Streaming and communication complexity of Hamming distance

Tatiana Starikovskaya IRIF, Université Paris-Diderot

(Joint work with Raphaël Clifford, ICALP'16)

Approximate pattern matching

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

Approximate pattern matching

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

"Big Data" Applications

- Computational biology
- Signal processing
- Text retrieval

Standard algorithms: $\Omega(n)$ space

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- ▶ Space = total space used; Time = time per character of T

```
Text T
```

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space = total space used; Time = time per character of T

```
Text T c a
```

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space = total space used; Time = time per character of T

```
Text T
```

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- ► Space = total space used; Time = time per character of *T*

```
Text T
c a a b
```

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- ▶ Space = total space used; Time = time per character of T

```
Text T c a a b c
```

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

Model

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space = total space used; Time = time per character of T

```
Text T
c a a b c a
```

Pattern P

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

Model

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space = total space used; Time = time per character of T

```
Text T

c a a b c a a
```

Pattern P

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space = total space used; Time = time per character of T

```
Text T

[c a a b c a a a ]

b c a a a c

Pattern P
```

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

Model

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P

Pattern P

• Space = total space used; Time = time per character of T

```
Text T
c a a b c a a a c
b c a a a c
```

Problem

Pattern P of length n, text TFind the Hamming distance between P and each n-length substring of T

Model

- T = stream of characters
- Length of the text and size of the universe are extremely large
- Can't store a copy of T or P
- Space = total space used; Time = time per character of T

```
Text T c a a b c a a a c a
```

Pattern *P*

What is known: Hamming distance

- All distances
 - Space $\Omega(n)$ [Folklore]
 - ► Time $\mathcal{O}(\log^2 n)$ [Clifford et al., CPM'11]

What is known: Hamming distance

- All distances
 - Space $\Omega(n)$ [Folklore]
 - ► Time $O(\log^2 n)$ [Clifford et al., CPM'11]
- Only distances ≤ k [Clifford et al., SODA'16]
 - Exact values: space $\mathcal{O}(k^2 \operatorname{polylog} n)$, time $\mathcal{O}(\sqrt{k} \log k + \operatorname{polylog} n)$
 - $(1+\varepsilon)$ -approx.: space $\mathcal{O}(\varepsilon^{-2}k^2 \operatorname{polylog} n)$, time $\mathcal{O}(\varepsilon^{-2} \operatorname{polylog} n)$

Lower bound for all HDs, approximate

3-parties CC problem

- Alice holds the pattern, Bob holds T[1, n], Charlie holds T[n + 1, 2n]
- Charlie's output: $(1 + \varepsilon)$ -HD for each alignment of P and T Min. communication between Alice, Bob, and Charlie?

Lower bound for all HDs, approximate

- Streaming algorithm: T = stream, not allowed to store a copy of P or T, output = $(1 + \varepsilon)$ -HDs
- At time = n it stores all the information needed to compute the $(1 + \varepsilon)$ -HDs
- Comm. protocol: send this information from A and B to C
- Lower bound for the CC problem ⇒ streaming lower bound

Communication complexity

Simpler CC problem: **B** and **C** know the pattern

Lower bound: $\Omega(\varepsilon^{-1}\log^2\varepsilon^{-1}n)$

Bob	Charlie							
b a a	b a	b	а	a	a	a	a	a

- Window counting: $(1 + \varepsilon)$ -approx. of #(b) in a sliding window of width $n = (1 + \varepsilon)$ -approx. of HD between $P = aa \dots a$ and T
- $\Omega(\varepsilon^{-1}\log^2\varepsilon^{-1}n)$ bits [Datar et al., 2013]

3-parties CC problem

Lower bound: $\Omega(\varepsilon^{-1}\log^2\varepsilon^{-1}n + \varepsilon^{-2}\log n)$

Bob						Charlie					
[p	a	a	b	a	Ъ	a	a	a	a	a	a¦

- Output = $(1 + \varepsilon)$ -HD between T[1, n] and $T[n + 1, 2n] = (1 + \varepsilon)$ -approx. of HD between T = T[1, n]00...0 (**Bob** and **Charlie**) and P = T[n + 1, 2n] (**Alice**)
- $\Omega(\varepsilon^{-2} \log n)$ bits [Jayram & Woordruff, 2013]

Intuition

- Sketch of a string is a **very short** vector
- ▶ L_2 -distance between sketches ≈ HD between strings

Intuition

- Sketch of a string is a very short vector
- ▶ L_2 -distance between sketches ≈ HD between strings

