsilon^{2} \cdot \mathbb{E}\left[\left(Y_{1}\left(S_{1}-S_{2}\right)\right)^{4}\right] \leq \varepsilon^{2} C \cdot \mathbb{E}\left[\left(Y_{1}\left(S_{1}-S_{2}\right)\right)^{2}\right]^{2}=\varepsilon^{2} C \cdot\left|S_{1}-S_{2}\right|_{2}^{4}$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathrm{YS}
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof
$\mathbb{E}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\left|S_{1}-S_{2}\right|_{2}^{2}$
$\operatorname{Var}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right] \leq \varepsilon^{2} C \cdot\left|S_{1}-S_{2}\right|_{2}^{4}$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

Formal definition (binary alphabets)

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables

$$
\underbrace{\operatorname{sketch}(S)}_{\text {length }=1 / \varepsilon^{2}}=\mathbf{Y S}
$$

Lemma
$(1-\varepsilon) \cdot H D\left(S_{1}, S_{2}\right) \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot H D\left(S_{1}, S_{2}\right)$
Proof
$\mathbb{E}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right]=\left|S_{1}-S_{2}\right|_{2}^{2}$
$\operatorname{Var}\left[\varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2}\right] \leq \varepsilon^{2} C \cdot\left|S_{1}-S_{2}\right|_{2}^{4}$
By Chebyshev's inequality, with constant probability:
$(1-\varepsilon) \cdot\left|S_{1}-S_{2}\right|_{2}^{2} \leq \varepsilon^{2} \cdot\left|\operatorname{sketch}\left(S_{1}\right)-\operatorname{sketch}\left(S_{2}\right)\right|_{2}^{2} \leq(1+\varepsilon) \cdot\left|S_{1}-S_{2}\right|_{2}^{2}$

Important notion: $(1+\varepsilon)$-approximate sketch for HD

One more trick

- Y can be generated from $\mathcal{O}(\log n)$ random bits (random \rightarrow preudorandom)

Important notion: $(1+\varepsilon)$-approximate sketch for HD

One more trick

- Y can be generated from $\mathcal{O}(\log n)$ random bits (random \rightarrow preudorandom)

Summary

- Sketch of a string is a vector of length $\mathcal{O}\left(\varepsilon^{-2} \log n\right)$ bits
- Sketches give $(1+\varepsilon)$-approximation of HD

Simpler CC problem: B and C know the pattern

- B knows $T[1, n]$, C knows $T[n+1,2 n]$, B and C know P
- Observation: C doesn't need any information to compute HDs between suffixes of P and $T[n+1,2 n]$

Simpler CC problem: B and C know the pattern

- Select $\mathcal{O}\left(\log _{\varepsilon} n\right)$ prefixes of the pattern
- First prefix: Prefix of maximal length ℓ_{1} with $\mathrm{HD} \leq(1 / \varepsilon)^{2}$
- Second prefix: Prefix of maximal length $\ell_{2} \geq \ell_{1}$ with $H D \leq(1 / \varepsilon)^{3}$

Simpler CC problem: B and C know the pattern

- Divide prefix j into $1 / \varepsilon^{2}$ blocks with $\mathrm{HD} \leq(1 / \varepsilon)^{j-1}$

Simpler CC problem: B and C know the pattern

- Divide prefix j into $1 / \varepsilon^{2}$ blocks with $\mathrm{HD} \leq(1 / \varepsilon)^{j-1}$
- Compute $\mathcal{O}\left(1 / \varepsilon^{2}\right)$ sketches for the text

Simpler CC problem: B and C know the pattern

- Divide prefix j into $1 / \varepsilon^{2}$ blocks with HD $\leq(1 / \varepsilon)^{j-1}$
- Compute $\mathcal{O}\left(1 / \varepsilon^{2}\right)$ sketches for the text
- Send the block borders and the sketches to Charlie

Simpler CC problem: B and C know the pattern

Simpler CC problem: B and C know the pattern

- Find the shortest prefix containing P

Simpler CC problem: B and C know the pattern

- Find the shortest prefix containing P
- $\mathrm{HD}\left(P_{2}, T\right)$: use sketches - $(1+\varepsilon)$-approximation

Simpler CC problem: B and C know the pattern

- Find the shortest prefix containing P
- $\mathrm{HD}\left(P_{2}, T\right)$: use sketches - $(1+\varepsilon)$-approximation
- $\mathrm{HD}\left(P_{1}, T\right)$: use the prefix's block - additive error $\leq \varepsilon \cdot H D(P, T)$