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \begin{pmatrix} \pm 1 & \pm 1 & \dots \\ \pm 1 & \ddots & \\ \vdots & & & \\ & Y & & S \end{pmatrix} \begin{pmatrix} S[1] \\ S[2] \\ \vdots \\ S[N] \end{pmatrix}$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2)\leq \varepsilon^2\cdot |sketch(S_1)-sketch(S_2)|_2^2\leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2) \leq \varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2 \leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

$$\mathbb{E}\left[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2\right] = \mathbb{E}\left[\varepsilon^2 \cdot |Y(S_1 - S_2)|_2^2\right] = \varepsilon^2 \cdot \mathbb{E}\left[|Y(S_1 - S_2)|_2^2\right] = \varepsilon$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2) \leq \varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2 \leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

$$\mathbb{E}[\varepsilon^{2} \cdot | sketch(S_{1}) - sketch(S_{2})|_{2}^{2}] = \mathbb{E}[\varepsilon^{2} \cdot |Y(S_{1} - S_{2})|_{2}^{2}] = \varepsilon^{2} \cdot \mathbb{E}[|Y(S_{1} - S_{2})|_{2}^{2}] = \varepsilon^{2} \cdot \mathbb{E}[\sum_{j=1}^{1/\varepsilon^{2}} (Y_{j}(S_{1} - S_{2}))^{2}] = \mathbb{E}[(Y_{1}(S_{1} - S_{2}))^{2}] = |S_{1} - S_{2}|_{2}^{2}$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2)\leq \varepsilon^2\cdot |sketch(S_1)-sketch(S_2)|_2^2\leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

$$\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2) \leq \varepsilon^2\cdot |sketch(S_1) - sketch(S_2)|_2^2 \leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

$$\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2$$

$$\operatorname{Var}[\varepsilon^2 \cdot |\operatorname{sketch}(S_1) - \operatorname{sketch}(S_2)|_2^2] = \varepsilon^2 \cdot \operatorname{Var}[(Y_1(S_1 - S_2))^2] \le$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2)\leq \varepsilon^2\cdot |sketch(S_1)-sketch(S_2)|_2^2\leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

$$\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2$$

$$\mathbf{Var}\left[\varepsilon^{2} \cdot |sketch(S_{1}) - sketch(S_{2})|_{2}^{2}\right] = \varepsilon^{2} \cdot \mathbf{Var}\left[\left(Y_{1}(S_{1} - S_{2})\right)^{2}\right] \le$$

$$\le \varepsilon^{2} \cdot \mathbb{E}\left[\left(Y_{1}(S_{1} - S_{2})\right)^{4}\right] \le \varepsilon^{2}C \cdot \mathbb{E}\left[\left(Y_{1}(S_{1} - S_{2})\right)^{2}\right]^{2} = \varepsilon^{2}C \cdot |S_{1} - S_{2}|_{2}^{4}$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2)\leq \varepsilon^2\cdot |sketch(S_1)-sketch(S_2)|_2^2\leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

Proof

$$\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2$$

$$\operatorname{Var}[\varepsilon^2 \cdot | sketch(S_1) - sketch(S_2)|_2^2] \le \varepsilon^2 C \cdot |S_1 - S_2|_2^4$$

Formal definition (binary alphabets)

• $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables

$$\underbrace{sketch(S)}_{\text{length} = 1/\varepsilon^2} = \mathbf{Y}S$$

Lemma

$$(1-\varepsilon)\cdot HD(S_1,S_2)\leq \varepsilon^2\cdot |sketch(S_1)-sketch(S_2)|_2^2\leq (1+\varepsilon)\cdot HD(S_1,S_2)$$

Proof

$$\mathbb{E}[\varepsilon^2 \cdot |sketch(S_1) - sketch(S_2)|_2^2] = |S_1 - S_2|_2^2$$

$$\operatorname{Var}[\varepsilon^2 \cdot | sketch(S_1) - sketch(S_2)|_2^2] \le \varepsilon^2 C \cdot |S_1 - S_2|_2^4$$

By Chebyshev's inequality, with constant probability:

$$(1-\varepsilon)\cdot |S_1-S_2|_2^2 \le \varepsilon^2\cdot |sketch(S_1)-sketch(S_2)|_2^2 \le (1+\varepsilon)\cdot |S_1-S_2|_2^2$$

One more trick

► *Y* can be generated from $\mathcal{O}(\log n)$ random bits (random \rightarrow preudorandom)

One more trick

► *Y* can be generated from $\mathcal{O}(\log n)$ random bits (random \rightarrow preudorandom)

Summary

- Sketch of a string is a vector of length $\mathcal{O}(\varepsilon^{-2}\log n)$ bits
- Sketches give $(1 + \varepsilon)$ -approximation of HD

- ▶ **B** knows T[1, n], **C** knows T[n + 1, 2n], **B** and **C** know P
- Observation: C doesn't need any information to compute HDs between suffixes of P and T[n+1,2n]

- ▶ Select $\mathcal{O}(\log_{\varepsilon} n)$ prefixes of the pattern
- ▶ First prefix: Prefix of maximal length ℓ_1 with HD ≤ $(1/\varepsilon)^2$
- Second prefix: Prefix of maximal length $\ell_2 \ge \ell_1$ with HD $\le (1/\varepsilon)^3$

...