Simpler CC problem: B and C know the pattern

- Find the shortest prefix containing P
- $\mathrm{HD}\left(P_{2}, T\right)$: use sketches - $(1+\varepsilon)$-approximation
- $\mathrm{HD}\left(P_{1}, T\right)$: use the prefix's block - additive error $\leq \varepsilon \cdot H D(P, T)$
- $\mathbf{C C}=\mathcal{O}\left(\varepsilon^{-4} \log ^{2} n\right)$ [Lower bound: $\Omega\left(\varepsilon^{-1} \log ^{2} \varepsilon^{-1} n\right)$]

3-parties CC problem

Alice

- B knows $T[1, n]$, C knows $T[n+1,2 n]$, only A knows P
- Observation: C doesn't need any information to compute HDs between suffixes of P and his part of the text
- Can't use prefixes of P to approximate $T-\mathbf{C}$ doesn't know P

3-parties CC problem

- Divide the text T into blocks of length $B=\sqrt{n}$
- Compute a sketch of each block
- Large Hamming distance: HD (prefix of $P, T) \geq B / \varepsilon$
- $\mathrm{HD}\left(P_{1}, T\right)$: use sketches to compute $(1+\varepsilon)$-approx. H^{\prime}
- $\mathrm{HD}\left(P_{2}, T\right)$: ignore

3-parties CC problem

- Divide the text T into blocks of length $B=\sqrt{n}$
- Compute a sketch of each block
- Large Hamming distance: HD (prefix of $P, T) \geq B / \varepsilon$
- $\mathrm{HD}\left(P_{1}, T\right)$: use sketches to compute $(1+\varepsilon)$-approx. H^{\prime}
- $\mathrm{HD}\left(P_{2}, T\right)$: ignore

Lemma

H^{\prime} is a good approximation of HD

Proof

1. $H^{\prime} \leq(1+\varepsilon) \cdot H D\left(P_{2}, T\right) \leq(1+\varepsilon) \cdot H D$
2. $H^{\prime} \geq(1-\varepsilon) \cdot H D\left(P_{2}, T\right) \geq(1-\varepsilon) \cdot H D-H D\left(P_{1}, T\right) \geq(1-2 \varepsilon) \cdot H D$

3-parties CC problem

- Small Hamming distance: HD (prefix of $P, T) \geq B / \varepsilon$
- If $\#(\otimes)$ in a block $\leq 1, \mathbf{B}$ sends it to \mathbf{C}
- Starting from the first block where $\#(\otimes) \geq 2, T$ and P can be encoded in small space (periodicity)
- C can restore P and T from the encoding and compute HDs
- $\mathbf{C C}=\mathcal{O}\left(1 / \varepsilon^{2} \sqrt{n} \log n\right) \oplus$
[Lower bound: $\Omega\left(\varepsilon^{-2} \log n+\varepsilon^{-1} \log ^{2} \varepsilon^{-1} n\right)$]

Streaming algorithm

Streaming algorithm

Text T

Reminder

- $Y=1 / \varepsilon^{2} \times n$ matrix of IID unbiased ± 1 random variables
- $\operatorname{sketch}(\mathbf{S})=Y \cdot S$

Problem

- How to maintain the sketch of T ?
- We don't have random access to T and we can't store many of its characters

Streaming algorithm

Reminder

- $Y=\left(1 / \varepsilon^{2}\right) \times n$ matrix of IID unbiased ± 1 random variables
- $\operatorname{sketch}(S)=Y \cdot S$

New notion: super-sketch

- σ_{i} - IID unbiased ± 1 variables
- super-sketch $=\sum \sigma_{i} \cdot$ sketch $_{i}$
- Analysis: similar to sketches

Streaming algorithm

- HD between $P[B-i+1, n-i]$ and T : super-sketch
- Store a super-sketch for each $(n-B)$-length substring of P
- $B=\sqrt{n} / \varepsilon$ super-sketches in total
- At each block border compute a super-sketch of the last n / B blocks from their sketches
- $\mathcal{O}(n / B)=\mathcal{O}(\varepsilon \sqrt{n})$ time, can be de-amortized

Streaming algorithm

- HD between the suffix of P and T : sketch

Streaming algorithm

- HD between the suffix of P and T : sketch
- HD between the prefix of P and T : similar to the simpler CC problem for the pattern $P[1, B]$

Complexity: $\mathcal{O}\left(1 / \varepsilon^{3} \sqrt{n} \log ^{2} n\right)$ bits of space, $\mathcal{O}\left(1 / \varepsilon^{2} \log ^{2} n\right)$ time \odot