▶ Divide prefix *j* into $1/\varepsilon^2$ blocks with HD $\leq (1/\varepsilon)^{j-1}$

- ▶ Divide prefix *j* into $1/\varepsilon^2$ blocks with HD $\leq (1/\varepsilon)^{j-1}$
- Compute $\mathcal{O}(1/\varepsilon^2)$ sketches for the text

- ▶ Divide prefix *j* into $1/\varepsilon^2$ blocks with HD $\leq (1/\varepsilon)^{j-1}$
- Compute $\mathcal{O}(1/\varepsilon^2)$ sketches for the text
- Send the block borders and the sketches to Charlie

Find the shortest prefix containing P

- Find the shortest prefix containing P
- ▶ HD(P_2 , T): use sketches $(1 + \varepsilon)$ -approximation

- Find the shortest prefix containing P
- ► HD(P_2 , T): use sketches $(1 + \varepsilon)$ -approximation
- ► HD(P_1 , T): use the prefix's block additive error $\leq \varepsilon \cdot HD(P,T)$

- Find the shortest prefix containing P
- ► HD(P_2 , T): use sketches $(1 + \varepsilon)$ -approximation
- ► HD(P_1 , T): use the prefix's block additive error $\leq \varepsilon \cdot HD(P,T)$
- CC = $\mathcal{O}(\varepsilon^{-4}\log^2 n)$ [Lower bound: $\Omega(\varepsilon^{-1}\log^2 \varepsilon^{-1}n)$]

- ▶ **B** knows T[1,n], **C** knows T[n+1,2n], only **A** knows **P**
- ▶ **Observation: C** doesn't need any information to compute HDs between suffixes of *P* and his part of the text
- ► Can't use prefixes of *P* to approximate *T* **C** doesn't know *P*

- ▶ Divide the text *T* into blocks of length $B = \sqrt{n}$
- · Compute a sketch of each block
- ► Large Hamming distance: HD (prefix of P, T) $\geq B/\varepsilon$
 - ▶ HD(P_1 , T): use sketches to compute $(1 + \varepsilon)$ -approx. H'
 - $HD(P_2, T)$: ignore

- ▶ Divide the text *T* into blocks of length $B = \sqrt{n}$
- Compute a sketch of each block
- ► Large Hamming distance: HD (prefix of P, T) $\geq B/\varepsilon$
 - ▶ HD(P_1 , T): use sketches to compute $(1 + \varepsilon)$ -approx. H'
 - $HD(P_2, T)$: ignore

Lemma

H' is a good approximation of HD

Proof

- 1. $H' \leq (1 + \varepsilon) \cdot HD(P_2, T) \leq (1 + \varepsilon) \cdot HD$
- 2. $H' \ge (1 \varepsilon) \cdot HD(P_2, T) \ge (1 \varepsilon) \cdot HD HD(P_1, T) \ge (1 2\varepsilon) \cdot HD$

- ► Small Hamming distance: HD (prefix of P, T) $\geq B/\varepsilon$
 - ▶ If $\#(\otimes)$ in a block ≤ 1 , **B** sends it to **C**
 - ► Starting from the first block where $\#(\otimes) \ge 2$, T and P can be encoded in small space (periodicity)
 - ▶ **C** can restore *P* and *T* from the encoding and compute HDs
- CC = $\mathcal{O}(1/\varepsilon^2 \sqrt{n} \log n)$ ① [Lower bound: $\Omega(\varepsilon^{-2} \log n + \varepsilon^{-1} \log^2 \varepsilon^{-1} n)$]

Reminder

- $Y = 1/\varepsilon^2 \times n$ matrix of IID unbiased ± 1 random variables
- $sketch(S) = Y \cdot S$

Problem

- ▶ How to maintain the sketch of *T*?
- We don't have random access to T and we can't store many of its characters

Reminder

- $Y = (1/\varepsilon^2) \times n$ matrix of IID unbiased ±1 random variables
- $sketch(S) = Y \cdot S$

New notion: super-sketch

- σ_i IID unbiased ±1 variables
- super-sketch = $\sum \sigma_i \cdot sketch_i$
- Analysis: similar to sketches

- ► HD between P[B-i+1,n-i] and T: super-sketch
- ▶ Store a **super-sketch** for each (n B)-length substring of P
 - $B = \sqrt{n/\varepsilon}$ super-sketches in total
- At each block border compute a **super-sketch** of the last n/B blocks from their sketches
 - $\mathcal{O}(n/B) = \mathcal{O}(\varepsilon \sqrt{n})$ time, can be de-amortized

▶ HD between the **suffix** of *P* and *T*: sketch

- ▶ HD between the suffix of *P* and *T*: sketch
- ▶ HD between the **prefix** of *P* and *T*: similar to the simpler CC problem for the pattern P[1,B]

$$\begin{array}{ccc}
B & B \\
\hline
Simpler CC problem
\\
P[1,B-i]
\end{array}$$

Complexity: $\mathcal{O}(1/\varepsilon^3 \sqrt{n} \log^2 n)$ bits of space, $\mathcal{O}(1/\varepsilon^2 \log^2 n)$ time ©

